
Article No. csla.1999.0119
Available online at http://www.idealibrary.com on

Computer Speech and Language(1999)13, 177–194

Stochastically-based semantic analysis for
machine translation

Wolfgang Minker,∗† Marsal Gavaldà‡and Alex Waibel§‖
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Abstract

We report our experience of applying a stochastic method for understanding
natural language to a multilingual appointment scheduling task, in particular, to
the English spontaneous speech task (ESST). The aim of the spoken language
systems developed for this task is to translate spontaneous conversational speech
among different languages. We have investigated the portability of a stochastic
semantic analyser from a setting of human–machine interactions air travel
information services (ATIS) and multimodal multimedia automated service kiosk
(MASK) into the more open one of human-to-human interactions (ESST).
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1. Introduction

In this article, a stochastic component for natural language understanding, initially developed
as a part of a spoken language system for the information retrieval applications air travel
information services (ATIS) (Minker, Bennacef & Gauvain, 1996) and multimodal multimedia
automated service kiosk (MASK) (Minker, 1997), is ported to a multilingual, appointment
scheduling task, the English spontaneous scheduling task (ESST).

Machine translation systems combine various component technologies (such as speech
recognition, natural language understanding) to provide understanding of the meaning of a
spoken utterance. Additionally, natural language generation and speech synthesis are used
to build end-to-end systems which accomplish a given task, such as the scheduling of an
appointment by interlocutors speaking different languages. In the context of such systems,
today’s state-of-the-art rule-based methods for natural language understanding provide good
performance in limited applications. However, themanualdevelopment of an understanding
component is costly, as each new application, task, or domain requires its own adaptation or, in
the worst case, a completely new implementation. In this study, statistical modeling techniques
are used, first, to model the semantic content of naturally-occurring sentences, and then, to re-
place the commonly-used hand-generated grammar rules that parse the recognizer output into
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a semantic representation. The statistical models are derived from theautomaticanalyses of
large corpora of naturally-occurring sentences along with their semantic representations. This
facilitates the porting to different tasks, as well as to new languages. Such stochastic methods
have been applied in the BBN-HUM (Schwartz, Miller, Stallard & Makhoul, 1996) and the
AT&T- CHRONUS (Levin & Pieraccini, 1995) systems for the American ARPA-ATIS task.
To date, the language and domain portability of stochastic parsers has not been investigated.
However, this represents one of the essential arguments for applying a stochastic method for
the semantic analysis.

In the work reported in this article, the portability of a stochastically trained grammar from
a setting of human–machine interaction, ATIS and MASK, to one of human-to-human inter-
action is investigated. The stochastic component has been trained using a corpus annotated
by the CMU-PHOENIX parser, which, as part of theJANUS speech-to-speech translation sys-
tem, transforms the output of the speech recognizer into semantic trees. In contrast to parsing
spontaneous human–machine queries, spoken-language translation requires the analysis of a
human-to-human activity. This challenging problem is being explored at various laboratories
and by national and international research programs (see, for example, the C-STAR interna-
tional Consortium for Speech Translation Advanced Research, or the German VERBMOBIL
(Bub & Schwinn, 1996) project). Since a translation system deals with human-to-human dia-
logs, as opposed to the ATIS and MASK tasks in which a person negotiates with a machine,
not only the domains per se, but also the behavior of the interlocutors differ greatly, especially
with regard to negotiation patterns and degree of spontaneity. Such a system therefore requires
not only robustness to spoken language phenomena (i.e. false starts, filler words, ungrammat-
ical constructions, and other disfluencies and inaccuracies) but also a higher representational
resolution than the one needed for human–machine tasks.

In the following sections, we describe how both the rule-based (PHOENIX) and the stochastic
parsers work (Sections 2 and 3), and introduce the stochastic model (Section 4). In Section 5,
the semantic representation is defined, and the main characteristics of the training corpus are
provided in Section 6. Section 7 discusses comparative evaluations between the stochastic
component andPHOENIX.

2. Rule-based parsing inPHOENIX

The PHOENIX parser was first used for the ATIS task (Ward & Issar, 1995) but, as depicted
in Figure 1, it was adopted as one of the parsing engines of theJANUS speech-to-speech
translation system (Lavieet al., 1997). The results reported in this article arise from a particular
encarnation ofJANUS to handle the ESST domain.

The JANUS speech recognizer is based on theJANUS Recognition Toolkit (Finkeet al.,
1997). It uses streams of input features derived from Mel-scale, cepstral or PLP filters pro-
cessed via linear discriminant analysis. The acoustic units are context-dependent, modeled via
continuous-density HMMs. The trigram language model is built from ESST data and other
corpora.

ThePHOENIX translation modules used inJANUS (Ward, 1994, Mayfield, Gavaldà, Ward
& Waibel, 1995) consist of a top–down chart parser that, given an analysis grammar for the
source language and an input sentence in that language, produces a semantic tree, and of
a simple generation module that, given a generation grammar for the target language and a
semantic tree, produces a surface form of the semantic tree in the target language. The parser
uses heuristics to, in this order, maximize coverage and minimize tree complexity.

PHOENIX grammars are context-free grammars (CFG) in which the left-hand sides (rule
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Figure 1. JANUS system diagram (from Lavieet al., 1997).

heads) correspond to semantic tokens relevant to the application at hand, and right-hand sides
(rule bodies) capture a particular way in which the semantic token can be expressed. Figure 2
shows some sample grammar rules for a scheduling domain. Note that grammar terminals
(i.e. lexical items) and grammar non-terminals (i.e. semantic tokens) are freely mixed in the
right-hand sides. Auxiliary non-terminals (upper cased in the example) are used only as a
shorthand for the grammar writer and do not appear in the final parse tree.

There are two stages in the development of a semantic grammar. First, the relevant concepts
of the domain have to be established. This corresponds to finding the non-terminals of the
grammar. Then, in an arduous and lengthy process, appropriate right-hand sides need to be
written to try to capture all the possible ways in which a particular concept can be expressed.
Around 300 man-hours over the course of a year were employed to develop thePHOENIX

ESST grammar, consisting of 600 non-terminals (of which 21 are top-level), 2880 rules and
831 terminals.

Once the grammar is deemed developed enough, it is compiled byPHOENIX into Recursive
Transition Networks (RTN), each grammar non-terminal giving rise to one RTN. A subset of
the non-terminals are marked as starting symbols of the grammar, i.e. able to stand at the root
of a parse tree. Also, skipping of input words is only allowed between them.

Given an input sentence to be parsed,PHOENIX pre-processes it by eliminating out-of-
vocabulary words (i.e. words not appearing in the grammar) and expanding some contractions
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(1) [farewell]

( *good +bye )

(2) [suggest_meeting]

( SUGGESTION MEET *[time] *[location] )

( is MEET GOOD *FOR_YOU )

...

...

...

...

(3) SUGGESTION

( how about )

( what *do *you *think about )

(4) MEET

( *if *we meet )

( meeting )

Figure 2. Sample grammar rules for a scheduling task. Lexical items (in lower case)
and calls to semantic nets (in upper case or enclosed in square parentheses) are freely
mixed. A “*” indicates optional token, a “+” indicates repeatible token, a “*+” is
equivalent to the Kleene star, i.e. indicates that token can occur zero or more times. For
instance, rule (1) acceptsbye, goodbye, bye bye, etc.

(e.g.I’m→ I am). Then, the parse engine conducts a left-to-right Viterbi search in which all
possible traversals of the RTNs are pursued (top–down) as long as they match the input words.
Pruning and scoring heuristics include maximizing coverage, i.e. prefer those interpretations
(semantic trees) that cover the largest number of input words, and minimizing tree complexity,
i.e. prefer those interpretations that contain the smallest number of subconcepts (nodes of the
semantic tree). The resulting top-ranked interpretation is the most coherent semantic tree of
the input utterance, according to the given grammar.

3. Stochastically-based semantic analysis

The semantic analyser using a stochastic method is based on the theory of hidden Markov
models (HMM). The functional diagram is given in Figure 3. We distinguish two process-
ing steps: duringtraining, theparameter estimator establishes themodel from the transcribed
utterances (output of the speech recognition component) and their corresponding semantic
representations. In thedecodingor testingstage, thesemantic decoder, implemented as an er-
godic HMM (Rabiner & Juang, 1986), outputs the most likely semantic representation given
a transcribed utterance as input.

The stochastic component uses the same techniques for training and decoding that were
developed for ATIS and MASK, thus achieving a certain degree of portability and flexibility.
Only the data sets and their encoding are domain specific. In our new ESST task, the semantic
sequences used for training and evaluation are derived from the parse trees that were automa-
tically produced by the CMU-PHOENIX parser. Using these annotations and an appropriate
paradigm for evaluating translation accuracy provided the means to validate the stochastic
component and to compare it with the rule-based method.

Figure 4 describes the porting. In the pre-processing step of data segmentation, the tran-
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Figure 3. Overview of the semantic analyser of a spoken language system using a
stochastic method (Minker, Bennacef & Gauvain, 1996).

scriptions of the utterances were broken down into smaller semantic discourse units (SDUs)
using a combination of acoustic, lexical, semantic and statistical knowledge sources, as de-
scribed by Lavie, Gates, Coccaro and Levin (1996). As a part of the stochastic component,
the treetoexpr module converts the semanticPHOENIX concept-parses, provided as semantic
trees, into a sequential representation. Theparameter estimator then establishes a HMM using
the SDUs and the corresponding semantic representation. Given a test utterance, theseman-

tic decoder provides a semantic hypothesis (sequence which is reconverted by theexprtotree

interface into a tree-based representation). This representation is then used by thePHOENIX

generator to produce the translated utterance in the target language.

4. Knowledge representation

The parameters of the stochastic model are estimated given sequences of words and their
corresponding semantic representation.

4.1. Semantic representation

The semantic tree representations produced byPHOENIX [Fig. 5(a)] are similar to those
applied by BBN in theHUM system (Schwartzet al., 1996), except thatPHOENIX trees use
only semantic labels, whereasHUM trees are semantic and syntactic. ThePHOENIX parses
rely on a case grammar formalism (Bruce, 1975). The parser tries to model the relevant
ESST information structures as well as the lexical realization of these structures in various
languages. Severalsemantic tokenscorrespond to concepts and subconcepts in an utterance.
Based on transcripts of English and German scheduling dialogs, a set of fundamental semantic
tokens was defined to represent the relevant concepts the speakers use for this task. These
semantic tokens can be seen as the vertices of a directed acyclic graph in which the edges
correspond to concept–subconcept relations. Table I shows the semantic tokens used for
ESST. They are roughly listed in an abstract-to-concrete ordering. Typical high-level (more
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Figure 4. Porting of the stochastic component for natural language understanding to
the ESST domain.

general) tokens (L1) are<agree>, <interject>, <give info> and<temporal>; examples of
lowest-level (more specific) tokens (L4) are<hour>,<minute> and<year>. The tokens are
combined so as to build a tree-based meaning representation. For example, in Figure 5(a), a
typical temporal concept<temporal> has<point> and<interval> as daughter concepts, and
<interval> in turn has daughters<start point> and<end point>, etc. The leaves of the tree
correspond to the lexical items present in the input utterance, e.g.probably, sometime, etc.
Each speech-act contains a separate top-level concept (root of a semantic tree). The speech-
acts are then concatenated without any ordering constraints. The example utterance is parsed
into the independent semantic speech-acts<interj>,<temporal>,<agree> that capture the
top-level meaning ofprobably,sometime between nine and fiveandwould be good.

The rule-basedPHOENIX output is not in a form which can be directly used by the model
parameter estimator of the stochastic component. In order to estimate these parameters, each
word of the input utterance must have a correspondingsemantic label. The concept parses were
adapted bytreetoexpr (Fig. 4). This module converts the tree-based representation [Fig. 5(a)]
into sequences of semantictree-labels[Fig. 5(b)]. Each tree-label represents the complete path
from the root down to the lowest level token. An example path trough the tree is<temporal>–
<interval>–<start point>–<time>–<hour>7→nine. This exhaustive and deep semantic rep-
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TABLE I. Semantic tokens used for the scheduling task, categorized by degree of ab-
straction. An example path through the tree would be

“< temporal>–<interval>–<start point>–<time>–<hour>–nine” (cf. Fig. 5)
L1 <agree>, <conditional>, <confirm>, <correction>, <give info>,

<interj>, <move>, <nicety>, <no>, <q your availability>,
<q your knowledge>, <reject>, <request clarification>,
<request confirmation>, <sugg loc>, <sugg meet>, <sugg time>,
<temporal >,<yes>,<your turn>

L2 <any other time>, <anytime>, <available again>, <better temp>,
<conj>, <cycle>, <day of week>, <date>, <dur num>,
<duration>, <farewell>, <first>, <greeting>, <how long>,
<i sugg>, <if clause>, <in next couple weeks>, <interval >,
<is that okay>, <lets consider>, <lets do x>, <loc name>,
<loc>, <mealtime>, <month name>, <my availability>,
<my preference>, <my reluctance>, <my unavailability>,
<name>, <neg babble>, <not enought time>, <only>, <other>,
<out of town>, <please wait>, <point>, <range>, <time unit>,
<thanks>, <then clause>, <then>, <though>, <todays date>,
<too>, <two hour block>, <unit>, <when>, <where>, <within>,
<worse temp>,<your availability>,<your unavailability>

L3 <after>, <also>, <at least>, <before>, <beginning of>, <both>,
<but not>, <by>, <comparative>, <confirm>, <day num>,
<day ord>, <day spec>, <during>, <end of>, <end point>,
<enough time>, <entire>, <every>, <except for>, <floor number>,
<holiday>, <i could meet>, <i have x free>, <index>, <last temp>,
<longer than>, <meet>, <most of>, <most>, <next temp>,
<part of>, <portion>, <quantity>, <relative point>, <rest of>,
<soon>, <start point >, <time of day>, <that temp>, <thats all>,
<this temp>,<time mod>,<time slot>,<time>,<week after next>,
<week of>,<x is bad>,<you come>,<you could meet>

L4 <half>,<hour>,<minute>,<past>,<then>,<till>,<year>

resentation is well suited to capture the natural nestedness of human language. Figure 5(b)
illustrates how the highest-level<temporal> concept is propagated throughsometime between
nine and five.

ThePHOENIX system does not perform a detailed, syntactic analysis of the input utterance.
Expressions that are not relevant to the task at hand are simply ignored by the parser. For
example, given the utterance:

I am busy all afternoon that Thursdayso if you move all the way tothe fourth of August
I am free in the afternoon there or the morning of the fifth

the words inboldface are ignored. In order to convert the semantic tree to the encoding
required by the stochastic method, unlabeled words are mapped into<GARBAGE> labels,
which are automatically inserted into the semantic sequence. In the example in Figure 6, the
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<interj> <temporal> <agree>

would be goodfiveandninebetweensometimeprobably

<point> <interval>

<start_point>

<time>

<hour>

<end_point>

<time>

<hour>

<time_unit>

(a)

probably 7→ <interj>
sometime 7→ <temporal><point><time unit>
between 7→ <temporal><interval>
nine 7→ <temporal><interval><start point><time><hour>
and 7→ <temporal><interval>
five 7→ <temporal><interval><end point><time><hour>
would 7→ <agree>
be 7→ <agree>
good 7→ <agree>

(b)

Figure 5. Conversion of semantic trees into tree-labels to be used by the stochastic
component, as exemplified for the SDUprobably sometime between nine and five
would be good; (a) PHOENIX tree representation; (b) corresponding tree-labels each
representing the complete path from the root down to the leaf token in the tree.

relevant parts of the SDUbut, only, time, etc. are matched to the tree-labels from thePHOENIX

parses, whereas the irrelevant wordsif, that, isandthecorrespond to<GARBAGE> labels.

4.2. Utterance pre-processing

Stochastic methods require substantial amounts of data for the estimation of their parameters.
Corpora of spoken language are still limited in size, a fact that is problematic because events
rarely observed in the training data are not adequately modeled. As a result, the estimates
may become unreliable. Therefore, the data sparseness requires matching the model size
to the amount of training data available. In addition to back-off techniques (Katz, 1987), a
category-based unification is used to reduce the input variability. Typical word categories in
this domain deal with times and localities, e.g. /DAYTIME/, /LOCALITY/, /WEEKDAY/, etc.
The eight unification categories employed, along with some example words, are shown in
Table II. Still, compared to the information retrieval applications ATIS and MASK, this type
of pre-processing is less significant in terms of parameter reduction.

Words that systematically correspond to the semantic<GARBAGE> label as they are
judged to be irrelevant with respect to the ESST are called{filler}words. In the pre-processing,
they are removed from the training and test data, since they do not contain nor propagate any
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SDU:
but if that is the only time we can get together that will be great
Tree-label representation:
but 7→ <conj>
if 7→ <GARBAGE>
that 7→ <GARBAGE>
is 7→ <GARBAGE>
the 7→ <GARBAGE>
only 7→ <sugg meet><temporal><point><only>
time 7→ <sugg meet><temporal><point><time unit>
we 7→ <sugg meet>
can 7→ <sugg meet>
get 7→ <sugg meet>
together 7→ <sugg meet>
that 7→ <agree>
will 7→ <agree>
be 7→ <agree>
great 7→ <agree>

Figure 6.<GARBAGE>-label insertion in the semantic ESST corpus for words which
are judged by thePHOENIX parser to be irrelevant for the specific application.

TABLE II. Category unification in ESST

Categories Example words
/DAYTIME/ afternoon, evening, morning
/LOCALITY/ Bahamas, cafeteria, town
/MEAL/ breakfast, brunch, dinner, lunch
/MONTH/ April, August, December, February
/NAME/ Andrea, Andrew, Kathy, Linda
/NUMBER/ eight, eleven, fifteen, five
/ORDINAL/ eighteenth, eighth, eleventh
/WEEKDAY/ Monday, Saturday, Thursday

meaningful information. However, words that correspond to<GARBAGE> in context of the
specific SDU are not removed. For example,

and yeahhopefully that will work

pre-processed into

and yeah{filler} that will work

corresponds to the semantic sequence

<conj> <agree> <GARBAGE> <GARBAGE> <GARBAGE> <GARBAGE>

The SDU is then transformed into

and yeah that will work

In this example,hopefully that will workis considered to be irrelevant and not translated.
Therefore, it corresponds to<GARBAGE>. The sequencethat will work may be significant
in a different context. Consequently, it is not pre-processed into{filler} labels.
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<sugg_loc>

<interj><conj> <agree>

<sugg_loc><where>

P(sj | si)

Figure 7. Ergodic semantic Markov model, all states, such as the examples
<interj><conj>,<agree>,<sugg loc> and<sugg loc><where> shown are fully
connected.

5. Stochastic model

Relative occurrences of model states and observations are used to establish the Markov model,
whose topology needs to be fixed prior to training and decoding. This topology is illustrated
in Figure 7. As for ATIS and MASK, semantic labels are defined as the statessj . All states,
such as the examples<interj><conj>, <agree>, <sugg loc> and<sugg loc><where>
shown can follow each other; thus the model isergodic.

Semantic decoding consists of maximizing the conditional probabilityP(S|O)of some state
sequenceS given the observation sequenceO. The pre-processed words in the utterance are
defined as the observationsom. Using Bayes rule, the conditional probability is re-formulated
as follows:

[S]opt = arg max
S
{P(S)P(O|S)}· (1)

Given the dimensionality of the sequenceO, the direct computation of the likelihoodP(O|S)
is intractable. However, simple recursive procedures allow us to solve this problem. They imply
the estimation of HMM parameters, the bigram state transitions probabilitiesA = P(sj |si )

and the observation symbol probability distributionB = P(om|sj ) in state j at timet .
Figure 8 shows a particular path through the Markov model using the example states in

Figure 5. The progression through the state sequence of semantic labels generates sequences
of observations each of which represents a word in the utteranceokay that will be fine with
me where would you like to meet. Temporal progression and sequence generation are guided
by the state transition and observation probabilities. They have been previously learned from
a large number of correspondences between words and semantic labels in the training data.
Table III shows some example state-observation correspondences. Words may be assigned to
different semantic labels, e.g.thenis associated with both,<conj> and<interj>.

Based on the model, the most likely state sequence is determined using theViterbi algorithm
(Rabiner & Juang, 1986). Given a significant amount of model parameters, a back-off tech-
nique (Katz, 1987) allows us to adequately estimate probabilities of rare observation and state
occurrences in the training corpus.

6. Characteristics of the training corpus

The stochastic model of the understanding component has been trained using 9525 utterance
transcriptions along with their sequences of semantic tree-labels. Using theJANUS prototype,
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TABLE III. Examples of semantic labels in the ESST corpus along
with a selection of the corresponding lexical entries

Semantic label Example words
<agree> alright, good, great, perfect
<conj> also, and, but, then
<interj> actually, maybe, perhaps, then
<q your availability><unit> days, hours, month, week
<your tum> maybe, what, would
<GARBAGE> again, are, for, have, in

<interj><conj> <agree> <sugg_loc><where> <sugg_loc>
P(sj | si)

P(om | si)

okay that will be fine with me where would you like to meet

t

Figure 8. Semantic decoding is progressing on a path through the Markov model. It
generates word sequences, the ESST example utteranceokay that will be fine with me
where would you like to meet.

the ESST data were collected at CMU, the University of Pittsburgh and Multicom (United
States), the University of Karlsruhe, ETRI (Korea), UEC and ATR (Japan) (Waibelet al., 1996).
With 10 405 utterances used for MASK and 10 718 for ATIS the amount of the training data
employed is roughly the same. [All data for MASK were collected by a real prototype system
(?), as opposed to ATIS, where a Wizard-of-Oz set-up was used (MADCOW, 1992).]

Table IV shows characteristics of the ESST training corpus. The human-to-human dialogs
result in a relatively large average utterance length (over 26 words), as well as a large lexicon
size (2623 different words). In thePHOENIX system, each SDU is analysed independently. In
the corpus labeled by the rule-based component, the SDU boundaries have been determined
prior to training and testing (Lavieet al., 1996). After this segmentation, the average length
of the analysis sequences (9·3 words) is comparable to those of the information retrieval
applications (8·0 for MASK and 9·1 for ATIS).

Utterance pre-processing reduces the lexicon size considerably, notably because of the
relatively large number of{filler} words (1974 compared to 883 for MASK and 487 for
ATIS) which are removed prior to training and decoding. This implies thatPHOENIX ignores
the conversational character of the negotiation dialogs. Limited to the essential parts of the
utterance leads to rather terse but acceptable translations (Waibelet al., 1996). The 133 basic
tokens (Table I) combine to create 2711 tree-labels used as the model states (compared to
74 states for MASK and 112 states for ATIS).
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TABLE IV. Characteristics of the ESST training corpus used for statistical modeling in
natural language understanding

#utterances 9525
avg. utterance length 26·5

#SDU 30 628
avg. #SDU/utterance 3·2
avg. #words/SDU 9·3

lexicon size 2632
after pre-processing (model observations) 552
#{filler} words 1974

semantic representation #tokens 133
#tree-labels (model states) 2711

7. Performance assessment

The stochastic component has been evaluated and compared in performance with the rule-
basedPHOENIX parser which is integrated in theJANUS speech-to-speech translation system.
The test corpus consists of 258 utterance transcriptions containing 759 SDUs. The semantic
accuracy was evaluated at the SDU level first, using an exact-match paradigm that compares the
hypothesis and the reference on a label-by-label basis. Since only the sequential alignment of
relevant semantic tree-labels is used for translation, the semantic evaluation does not account
for <GARBAGE> labels. In this study, the semantic reference representation is the output
of the PHOENIX parser. A human expert then analyses the incorrectly flagged sequences. If
these are equivalent to, or more appropriate than, the reference, they are re-scored as correct.

For the evaluation of the translation accuracy from English to German, the SDUs are
further broken down into the smaller speech-acts. Examples for speech-acts in Figure 5(a) are
probably, sometimes between nine and five and would be good. In this way, more weight is
given to longer SDUs, and SDUs containing both in- and out-of-domain speech-acts can be
judged more accurately. Each speech-act translation is then assigned a grade by human graders
as described in (Gateset al., 1996). A set of consistent criteria are employed for judging the
quality of the translated utterances as well as their relevance to the current domain. Assisted
by grading tools, the translation is scored by one or more independent human experts. In
order to obtain reliable evaluation results, several independent graders who are not involved
in system development are employed to score the translations. The individual scores are
averaged together to obtain the final result.

A speech-act contains semantically coherent pieces of information. Each speech-act fits as
either relevant to ESST (in-domain) or not relevant (out-of-domain). In

okay, that’s fine, so Wednesday the third at the coffee shop

an example of an in-domain speech-act would beso Wednesday the third at the coffee shop;
in

all-right, sounds like a deal, but I got hepatitis from the food the last time I ate at that
coffee shop, so why don’t we meet at Yum Wok at twelve. We can grab a bite to eat and
then walk back to the office and go over this material for the month of May

the phraseI got hepatitis from the food the last time I ate at that coffee shopis judged to be
out-of-domain.
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TABLE V. Semantic error as well as translation errors
for training and testing the stochastic component for
natural language understanding in ESST. The semantic
error is given on the SDU level, the translation errors

on the speech-act level
Semantic error (%) Translation error (%)

STOCHASTIC STOCHASTIC PHOENIX

18·4 30·1 23·8

In-domain phrases are labeled with one of the following grades:

• perfect(p): the system provides a fluent translation with all information conveyed
• good(k): all important information is translated correctly but some unimportant details

are missing, or the translation is awkward
• bad (b): the translation is unacceptable

The global judgement of anacceptabletranslation includesperfectandgoodassignments.
If the speech-acts are out-of-domain, the graders can assign one of the following grades:

• excellent(e): the system provides a good translation, even though it is an out-of-domain
speech-act
• good(g): the translation is non-disruptive
• empty(t): the system provides no translation at all
• bad (d): the system provides a disruptive, spurious translation of the phrase

For out-of-domain utterances, the categoryacceptableincludesexcellent, goodandempty
translations. The overalltranslation accuracyis calculated as the sum of acceptable in- and
out-of-domain speech-act translations over the total number of speech-act translations.

7.1. Quantitative results

The results of the performance evaluation for the stochastic component for natural language
understanding in ESST are given in Table V and are compared with the rule-basedPHOENIX

parser.
The stochastic component obtains an 18·4% error rate on the semantic representations.

Both the semantic output of the stochastic component and the rule-basedPHOENIX output are
run through the generation module to produce German translations, the accuracy of which is
then measured by the expert graders at the speech-act level. In this evaluation, the stochastic
component obtains a 30·1% translation error compared to 23·8% for the rule-based parser. The
fact that we used a corpus of uncorrected semantic representations produced byPHOENIX

means that the stochastic implementation is limited by the inevitable shortcomings of the
rule-based method. The error scores of the stochastic component are therefore relative to the
performance of thePHOENIX system. In fact, the experiences in MASK (Minker, 1997) lead
to the conclusion that the stochastic component is able to outperform the rule-based parser, if
the training corpus is designed entirely for the stochastic method. The translation results are
also likely to be influenced by the performance of thePHOENIX generator (Fig. 3), which is
only optimally adapted to the rule-based method.

Table VI shows a breakdown of the translation evaluation results for both in- and out-
of-domain speech-acts. Globally, for in-domain speech-acts, the reference and hypothesis
translations are rarely excellent (p), but frequently scored correct (k). Interesting is the result
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TABLE VI. Breakdown of the translation evaluation results (%) using independent expert graders (Gates
et al.1996). Grades for in-domain speech-acts are:p = perfect,k = good,b = bad, for out-of-domain

speech acts:e= excellent,g = good,t = good — not translated,d = bad
In-domain speech-acts Out-of-domain speech-acts

(90·7%) (10·3%) Global
p k b accepted e g t d accepted accuracy

STOCHASTIC 2·7 69·1 28·2 71·9 11·9 4·2 43·4 40·5 59·5 69·9
PHOENIX 4·2 73·8 22·0 78·0 11·2 4·2 53·0 31·6 68·4 76·2

for out-of-domain speech-acts: the stochastic component slightly outperformsPHOENIX in
excellently scored speech-acts (e). As described in the qualitative analysis below, the sys-
tem propagates significant tree-labels instead of<GARBAGE>. This reduces the number of
empty (t) out-of-domain translations but implies a higher risk of an incorrect labeling of this
type of speech-act. Globally, the performance gain of the stochastic component is therefore
outweighed for out-of-domain speech-act translations.

7.2. Qualitative analysis

The semantic hypotheses output by the stochastic component were analysed in order to identify
the strengths and weaknesses of the stochastic method when applied to the scheduling task
(Fig. 9).

In the first example, the phrasesare not good, that is not good, etc., are matched with the
<give info> <my unavailability> label. AsPHOENIX attempts to match entire expressions,
the rule-based parser fails if insertions occur, e.g.that is not anygood, that is reallynot
so good, isn’tgood, etc. (P1). The stochastic decoding is robust. InS1, it identifies the
isolated wordnot as a triggering reference word for<give info><my unavailability>, which
is then successfully propagated, since the transition probabilities between labels including
<give info><my unavailability> are high. They outweigh the weak probabilities of some
unknown or less frequent insertions.

The stochastic method is flexible. Instead of triggering the<GARBAGE> labels as does
PHOENIX for we can go intoin P2, it propagates significant tree-labels resulting in a smooth
semantic representation (in the test data the stochastic method triggers 1186<GARBAGE>
labels compared to 1659 for the rule-based method). InS3, the stochastic component labels
the entire speech-act with the<q availability> concept.PHOENIX proposes an alternative
representation (P3). It labelswhat time is best for youwith the<q availability> andon the
tenthwith the<temporal> concept. The solution proposed by the stochastic method seems
to be more appropriate for this segmentation.

The flexibility of the stochastic method, illustrated forS2andS3, appears to have turned
out to be a drawback. InS4, the phraseI will be triggers<give info><my unavailability>,
learned fromI will be out of town, I will be away, etc., in the training. The phrasethesmog
of triggers<temporal><point><rest of>, learned fromtherest ofthat day, therest ofthis
monthetc., regardless of the weak observation probabilities ofsmogandLos. Propagating the
incorrect labels results in an erroneous annotation of the entire speech-act.

Figure 10 shows examples of graded English-to-German speech-act translations produced
on the basis of the semantic representations, output of the stochastic component:

• The translation of speech-actT1 is graded excellent in-domain(p).
• The translation ofT2contains a false start (leider kann ich leider bin ich) and some ungram-

matical phrases (und am zweite Juni nicht). But since it contains the information conveyed,
it is still scored correct in-domain(k).
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S1: that is not any good 7→ <give info><my unavailability><that wont work>

P1: that is not any 7→ <GARBAGE>
good 7→ <agree>

S2: we can go 7→ <sugg meet>
into the 7→ <sugg meet><temporal><point>
evenings 7→ <sugg meet><temporal><point><time of day>
or 7→ <conj>
the 7→ <sugg meet><temporal><point><next temp>
weekends 7→ <sugg meet><temporal><point><day of week>

P2: we can go into 7→ <GARBAGE>
the 7→ <sugg meet><temporal><point>
evenings 7→ <sugg meet><temporal><point><time of day>
or 7→ <conj>
the 7→ <sugg meet><temporal><point>
weekends 7→ <sugg meet><temporal><point><day of week>

S3: what time 7→ <q availability><when>
is best for you 7→ <q availability>
on 7→ <q availability><point>
the 7→ <q availability><point><date>
tenth 7→ <q availability><point><date><day ord>

P3: what time 7→ <q availability><when>
is best for you 7→ <q availability>
on 7→ <temporal><point>
the 7→ <temporal><point><date>
tenth 7→ <temporal><point><date><day ord>

S4: I will be choking on 7→ <give info><my unavailability>
the smog of Los 7→ <give info><my unavailability><temporal><point><rest of>
Angeles 7→ <give info><my unavailability><temporal><point><time unit>

P4: I will be chocking on 7→ <GARBAGE>
the smog of Los 7→ <GARBAGE>
Angeles 7→ <GARBAGE>

Figure 9. Parsing examples demonstrating the strengths and the weaknesses of the
stochastic method in ESST.

• The translation of speech-actT3 is scored erroneous in-domain(b).
• Politeness forms are considered as out-of-domain.G4 is therefore an excellent(e)

translation.
• The translation of speech-actT5 is graded good out-of-domain(g).
• The phraselater alligator (T6) is out-of-domain. Assigned to the<GARBAGE> state,

it is not translated and therefore scored good(t).
• G7 is an example for an incorrect translation of an out-of-domain speech-act. As dis-

cussed earlier, the stochastic component assigns more significant semantic labels than
the rule-based decoder, implying the higher risk of incorrect labeling and translation.
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T1: Thursday the nineteenth sounds good
G1: Ja Donnerstag den neunzehnten geht es bei mir ganz gut p

T2: I am out of town from May thirty first until the second of June
G2: Leider kann ich leider bin ich außer Haus zwischen Mai ein und dreißigsten und

am zweite Juni nicht
(lit. unfortunately I can unfortunately I am out of town between May thirty first
and on second of June not)

k

T3: is that the eleventh
G3: also gut machen es wir den elften alles klar

(lit. okay let’s do it the eleventh all-right) b

T4: bye
G4: auf wiedersehen e

T5: no why don’t you write it down for me
G5: nein

(lit. no) g

T6: later alligator
G6: – t

T7: by the way your secretary says you got a headache; you know what you got to
do is just get away from everything

G7: was meinen Sie dazu
(lit. what do you think about it) d

Figure 10.Examples of graded speech-act translations. The significance of the grading
assistant grades are for in-domain speech-acts:p = perfect,k = good,b = bad, for
out-of-domain speech-acts:e= excellent,g = good,t = good–not translated,
d = bad. If necessary, the corresponding literal translation is given in parenthesis.

8. Summary and Conclusions

In this article, we have reported experiences in porting a stochastic component for natural
language understanding from a setting of human–machine interaction to that of a human–
human interaction. Tests were performed in the context of an appointment scheduling task,
the ESST.

The use of the stochastic component for natural language understanding (repetition) in-
volved porting the method to a substantially different domain. Compared with the simpler
semantic frames used in ATIS and MASK, thePHOENIX representation of a tree-based case
grammar has been adapted to the stochastic method. The derivation of tree-labels to model
the nestedness of human language supports a more efficient propagation of semantic infor-
mation. The study shows that domain and language porting of such a method is relatively
straightforward and that it is sufficient to train the system on data sets based on a semantic
formalism which is appropriate for the application and language.

Comparative performance tests were carried out using the stochastic component and the
rule-basedPHOENIX parser. As in the ATIS task, the performance of the stochastic component
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in ESST is likely to have been limited through the use of a semantic corpus which is not a
product of the component itself but is generated using a rule-based system. Even though this
suboptimal semantic corpus was used, the stochastic decoder obtains reasonable semantic and
translation errors (18·4% and 30·1%, respectively). Qualitatively, the stochastic method allows
for a robust decoding through modeling of isolated words, as opposed to the rule-based parser
in which particular, task-dependent expressions need to be defined by hand. These represent
an over-specialization, since the system fails if insertions occur within these expressions.
The stochastic method is also flexible: it creates smooth semantic representations through
labeling and propagating a maximum amount of significant labels. However, this risk-taking
strategy is penalized by an increase in incorrectly translated out-of-domain speech-acts. The
qualitative evaluations have demonstrated that, similar to ATIS and MASK, the stochastic
decoding is robust and flexible. However it is not risk-avoiding. It propagates meaningful
tree-labels instead of<GARBAGE> labels. This reduces the number of empty out-of-domain
translations, but implies a higher risk of incorrect concept triggering and error propagation.

Further improvements may be achieved if the training corpus was entirely designed for
the stochastic method and more training data were available given the significant number of
model observations. As concluded from the experiences in MASK, the design of the stochastic
component focuses on the creation of a semantic corpus using an iterative labeling approach.
By adapting the semantic labels to the method, the stochastic component outperforms the rule-
based parser. Also, to be able to evaluate the translation accuracy, the language generation
component should be redesigned to be optimally adjusted to the encoding used by the stochastic
method.

The authors gratefully acknowledge the contributions of Donna Gates, Sham Gardner and Peter Zerfass,
who provided assistance in the experiments and evaluations reported in this article.
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