ABSTRACT

The word accuracy of the decoder is improved from 59.1% to 63.1% by a new method for the unsupervised acquisition of a structural text model. Well recognized sentences even show an improvement from 84.8% to 91.1%.

This method is based on new algorithms for the classification of words and phrases by their context and on new sequence finding procedures. These procedures are designed to work fast and accurately on small and large corpora. They are iterated to build a structural model of a corpus.

Further applications in language processing, which exploit the structure finding capabilities of this model, such as preprocessing for neural networks and (hidden) markov models, are proposed.

1. CLASSIFYING ENTITIES FROM CONTEXT VIA ITERATED REESTIMATION

The most widespread criterion for the classification of words and phrases in linguistics is the replacement test, which states, that two linguistic entities are the same, if they can be mutually substituted in sentences where they appear. [Fin93] extended this criterion and states, that linguistic entities, that have similar context should be assigned similar categories. Our definition still goes further and says that a linguistic entity and its context are the same. As the context of an entity itself consists of entities this definition is somewhat circular: If we know a categorization of linguistic entities, we can construct the context and hence a classification of these entities.

As an initial classification, we assign each of the most frequent n-1 entities a singleton class while all other entities are collected in a “rubbish” class. This initial assignment is motivated by the fact, that the most frequent entities usually cover most of the corpus, e.g. 89% of the English Scheduling Task is covered by just 200 words – this behavior is predicted by Zipf’s law [Zip35]. A given classification may be improved by classifying the context-vectors of the entities. The context-vectors are calculated by counting the classes of the entities in fixed intervals around an entity.

Assume we want to calculate the context vector of the word town with the context-intervals [1,1] resp. [-3,-1]. The context-vector consists of the counts of the classes found one word after resp. one to three words before the word town in the corpus. To get a context vector for the context specification [1,1], [-3,-1] the vectors for these intervals are concatenated. Usual context specifications are [-1,-1], [1,1] and [-3,-1], [-1,-1], [1,1], [1,3]. This classification procedure is iterated, and under certain restrictions to the classification procedure, an EM-algorithm [DLR77, Rei94] is obtained. The idea behind the EM formulation is that the classes used to calculate the context vectors and the classes found using the clustering algorithm are the same. Further restrictions on the context-vectors and the choice of the classification procedure lead to the classification criterion of class-based bigrams [BdP92, Rei94]. If we would not iterate the classification this procedure would be equivalent to [Fin93] – our algorithm is therefore a proper generalization of [BdP92] and [Fin93]. The iterative process improves the classification performance compared to [Fin93] especially on small corpora (<50.000 words), as the estimation of the context is better – it is based on classes, that have much higher probabilities than words. The speed of [Fin93] is maintained in our implementation, and we need approx. 10 min for 8 iterations of the classification process on a standard workstation for a corpus of 50.000 words and 100 classes. The algorithm is expected to scale up sublinear in practice.
as the speed of the classification procedure itself is not affected by the size of the corpus. [BdP’92] is improved by allowing wide context windows and the classification is speeded up considerably.

In our implementation the classification is done by an extension of a hill-climbing procedure (c-means), which improves the variance criterion directly [SL’77]. As any incremental clustering algorithm needs an initial class assignment, we may use the classification of the last step as the initial class assignment of the next step. This simple technical trick is crucial to improve the classification and also results in considerable speed up. As suggested by [Fin’83], we preprocess the context vectors by calculating the ranks of the entries. [Rie’94] also extends the calculation of context vectors to a more general class including fuzzy classification [Yar’93].

2. SEQUENCE MEASURES AND SEQUENCE IDENTIFICATION

Marking sequences of entities, which are tied together, may be divided into two steps: First, we assign each sequence a score (the sequence measure), which determines their likelihood of being a sequence, and second, we use this measure to identify the sequences, that are present in some actual portion of the corpus by a sequence identification procedure.

The first type of sequence measures may be called indirect sequence measures, as they make use of a usual measure of coincidence co(X, Y) between random variables X and Y. The mutual information, \(\text{MI}(X, Y)\) has proven to be a good choice as a measure of coincidence in our studies. The indirect sequence measure of the sequence \((e_1, \ldots, e_n)\) is

\[
s(e_1, \ldots, e_n) = \min_{i=1}^n \text{co}(e_1, \ldots, e_i, e_{i+1}, \ldots, e_n)
\]

If we use \(\text{MI}(\cdot, \cdot)\) as a measure of coincidence the sequence measure of an entity is the minimal \(\text{MI}(\cdot, \cdot)\) between a prefix and the rest of that entity.

This formulation of a sequence measure is motivated by the idea that a sequence of words occurring in the corpus is an interesting sequence, if it is found as the suffix and the prefix of neighboring interesting sequences.

The second class of measures are direct measures and are not linked to measures of coincidence. The only direct measure found in the literature was [Suh’73], but it did not prove as effective as the indirect measure based on mutual information. Subotins measure is

\[
\frac{1}{2n} \sum_{i=1}^{n-1} \text{Pr}(e_1, \ldots, e_n | e_1, \ldots, e_i \vee e_{i+1}, \ldots, e_n)
\]

Assume, though, that we already had a procedure that marks the sequences found in a corpus. We may then take the counts of the sequences found in the corpus as a direct sequence measure. The calculation of the sequence measure and the sequence identification procedure may be iterated and we call the resulting measure iterated marking frequency. Note that we still need indirect measures or [Suh’73] to have an initial sequence marking, and that the iterated marking frequency depends on it crucially.

<table>
<thead>
<tr>
<th>elements</th>
<th>elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>D B D F G SCH</td>
<td>A A 1 O U</td>
</tr>
<tr>
<td>CH N CH NG</td>
<td>AEH E AL AU EU AEH UEH</td>
</tr>
<tr>
<td>R K P R</td>
<td>UE AE OE UE OEH</td>
</tr>
<tr>
<td>T L M S T</td>
<td>IE AH EH ER IE OH UH</td>
</tr>
<tr>
<td>H H J V Z</td>
<td>SIL +K QK +EH +H#</td>
</tr>
<tr>
<td></td>
<td>+GH +GN SIL</td>
</tr>
</tbody>
</table>

Figure 1: Phoneme Classification: This is an example of a classification of phonemes in the English Scheduling Task. The classification was made with 10 classes and the context was \([-1, -1], [1, 1]\). The classes seem to reflect acoustic similarities, though the only information available to the classification algorithm was the phonetic transcription of dialogues.

The most effective sequence identification procedure we found, may be stated rather simple:

1. Rank all sequences found in the corpus by the assigned sequence measure.
2. Take the highest scoring sequence and replace any occurrence of it in the corpus by a new and unique symbol representing this sequence. The words, that make up this sequence, can be used in successive join steps, if all words in the sequence are used in the join.
3. Delete this sequence from the list of sequences and goto 2, unless no sequence is left.

Calculating the indirect measures takes approx. 1 min on a standard workstation for a 50,000 words corpus, using the iterated marking frequency adds another 2 min.

This sequence identification with the indirect measure based on \(\text{MI}(\cdot, \cdot)\) may be compared with [MM’91]. Instead of using two word sequences plus their context to search for sequence boundaries we are looking for the sequences themselves. This has proven [Rie’94] more effective than the corresponding approach to search for boundaries with sequences of length greater than 2. Context also plays a significant role in our approach: Assume we want to process the sequence A B C and use the sequences A B and B C to join A B C. If A B has a higher sequence measure than B C, the left context A of B C prohibits their join.

3. COMBINING CLASSIFICATION AND SEQUENCE IDENTIFICATION

There are two alternatives, how classification and sequence identification may be combined. The first one would be to redefine context in terms of sequences and may be seen as an idea to include more global information into the entity classification process. The second one would be to identify the sequences based on word class. In our current studies we only pursued the second possibility since the performance of the word classification procedures are satisfactory without the use of long distance knowledge.

The process of entity classification and sequence identification may be iterated to build a structural model of the corpus by the following procedure:
specific for you baseline structural model now here's um 123 li 24026

ICASSP-95 05/09/95, corrected version

Figure 2: Iterated sequence identification: The classification/identification procedure was iterated eight times, the entity context vectors chosen according to the intervals $[-1,0],[0,1]$, the classification resulted in 400 classes and 4000 sequences were used in each run. An identified sequence is indented, and each sequence is represented by a truncated identifier. The original words are printed in boldface.

1. Classify the entities.
2. Identify sequences of entities by identifying sequences of their respective classes found in step 1.
3. Replace each identified sequence of entities by a new unique symbol representing the classes in the sequence.
4. Goto 1 or Stop.

4. CALCULATING THE PERPLEXITY AND LM SCORES

The entity classification and sequence measure, which is obtained by one iteration of the classification/identification procedure, may be used to transmit a corpus by the following procedure:

1. Run the sequence finding algorithm based on the predetermined sequences and classes.
2. Transmit the corpus obtained by replacing each identified sequence of classes by a unique symbol.
3. For each class: Transmit the corpus, that consists of all words, that are found in marked sequences and belong to this class.

The transmission of the testset is done similar to a monogram model: Each word $w$ on the testset is transmitted with a code of length $\log_2(p_w)$, where $p_w$ is the probability of $w$ on the trainingset. To transmit the corpus with the

iterated model the corpus in step 2 may again be transmitted with its own structural model. This process must of course terminate and the last corpus must be transmitted with a monogram model. The perplexity $PP$ is calculated straightforward from the number of bits $\log_2(PP)$ to transmit a word using the structural model on the testset. This corresponds to the usual definition of $PP$ for n-gram models. The number of bits obtained to transmit all words in a sentence is used as a measure for rescoring.

The unknown word is modeled by linear discounting. In some rare cases a chunk is used to join sequences of words, but is always superseded by longer sequences in the training. So we had to modify the sequence finding algorithm to always generate known sequences.

5. EXPERIMENTS

The main experiments were done on an English Scheduling Task (ESST), which consists of spontaneous speech dialogs concerning appointment scheduling. We rescored the n-best list of the 1000 best hypotheses delivered by the JANUS recognizer. We separated the original acoustic model (AM) score from the decoder output and added the score derived as described above. We also wanted to know, how the system performs on good and bad hypotheses. We therefore selected good recognized sentences as those, that contain a hypothesis in the n-best list, that has a minimum word error (WE) of 0 or a minimum WE $\leq 5$. We used 1000 sequences and 800 classes for the structural model evaluated here. The sequence measure was the indirect measure based on mutual information. As can be seen from this list, well recognized sentences get most improvement out of this techniques while all lattices show some improvement. This indicates that this language modelling technique could improve the decoder output even more when the recognizer gets better.

<table>
<thead>
<tr>
<th>$#$lattices</th>
<th>baseline</th>
<th>structural model</th>
</tr>
</thead>
<tbody>
<tr>
<td>all lattices</td>
<td>340</td>
<td>59.1</td>
</tr>
<tr>
<td>min. WE $\leq 5$</td>
<td>123</td>
<td>74.5</td>
</tr>
<tr>
<td>min. WE 0</td>
<td>26</td>
<td>84.8</td>
</tr>
</tbody>
</table>

6. CONCLUSION AND FURTHER APPLICATIONS

The structural model has been shown to improve the word accuracy on the ESST. This was achieved by classifying entities and joining them into larger sequences. At the core of the improvement is the idea, that this template of classes is tied together and uttered as a whole. The only variation that is possible, is the actual instance, the surface form of this template, that results from instantiating the words into the template. The transmission policy of the data is thereby rather simple – we just transmit monograms. Our model cannot replace an n-gram model in the recognizer currently, as these must work incrementally. The actual influence of this model on the recognizer performance is still an open

---

*In the original paper we mentioned PP reductions, that were incorrect. Indeed, the PP of the model reported here is higher than the trigram PP.*
question, as the mechanisms applied are rather different. The first experiments show the feasibility of this approach.

Current work on the structural model includes tight coupling with n-gram models and the improved handling of unknown words. We are working also on lattice parsing and have developed other parsing and classification procedures than the ones reported here. We will also try to investigate the notion of government and binding in our model, that is used in modern linguistic theory. It might be reformulated as a special connection between instances of a template. Simple examples as the genus agreement between article and noun in German may already be captured by introducing bigram information in our model.

The authors believe, that the structure, which performs the reduction, may also be used to enhance the power of other non-symbolic methods. [Rie94] has shown how to produce 1 out of $n$ and distributed representations of words for the usage in connectionists parsing. The same holds for sequences, that may introduce long distance information by providing a parse stack visible to the network. [WW94] used (hidden) markov models for speech-act modeling and reported, that the word classification using our techniques is almost as powerful as handmade word classes and outperforms the approach without classes considerably. Another application of the word classification procedures is the generalization to the bilingual word classification [Rie94].

7. REFERENCES


