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Abstract

Performance of automatic speech recognition has significantly improved in recent years.

Much of this due to significant progress made in speech recognition algorithms. Despite these

algorithmic improvements, automatic speech recognition continues to be error-prone: non-

interactive (algorithmic) approaches are unlikely to eliminate all recognition errors. Currently

available correction methods for speech recognition - such as correction by respeaking, choos-

ing from alternative words, or typing - are either inefficient or they require keyboard input.

The theoretic upper bound on throughput of an automatic dictation system is equivalent to the

average speaking rate of 150 wpm (words per minute). However, if correction is limited to

current keyboard-free correction methods (i.e., respeaking and choosing from alternative

words), this throughput is drastically reduced to an estimated 20 wpm. The possible produc-

tivity gain by using speech recognition technology is thus lost due to inefficient error correc-

tion. 

This dissertation presents an interactive multimodal approach for efficient error correction

without keyboard input in non-conversational speech recognition applications that employ

graphic user interfaces. The approach presented in this dissertation improves efficiency of

correction in two ways: First, by switching input modalities for correction and, second, by

correlating correction input with the context of a repair. For example, on text and data input

tasks, the user switches modality from continuous speech to spelling or handwriting, and per-

forms simple editing tasks, such as deleting items and positioning the cursor, using intuitive

gestures drawn on a touch-sensitive display. Correlating correction input with repair context

increases correction accuracies (success rate) from 60-70% to 80-90%, compensating losses

in accuracy due to the difficulty of recognizing correction input.

As a first step towards formalizing multimodal recognition-based interaction, this dissertation

presents a performance model of multimodal human-computer interaction. The model pre-

dicts interaction throughput based on standard performance parameters of recognition tech-
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nology and modalities, abstracting from current recognition technology and interface

implementation. Applied to interactive error correction, it predicts correction speeds as a

function of modality and recognition performance. For example, correction by handwriting

will always be slower than keyboard input, unless application constraints slow down keyboard

input (e.g., on small hand-held devices), or unless partial input is sufficient to convey the nec-

essary information (e.g., disambiguating lists of alternative words based on the first one or

two letters). Furthermore, the model predicts that speech correction would be faster than cor-

rection by fast unskilled typing on text input tasks, if speech corrections were recognized with

approximately 70% accuracy (across multiple correction attempts when necessary). 

To empirically evaluate the efficiency of multimodal correction in a potentially useful applica-

tion, a prototype multimodal dictation system was built, which integrates interactive multimo-

dal correction with a state-of-the-art, large-vocabulary continuous speech recognizer. User

studies compared multimodal methods with conventional keyboard- and mouse-based correc-

tion methods on a dictation task. Results show that without use of a keyboard, text input rates

of more than 40 wpm are feasible, assuming 90% accurate recognition of dictation input in

realtime. This rate compares favorably to fast, non-secretarial typing1. This research thus con-

firms the hypothesis that switching modality speeds up error correction in speech recognition

applications. However, typing remains the most efficient correction method in text input tasks

for users with good typing skills (i.e., more than 40 wpm typing speed). Furthermore, the

study shows that correction accuracy determines user preferences between correction modal-

ity. Although users initially prefer speech for corrections, they learn with experience to prefer

the most accurate modality. 

In summary, this dissertation shows how multimodal error correction can solve the problem of

recognition errors in non-conversational speech recognition applications, and takes a first step

towards a framework for multimodal recognition-based interaction.

1. Much higher input rates claimed by some vendors of commercial dictation systems either do not 
include the time necessary for corrections, or are based on optimistic performance assumptions.
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Kurzfassung (Summary in German)

Die Erkennungsleistung automatischer Spracherkennungssysteme konnte in den vergangenen

Jahren vornehmlich durch algorithmische Verbesserungen erheblich gesteigert werden. Aber

trotz aller Verbesserungen, auch zukünftiger, können Erkennungsfehler nicht ausgeschlossen

werden. Die vorliegende Dissertation untersucht interaktive multimodale Korrekturverfahren,

mit denen ein Benutzer Erkennungsfehler in sprachgesteuerten Benutzeroberflächen schnell

und elegant ohne Tastatureingabe korrigieren kann. Bisherige Verfahren zur interaktiven

Fehlerkorrektur beschränken sich auf gesprochene Wiederholung, Auswahl aus einer Liste

von Wort-Alternativen, und Korrektur durch Tastatureingabe. Unsere Benutzerstudien zeigen,

daß die ersten beiden Verfahren in Anwendungen mit kontinuierlicher Sprache ineffizient

sind. Mit Korrektur per Tastatureingabe fällt man auf die Modalität zurück, die man mit

Spracherkennungstechnologie eigentlich ablösen wollte. Obwohl die durchschnittliche Spre-

chrate von 150 Wörtern pro Minute eine sehr hohe obere Schranke für die Produktivität eines

automatischen Diktiersystems darstellt, messen wir nur ca. 20 Wörter pro Minute Durchsatz

mit herkömmlichen tastaturlosen Korrekturmethoden (d.h. gesprochene Wiederholung oder

Auswahl aus Alternativen). Der mögliche Produktivitätsgewinn durch den Einsatz von

Spracherkennung ging also durch ineffiziente Fehlerkorrektur verloren. 

Diese Dissertation stellt multimodale Fehlerkorrektur vor. Der multimodale Ansatz macht

tastaturlose Korrektur effizient, weil die Eingabemodalität für Korrekturen gewechselt wer-

den kann, und weil Algorithmen entwickelt wurden, die die Korrekturgenauigkeit durch Kor-

relieren der Korrektureingabe mit Kontextinformation signifikant erhöhen. Zum Beispiel

kann die Modalität von kontinuierlicher Sprache zu Buchstabieren oder Handschrift gewech-

selt werden, sowie zu intuitiven graphischen Zeichen für einfache Editieraufgaben, wie z.B.

Löschen von Wörtern oder Positionieren des Cursors. Durch Korrelieren der Korrektureing-

abe mit dem Kontext werden Korrekturgenauigkeiten von 80-90% erreicht, obwohl das

Erkennen von Korrektureingaben deutlich schwieriger ist als in der Literatur bekannte Bench-
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marks. 

Zur Formalisierung multimodaler, automatisch verarbeiteter Eingabe wurde ein Performanz-

modell multimodaler Mensch-Maschine Kommunikation entwickelt. Mit diesem Modell kön-

nen Fehlerkorrekturgeschwindigkeiten vorhergesagt werden, in Abhangigkeit von der

Performanz momentan verfügbarer automatischer Erkennungssysteme. Dieses Modell sagt

vorher, daß gesprochene Korrekturen mindestens 70% genau erkannt werden müssen, um

schneller zu sein als Korrektur durch Tastatureingabe für Benutzer mit hohen Tippgeschwind-

igkeiten. Handschriftliche Korrekturen durch Wiederholung des ganzen Wortes sind lang-

samer als Korrektur durch Tastatureingabe, selbst wenn perfekte Erkennungsgenauigkeit von

100% möglich wäre. 

Um die Effizienz multimodaler Korrektur empirisch evaluieren zu können, wurde ein proto-

typischer multimodaler Texteditor mit Hilfe eines Spracherkenners für große Vokabularien

entwickelt. Benutzerstudien wurden durchgeführt, die tastaturlose multimodale Korrektur mit

herkömmlichen Korrekturmethoden vergleichen. Die Ergebnisse bestätigen die von anderen

Forschern aufgestellte (aber nie überprüfte) Hypothese, daß multimodale Fehlerkorretur effi-

zienter als unimodale Korrektur (durch gesprochene Wiederholung) ist. Tastatureingabe bleibt

die schnellste Korrekturmethode für Benutzer, die gut tippen können (d.h., mehr als 40 Wörter

pro Minute). Mit multimodaler Fehlerkorrektur und einer automatischer Erkennung von dikti-

erten Eingaben mit 90% Wortakkuratheit in Echtzeit ist Texteingabe ohne Tippen mit Eing-

abegeschindigkeiten von 40-50 Wörtern pro Minute möglich, einschließlich der zur

Fehlerkorrektur benötigten Zeit. Diese Eingabegeschindigkeit ist mit schnellem Tippen ver-

gleichbar. Ferner zeigen unsere Studien, daß die Erkennungsgenauigkeit entscheidend die

Wahl der Eingabemodalität beeinflußt - obwohl die meisten Benutzer Sprache bevorzugen,

wenn sie genauso zuverlässig wie andere Modalitäten erkannt werden könnte. Zusammenfas-

send kann man sagen, diese Dissertation zeigt auf, wie mit multimodalen Eingabetechniken

Tastatureingabe als bevorzugtes Eingabemedium in nicht dialog-orientierten Spracherken-

nungsanwendungen ablöst werden kann.
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1. Introduction

Speech recognition is an orthographic transcription of digitally recorded spoken utterances. In

simpler terms, it is the process of converting an acoustic waveform into a sequence of hypoth-

esized words [Tucker 1997]

Why has speech recognition technology captured the attention of computer engineers for

more than 30 years? Some researchers view speech recognition as technology that enables

computers to recognize existing forms of human expression (e.g., [Trubitt 1990]). A more

pragmatic view of speech recognition is as an alternative to traditional computer input modal-

ities, such as typing and pointing devices. Additionally, speech recognition can provide access

to powerful technologies for people who are unable to use traditional input devices, and it can

lead to new applications and uses which otherwise may prove to be infeasible.

Is the technology ready to live up to these promises? Over the last decade, there has been tre-

mendous progress in speech recognition technology, speech recognition appeared to be on the

verge of significant commercial breakthroughs more than once. Recently, more and more suc-

cessful products have been introduced (e.g., automatic dictation systems by Dragon Inc. and

IBM, and automated call centers by Nuance Communications, Inc. and SpeechWorks Interna-

tional). Nevertheless, speech recognition applications are yet to become common use among

the general public. An examination of the reasons why speech recognition technology’s failed

to attract the public’s attention reveals, among other things, persistent inadequate performance

of many of its envisioned applications.

This dissertation addresses the problem of error correction in speech recognition applications.

As a framework for discussing this problem across different applications, Section 1.1 intro-
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duces a taxonomy of speech recognition applications and an overview of multimodal inter-

faces that integrate speech recognition with other forms (modalities) of communication.

Section 1.2 outlines some of the limitations of current speech recognition technology, such as

the problem of repair and error correction. Section 1.3 provides a broad overview of the sub-

ject, laying out design dimensions for speech recognition applications, and discussing design

options for error correction across different task categories. Non-conversational applications

with graphic user interfaces are introduced as the main focus of this dissertation work. 

Drawbacks of current non-conversational repair methods are discussed in Section 1.4. There

are three main non-conversational repair methods: repeating input using continuous speech

(in this dissertation frequently called respeaking), choosing from a list of alternative words,

and using the keyboard and mouse. It is argued that respeaking and choosing from alternatives

are ineffective in continuous speech applications, and that typing defeats the purpose of using

speech input as an alternative to keyboard input.

The research question of this dissertation is presented in Section 1.5: given the low reliability

of current speech recognition technology, how can users’ efforts to recover from interpretation

errors be minimized? Section 1.6 discusses the research question in the context of dictation

systems, the example application chosen for this dissertation. Section 1.7 concludes the chap-

ter with a summary of the dissertation.

1.1 Overview of Speech Recognition Applications

Before discussing error correction in speech recognition applications, one must first under-

stand how speech recognition technology can be used. This section proposes a taxonomy of

speech recognition applications as a framework for application-oriented issues such as error

correction. 

The second part of this section introduces the notion of multimodal interfaces and discusses

the role of speech recognition within multimodal systems. The rationale for a multimodal
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interface is based on the fact that people communicate with each other using many different

modalities. Assuming that the approximation of normal human communication facilitates

human-computer interaction, the decision to incorporate different modalities in a speech inter-

face is logical. Therefore, many of the applications mentioned in the taxonomy are like-wise

multimodal. 

1.1.1 A Task-Oriented Taxonomy of Speech Recognition Applications

Even though the range of possible applications of speech recognition technology is still being

explored, a preliminary taxonomy of speech recognition applications is useful as a conceptual

framework to discuss application-oriented issues. The taxonomy focuses on tasks (i.e., jobs

that users want to get done) that can be supported by speech recognition technology, rather

than applications themselves. An application can involve more than one task. For example, an

automatic service to rent a car involves both natural spoken dialogue (to lead the general dia-

logue with the customer) and form filling (to obtain the information necessary to complete a

rental). Different published speech recognition applications illustrate to the different task cate-

gories. To avoid ambiguities that arise where an application involves more than one task, the

main task determines an application’s category in Figure 1-1 below.

The taxonomy divides tasks on the top-level of speech recognition applications into interac-

tive and non-interactive tasks. In non-interactive tasks, the speech input does not originate in

direct user interaction is processed. In this case, the speaker does not intend his or her speech

input to trigger an action by the computer system within the application. Examples for such

tasks include automatic transcription of speech (e.g., in a courtroom) and automatic indexing

of speech data (e.g., of radio and TV broadcasts). 

By contrast, in interactive tasks, speech originates in direct user interaction. In this case, the

speaker expects the application to trigger some action as a result of the speech act. An exam-

ple is automated directory assistance.
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Interactive tasks can be further subdivided into mediation of human-human communication

(e.g., a translation aid for foreign travel, teleconferencing tools, support for collaborative

work) and human-computer interaction (e.g., to access a service or some functionality offered

by a computer system). A user can pursue many goals in interacting with a computer, for

example, entertainment, system task performance (shown in the figure as "command & con-

trol"), transaction or information retrieval ("transactions&queries"), data entry and manipula-

tion ("data entry & manipulation"), and other tasks. 

Examples for entertainment include new interactive games, computer animation (e.g., the

recent popular movie "Toy Story"), and interactive TV. In command and control tasks, the

user wants to initiate some action or control some process. In command tasks, the user issues

concise commands to the system, typically single words or short phrases. Examples include

controlling a robot via voice, or applications offering voice equivalents to menu and button

interactions. As an example for control tasks, novel security systems may control the access to

buildings or services using multiple channels. In transaction and query tasks, the user engages

in a spoken natural language dialogue with a dedicated device to access some service. For

instance, standard telephone services such as directory assistance and call routing are increas-

ingly automated using speech recognition technology, as are call centers of many companies.

Another important future application domain in this category includes services related to

travel, such as scheduling inquiries for different means of transportation (rental cars, buses,

trains, flights), booking of accommodations, and navigational support in foreign locales. In

data-entry and manipulation tasks, the user creates and manipulates data that is stored in

machine-readable form. According to the complexity of the data, two subcategories are

defined. Simple data entry deals with isolated words, digits, or short phrases (as in form fill-

ing, personal assistants for addresses, and note-taking). Text and Multimedia entry tasks sup-

port the production (or composition) of text, and multimedia in general. Dictation systems fall

into this category, as do Web authoring tools, and, in a more general sense, user interface

design tools. Other tasks where multimodal interfaces are actively researched include smart
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rooms (e.g., ALIVE [Casey, Gardner et al. 1995] at MIT’s media lab), education (e.g., the Lis-

ten project [Mostow, Roth et al. 1994] at Carnegie Mellon University), and wearable comput-

ing (e.g., [Rudnicky, Reed et al. 1996]).

Figure 1-1.  Task-oriented taxonomy of speech recognition applications

This taxonomy will be further developed as more speech recognition applications emerge.

Being a task-oriented taxonomy, applications that involve more than one task do not fit a sin-

gle category. For example, automatic processing of car rental requests involves filling out a

form specifying the type of car, rental period, rates, etc., but may this form be accessed via

telephone in a natural language dialogue. Therefore, processing a rental car inquiry matches

both the "transactions&queries" and "simple data-entry" task categories. Such ambiguities,

however, do not diminish the usefulness of the proposed taxonomy in providing a conceptual

framework for the discussion of issues in speech recognition applications. 

Dimensions other than task can be used to develop other taxonomies of speech recognition
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applications. For example, Nigay and Coutaz [Nigay and Coutaz 1993] present a taxonomy of

multimodal systems based on the three dimensions of: level of abstraction at which modality

integration is performed, use of modalities (sequential or parallel), and type of modality

fusion (independent or combined). Another classification dimension is the types of modalities

beyond speech that are supported. The following subsection provides a brief introduction into

multimodal interfaces.

1.1.2 Multimodal Interfaces

The ease and robustness of human-human communication is due to highly accurate recogni-

tion that exploits the redundant and complementary use of several modalities. Human-com-

puter interaction can benefit from modeling several modalities in analogous ways. This

section discusses advantages of multimodal user interfaces, defines how "multimodal" is

understood in this dissertation, and provides an overview of published multimodal interfaces.

What are the advantages of multimodal user interfaces? A recent workshop on multimedia

and multimodal interface design [Blattner and Dannenberg 1990] identified areas where user

interface design can benefit from the use of multiple modalities:

• Interpretation accuracy and presentation clarity through modality synergy: On the

input side of a computer system, interpreting input conveyed redundantly in sev-

eral modalities can increase interpretation accuracy. An example is combining

speech recognition and lipreading in noisy environments. Using different modali-

ties to provide complementary information can facilitate interaction; for instance,

deictic references to graphic objects are easier to express by pointing rather than

by speech, and commands are easier to speak than to choose from embedded

menus using a pointing device. On the output side of a computer system, multime-

dia output is inherently more expressive than single modality output.
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• New applications: Some tasks are cumbersome or even impossible to perform if

constrained to a single modality. For instance, interactive TV is much more com-

pelling in a natural language dialogue with the system than when the user is forced

to push buttons on a remote control or some other form of keyboard. And architec-

tural designs require at least two modalities (drawings and writing are needed).

• Freedom of choice: Although some tasks may be achieved with equal efficiency

using different modalities, choice among modalities is valuable because users dif-

fer in their modality preferences. Moreover, user needs may differ, for example,

for disabled users or for people with Carpal Tunnel Syndrome who cannot use a

keyboard.

• Naturalness: Offering multiple modalities to interact with a computer can be more

natural to the human user, especially when habits and strategies learned in human-

human communication can be transferred to human-computer interaction. Also,

the mapping of user intention to input can be more direct (p. 206, [Rhyne and Wolf

1993]). "Natural" is however frequently used in vague terms, and generally needs

clarification when used.

So far "multimodal" has meant using more than one modality for either input or output in a

computer system. The remainder of this dissertation will use the term multimodal interface in

the following, more restrictive sense: a human-computer interface that integrates speech input

with some other input modality. The following overview of multimodal interfaces enumerates

modalities that have been associated with speech input in published research systems.

Combining Speech with Pointing and 2d/3d Gestures: "Pointing" is using a pointing device or

touch-screen to refer to objects displayed on the screen. "2d gesture" (or simply gestures) indi-

cates movement on a flat surface (e.g., drawn with a pen on a flat panel display). "3d gesture"

means movements of fingers or of the whole hand in three dimensions. It is beneficial to use

gesture in multimodal interfaces rather than speech alone because deictic references to objects
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are much easier to express in gestures than in speech [Bolt 1980]. Furthermore, gestures may

be advantageous in indicating the scope of operations. Research systems that combine speech

with pointing or 2d/3d gestures include interaction with maps: city maps [Cheyer and Julia

1995], real estate maps [Oviatt, DeAngeli et al. 1997], geographic maps [Koons, Sparrell et al.

1993], and calendars [Vo and Wood 1996]. Other systems combining speech with pointing or

2d/3d gesture were developed for graphic document manipulation [Hauptmann 1989; Fauré

and Julia 1993], and analysis of video and image data [Cheyer 1997; Waibel, Suhm et al.

1997]. In summary, for tasks requiring deictic references or the indication of scopes, combin-

ing speech with gestures is advantageous.

Pen-based Interfaces: Handwriting input in multimodal interfaces should imitate the use of

drawing devices and paper. The user writes with a stylus on a writable display (e.g., a touch-

sensitive display). Handwriting input has long been considered an alternative to keyboard

input - without combining it with voice input. Pen-computing (or pen-based interfaces) has

emerged as a field devoted to developing useful computer devices and tools that are based on

handwriting and 2d gesture input. Despite the fact that handwriting is inherently a slow input

modality and that the performance of current handwriting technology is considered to be too

inaccurate, all studies exploring pen-based interfaces conclude that pen computing is promis-

ing for future use (e.g., [Rhyne 1987; Thomas 1987; Briggs, Beck et al. 1992; Frankish, Hull

et al. 1995]). Some recent successful commercializations (e.g., 3Com’s PalmPilot ®) provide

further evidence of the attractiveness of pen-based interfaces. Applications conducive to pen-

based interfaces include text editing ("electronic paper"), speadsheets, graphics, and personal

digital assistants. 

Combining Speech and Pen Input: Combining speech with handwriting and gesture input has

so far been explored for visual programming [Leopold and Ambler 1997] and multimodal

maps [Cheyer 1997]. A wizard-of-oz simulation suggests that the combination of speech and

pen input could be particularly beneficial for error correction in speech recognition applica-

tions [Oviatt and VanGent 1996] - an observation which will be discussed in further detail in
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this dissertation.

Combining Speech with Eye-Movement and Gaze: Two main approaches have combined

speech with eye movement or gaze information. First, gaze information can be used to

improve speech recognition performance. Since eye fixations correlate with deictic object ref-

erences during human-computer interactions, information gleaned from eye fixations can pro-

vide hints about what a user is likely to say. For instance, when looking at a map, the user is

likely to refer to objects that are within the recent range of fixations [Sarukkai and Hunter

1997]. Second, gaze information has been used for selection and manipulation of objects,

equivalent to mouse click and dragging operations [Jacob 1993; Wang 1995; Flanagan 1997].

These examples of multimodal interfaces illustrate the potential benefits of combining speech

with other modalities across a variety of fields. So why is speech recognition technology not

yet successfully deployed in all of these useful applications? What are the limitations of cur-

rent speech recognition technology that hinder more successful applications?

1.2 Limitations of Current Speech Recognition Technology

Limitations of current speech recognition technology include lack of performance on general

domains and under noisy real-world environments, difficulty of conveying domain restric-

tions such as limited vocabularies to users, lack of toolkits supporting application develop-

ment, and recognition errors. 

Recognition accuracy appears to be the main factor determining user acceptance of speech

applications [Newell, Arnott et al. 1991; Lai and Vergo 1997]. Many speech recognition appli-

cations must either operate in noisy environments (in particular, interactive services and appli-

cations embedded in the environment) or require high accuracy on very general recognition

tasks (any transcription application, text and multimedia data entry) or both (for example,

mediation of human-human communication)1. Performance of current speech recognition

1. The terminology used here is based on the taxonomy of speech recognition applications presented in 
Section 1.1.1.
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technology is still insufficient on many of these challenging recognition tasks.

Current speech recognition technology works sufficiently well on restricted domains. The per-

formance is adequate so long as the user complies with the domain restrictions. However, it is

difficult to convey these domain restrictions to the user. Important domain restrictions include

complexity and style of the language (e.g., read versus spontaneous speech), and vocabulary

limitations on words and word sequences that can be recognized. 

To make a technology available for widespread deployment, non-experts of the technology

need to be able to integrate it into applications. Some speech recognition toolkits have become

available, such as OGI spoken language systems toolkit, HTK speech recognition toolkit,

Microsoft SDK, Dragon’s and IBM’s Development Toolkits). But integration of speech recog-

nition technology into applications still requires a significant level of expertise. Furthermore,

porting standard recognition systems to new applications is still difficult.

Finally, the problem of recovery from the inevitable recognition errors has been insufficiently

addressed. Recognition errors are frequently non-intuitive; therefore, strategies for recovering

from recognition errors in normal conversation are not applicable to speech recognition appli-

cations. This point that will be discussed in more detail in Section 1.4 later in this introduc-

tion. Informal surveys (e.g., at the EUROSPEECH ’97 conference, and a recent Newsweek

technology focus [1998]) suggest that error correction is perceived as a significant weakness

in available speech recognition products. 

This dissertation addresses the problem of error correction in speech recognition applications.

Why are recognition errors a persistent problem, and why are the current solutions insuffi-

cient? The following sections attempt to answer these questions by discussing the limitations

of current error-correction techniques across different speech recognition applications, based

on the taxonomy of speech recognition applications introduced earlier.
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1.3 Repair in Different Speech Recognition Applications

One design problem in speech recognition applications is how to handle inevitable recogni-

tion errors. Design solutions must balance constraints and trade-offs along several dimen-

sions, including task, application, hardware, and software (both recognition technology and

supporting technology). Specific aspects of speech recognition applications influence the

design trade-offs and determine the design space for repair in speech recognition applications.

These aspects range from the task goals to the limitations of the application environment.

Design options have been identified for repair in different speech recognition applications.

1.3.1 Design Space 

The design space for repair in different speech recognition applications is determined by the

dimensions of interaction style, interaction goal, available modalities, and level of input.

Researchers in the field of human-computer interaction have identified four general interac-

tion styles (see [Shneiderman 1997], p. 73). Command language interfaces allow the user to

issue commands and to control a system. The interaction is very concise, using a keyboard or

voice commands. Form filling interfaces, or more general data-entry applications, support

question-and-answer type data entry and data modification. Direct manipulation interfaces

allow the user to manipulate directly objects that are visually or symbolically represented in

the interface. Conversational interfaces engage the user in a natural language dialogue, typi-

cally a spoken dialogue. The design of repair methods must fit these general interaction styles.

Interaction goals in the context of error correction range from correct entry of data item by

item to initiation of an action or the communication of information. While semantic correction

is sufficient for the latter two goals, the former requires that each item be recognized verbatim. 

The application context and hardware determine the available modalities. Current telephone

applications limit interaction to speech and touch-pad input. It is commonly anticipated that

speech will become the dominant input modality for small mobile devices such as palmtops.
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However, small writable displays can be integrated, making handwriting and gesture input

possible; future telephones also may be equipped with such displays. On the other end of this

spectrum, applications that are embedded in the user’s environment (e.g., smart rooms) allow

the use of any modality. The design of speech recognition repair is obviously limited by what

modalities are available for a speech recognition application.

User input can occur at different levels: single characters or digits, isolated words, phrases, or

sentences, or whole conversations. Accordingly, repair input can be at any of these levels.

Given these design dimensions, what options are appropriate for the design of repair in differ-

ent speech recognition applications?

1.3.2 Design Options

The taxonomy of speech recognition applications presented above defined the following task

categories: non-interactive, data entry and manipulation, dialogue and control, and mediation

of human-human communication. The ensuing paragraphs discuss appropriate design options

for repair of speech recognition errors in each of these task categories. With the design dimen-

sions identified in the previous subsection - namely interaction style, goal of interaction,

available modalities, and level of user input - this discussion takes place in a matrix defined by

task categories and design dimension. Only a high-level overview is presented, but that is suf-

ficient to provide the context of this dissertation research. 

Non-interactive applications depend either on sufficient speech recognition performance

(eliminating the need for repair), or the presence of an operator to switch into interactive mode

for repair. As non-interactive applications are beyond the scope of this dissertation, they will

not be included in further discussions.

For tasks involving data-entry and modification, command/control interaction and data entry

are the appropriate interaction styles. The interaction goal is the input of every item with suffi-

cient accuracy, and, in most cases, verbatim recognition. Since tools for data-entry and modi-



Introduction 13

fication tasks lend themselves to integration with a graphic user interface, repair options

extend to other non-speech modalities such as gesture and handwriting. Different levels of

repair input may be appropriate, depending on the type of data being entered or manipulated.

Control and dialogue tasks may entail all types of interaction styles, although conversational

interactions are dominant in most of the applications in this category (e.g., all types of interac-

tive services, smart rooms, and virtual reality interfaces). Therefore, such applications suggest

the use of conversational repair (also called clarification dialogues). Semantic repair is almost

always sufficient. Modalities may be limited to speech only (e.g., current automated telephone

services), but some applications afford multiple modalities (e.g., interactive travel services

and future dialogue applications embedded in the environment); therefore, multimodal error

correction is an option even for such applications. User input is at the level of words, phrases,

and sentences.

Mediation of human-human communication implies conversational interaction styles. Other

interaction styles would interfere with the flow of the primary human-human communication

(i.e., the communication that is being mediated by the application). Semantic repair is appro-

priate in most cases, although some tasks may require verbatim repair (e.g., in the case of col-

laborating on papers or design plans). The range of available modalities depends on the

specific application; while tools supporting collaborative work may integrate a graphic user

interface, speech translation tools clearly have speech as the preferred modality. Such applica-

tions obviously process the entire conversation being mediated, although repair input typically

will range from words to sentences. 

After this cursory discussion of repair in different applications, we focus on the category of

applications for which this dissertation is most relevant: applications for which non-conversa-

tional repair is appropriate and which offer to use multiple input modalities. What non-con-

versational repair techniques have been developed for such applications, and what are their

limitations?
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1.4 Drawbacks of Current Non-Conversational Repair

Non-conversational multimodal speech recognition applications include some of the non-

interactive applications and all data-entry/modification applications. Non-conversational

repair techniques may also be appropriate for applications that use a conversational interac-

tion style, for example, in subdialogues that focus on data entry. Three main non-conversa-

tional repair techniques are known and occur in variations in many published research and

commercial systems: respeaking (repeating, using continuous speech or isolated words),

choosing from a list of alternatives, and using mouse and keyboard. 

With current speech recognition algorithms, respeaking is an ineffective method because most

speech recognizers do not improve performance on repetition and often actually get worse. In

human-human dialogue, hyperarticulated repetition is very effective and often preferred over

other methods (see the review of repair in human-human dialogue in Section 2.2.3). While

people frequently hyperarticulate repeated words or phrases, repetition is not effective in

speech recognition applications for two reasons. First, repetition is unlikely to be recognized

correctly since, in most cases, recognition errors are not random but caused by deficiencies in

the internal models of a speech recognizer. Second, the performance of most recognizers dete-

riorates on hyperarticulated speech because they are trained exclusively on normally pro-

nounced speech.

Choosing from a list of alternatives has been very effective in some disconnected speech

applications such as dictation systems that require a pause between every word. Methods to

select words from a list using voice only have been developed (using spelling for selecting

and filtering). Some commercial systems offer additional editing capabilities by voice, includ-

ing navigating within text (e.g., "back two words") and deleting items (e.g., "delete three

words"). However, choosing from a list of alternatives is not effective in continuous speech

recognition applications because the correct sequence of words is rarely among the top alter-

natives listed, especially if several consecutive words are misrecognized. Experiments pre-

sented later in this dissertation (see Section 8.3) provide further evidence supporting this
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claim.

Finally, using mouse and keyboard defeats the purpose of employing speech as an alternative

to keyboard as input modality. Correction using keyboard and mouse is possible only in appli-

cations that allow the use of a keyboard and graphic user interface. Furthermore, the fact that

most computer systems still rely on keyboard input is one major obstacle to making computer

technology accessible to a broader public.

Figure 1-2.  Overview of current correction methods for non-conversational 
speech recognition applications

Figure 1-2 illustrates the available correction methods for non-conversational applications:

choosing from a list, voice editing, respeaking, and finally keyboard input.
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Hence, current correction methods for non-conversational speech recognition applications are

either ineffective or require keyboard input. For conversational speech recognition applica-

tions, clarification dialogues provide correction in the context of a spoken dialogue, similar to

conversational repair strategies that people use. Our review of research on clarification dia-

logues (see Section 2.4.2) revealed that such techniques are still not well developed. It is

therefore not surprising that informal user surveys of conversational and non-conversational

speech recognition applications suggest that users perceive error correction as a significant

weakness. The problem of errors in speech recognition applications remains unsolved; more

efficient and graceful methods to recover from recognition errors are needed. This dissertation

addresses how to reduce user effort spent on error recovery in non-conversational speech rec-

ognition applications.

1.5 The Research Question

Given relatively low reliability of current speech recognition technology, how can the users’

effort necessary to recover from interpretation errors be minimized?

Faced with this research question, one could believe improvements in technology will eventu-

ally lead to perfect recognition (or, at least, by delivering sufficient recognition on all applica-

tions), thus eliminating the need for error correction. Alternatively, one could believe that

speech recognition will remain imperfect in the foreseeable future, and efficient methods to

recover from recognition errors are necessary to build useful speech recognition applications. 

This dissertation adopts the second viewpoint. This view is supported by the observation that

despite continuous gradual improvements, 30 years of research have not resulted in perfect

speech recognition. Also, even human performance is limited. Admitting that error correction

is necessary does not lessen the benefits of speech recognition technology, because most com-

puter input devices have the potential to produce incorrect input. This is either due to user

error or technical malfunction. However, unreliable speech input is acceptable only if appro-

priate error correction methods are available. In Baber’s words: "a prime requirement for ASR
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(automatic speech recognition) design is the definition and comparison of error-correction

strategies" [Baber, Stammers et al. 1990]. Similarly, from a treatise on recognition-based user

interfaces: "Good error-correction methods are critical to the acceptability of a recognition-

based system, and should be fast, foolproof, and reduce the probability of future errors" (p.

205 in [Rhyne and Wolf 1993]). This dissertation explores several novel multimodal correc-

tion methods, and formally compares them with known methods. Since multimodal methods

require some form of graphic user interface, the focus will be on applications with graphic

user interfaces. The concepts are demonstrated on a dictation application, which is a well-

known example of this kind of speech recognition application.

1.5.1 Example: Error Correction in Dictation Applications

Dictation was chosen as the example application to demonstrate and formally evaluate multi-

modal error correction. Therefore, an understanding of the problem of error correction in the

context of dictation tasks is an important starting point for this dissertation work.

Speaking is generally much faster than typing. Studies showed that on average people can

read texts aloud from the Wall Street Journal at 150 words per minute (wpm) [Pallett, Fiscus

et al. 1994]. A typing speed of 40 wpm is considered fast unskilled typing [Card, Newell et al.

1983], and expert typists achieve up to 80 wpm. Automatic speech recognition should there-

fore increase productivity on dictation tasks, although this does not take into account the time

spent on correcting recognition errors. If no graceful correction methods are available for

speech recognition errors, speech input may be slower overall than keyboard input. Experi-

mental results of this dissertation (see Chapter 8) confirm that speech input is slower than key-

board input when recognition errors have to be corrected without keyboard input. This

situation is illustrated in Figure 1-3. Even so, speech input is still an attractive option for

applications that do not allow efficient keyboard input, for example, due to hardware limita-

tions (e.g., small hand-held devices), or due to user preferences and needs (e.g., disabled users

or those who do not like using the keyboard). The research challenge for this dissertation is to
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develop fast correction methods that do not require keyboard input, so that text production

using speech is faster than typing. This dissertation proposes multimodal correction to achieve

this goal.

Figure 1-3.  Keyboard versus (continuous) speech input: error correction is 
crucial to realize productivity gains

1.6 Thesis and Contributions

This dissertation demonstrates that interactive multimodal error correction provides effective

recovery from speech recognition errors in non-conversational applications that utilize a

graphic user interface. Speech recognition with multimodal correction achieves text input

without any keyboard input at rates that compare favorably to non-expert typing. Research

contributions made in this dissertation include:

Concepts and Techniques:

• Novel multimodal interactive correction techniques for speech recognition appli-

cations (using graphic user interfaces) for efficient error correction without key-

board input

Keyboard

Typing Correction

Speech

Speak &
Interpretation conventional keyboard-free Correction

multimodal keyboard-free Correction

Time
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• Algorithms that significantly increase correction accuracy by correlating correc-

tion input with correction context 

Artifact: Prototype multimodal dictation system for effective dictation without keyboard input

Theory: Performance model for recognition-based, multimodal interaction (as first step

towards a framework for multimodal interaction)

Evaluation:

• Predictive comparison of correction methods, based on the performance model

• Experimental evaluation of novel multimodal correction techniques and formal

comparison with conventional correction techniques in user studies

1.7 Dissertation Outline

The remainder of this dissertation consists of four major parts. Chapter 2 contains a literature

review. Chapters 3-5, part 1 of this dissertation, describe the technology for multimodal inter-

active correction. Chapters 6-8 (Part 2) present the evaluation of multimodal interactive cor-

rection. The dissertation closes with conclusions in Chapter 9.

Part 1: Technology. Chapter 3 describes the component technologies required for any multi-

modal system that integrates voice input, handwriting, and gesture input: automatic speech

recognition, on-line handwriting recognition, and recognition of 2d gestures. The concept of

multimodal interactive correction is presented in Chapter 4. Additionally, algorithms are pro-

posed that make interactive correction effective by correlating correction input with context.

Chapter 5 describes the integration of multimodal correction with a large vocabulary continu-

ous speech recognition system to build a prototype multimodal dictation system.

Part 2: Evaluation. The evaluation section begins in Chapter 6 with a review of previous stud-

ies of text production techniques. The studies include comparisons of dictation to a machine,
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dictation to a secretary, handwriting, and typing, as well as evaluations of simulated automatic

listening typewriters. Chapter 7 presents the performance model of recognition-based multi-

modal interaction. Predictions on the effectiveness of different multimodal correction tech-

niques are derived by applying the model to interactive multimodal correction. Chapter 8

describes the experimental evaluation of multimodal interactive correction and the compari-

son of novel multimodal methods with conventional methods. The results show the effective-

ness of multimodal correction and demonstrate that correlating correction input with context

can significantly increase correction accuracy. 

In conclusion, Chapter 9 discusses benefits and limitations of multimodal interactive correc-

tion. This final chapter ends with a summary of the research contributions and an outlook on

future research.

The contents of the appendices is as follows: Appendix A describes the materials used during

the user studies of the multimodal dictation system, including all forms, and a quick tutorial of

the interface. Appendix B reviews the theory of repair in human-human dialogue. This sup-

plies an important background for investigating the problem of error correction in conversa-

tional speech recognition applications, which is beyond the scope of this dissertation.

Appendix C briefly describes different standard benchmark tasks used to evaluate continuous

speech recognizers, as a reference for readers unfamiliar with the jargon of the speech recog-

nition field. Appendix D contains demographic information of the participants of the final

user study. Appendix E contains a glossary of frequently used terms.



Literature Review 21

2. Literature Review

Previous research on errors in speech recognition technology and on how to address this prob-

lem is the foundation for this dissertation work. This chapter provides this foundation by

reviewing the literature in relevant fields on these two issues. 

The first Section 2.1 summarizes classifications of speech recognition errors. Taxonomies

provide a concise language in any scientific discipline. The speech recognition field has

adopted mainly two classifications: one describes different types of errors, the other assigns

blame for errors to different system components. The second classification naturally leads to

research on which factors influence speech recognition performance, which is reviewed in the

following subsection. Factors increasing the error rate of speech recognizers include sponta-

neous speaking style, fast rate of speaking, low signal-to-noise ratio, high frequency of short

or out-of-vocabulary words, large vocabulary size, and high perplexity of the language. By

looking at these factors, the application developer can investigate why the error rate in the

application may be high. However, these factors cannot explain why a particular error has

occurred, or predict when an error is likely to have occurred. That knowledge would obvi-

ously be very useful for the detection and correction of speech recognition errors. Different

methods, have been developed to equip speech recognizers with a notion of how likely the

recognition output is correct, and are summarized in the final subsection. Such confidence

measures can be applied to predict speech recognition errors.

One of the great hopes in automatic speech recognition has been to make speech - the pre-

ferred medium of human-human communication - usable for human-computer interaction.

When considering error resolution speech recognition applications it is therefore intuitive to
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ask what we know about error resolution in human-human communication. Section 2.2 dis-

cusses research on repair in human-human communication in view of error correction in

speech recognition applications. Repair strategies people naturally employ in conversations

provide useful guidance how to make error correction in speech recognition applications more

natural and intuitive. Furthermore, it provides a conceptual framework for the investigation of

error correction in speech recognition applications. Research in linguistics has identified three

basic strategies which people employ to deal with communication problems in conversation:

preventing errors, monitoring the conversation for possible communication problems, and

collaborating on repair. 

The final section reviews previous work on error prevention and correction in speech recogni-

tion applications. This review is ordered by strategies that are analogous to the ones employed

in natural language dialogue: preventing errors by improving speech recognition performance

(on specific applications), facilitating error detection by well-designed feedback, and collabo-

rating with the system on error correction. Speech recognition performance can be improved

on specific applications either by adapting the acoustic models of the speech recognizer to the

user and task, or by using interface design to guide the user towards input which is easier to

recognize. Design of feedback which is sensitive to the current interaction context can facili-

tate the detection of errors. Early work on error correction in speech recognition applications

introduced the two interactive methods that are still used (in variations) in today’s systems:

choosing from a list of alternatives and repeating the input using continuous speech. A Wiz-

ard-of-Oz simulation explored whether error correction could benefit from multiple input

modalities. Results suggested that switching input modality in error resolution would expedite

error correction and alleviate user frustration in dealing with repeated failed correction

attempts. 

2.1 Classification and Prediction of Speech Recognition Errors

Classifications of speech recognition errors either categorize errors according to what type of
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error occurred or to what caused the error. The first classification provides the basis for word

error rate as the commonly used measure of speech recognition performance. The second is

widely used during development of speech recognition algorithms to identify problems in the

speech recognition algorithm.

Distinguishing by the type of error, the first classification uses the common categories of word

substitutions, insertions and deletions (for a formal definition of these terms, for instance,

consult [Gibbon, Moore et al. 1997]). Although this is a very shallow taxonomy at the phe-

nomenological level, no other, more sophisticated classification scheme has been widely

accepted in the field. For natural language applications, specialized measures have been

defined; for instance, concept accuracy in parsing (e.g., [Kamm and Walker 1997]), or rate of

acceptable translations in spoken language translation (e.g., [Waibel 1996]). However, these

measures are commonly used in conjunction with word accuracy, which remains the only

measure to characterize the performance of the speech recognition system used.

In the second classification, recognition errors are classified according to what caused them

(e.g., [Gibbon, Moore et al. 1997],[Chase 1997]). The following causes of recognition errors

can be distinguished:

• Out-of-vocabulary word (OOV, new word): Current automatic speech recognizers

are constrained to recognize only words within an a-priori defined vocabulary.

The recognition algorithm is forced to match words outside of this vocabulary on

one or more arbitrary words from within the vocabulary. Therefore, a new word

typically leads to one or more recognition errors. For example, on large vocabulary

dictation tasks (such as the multimodal dictation system developed in this disserta-

tion), one out-of-vocabulary word on the average causes two recognition errors.

• Search error: Most speech recognition algorithms are feasible only with approxi-

mations. Large vocabularies or real-time requirements make it impossible to

search the whole space of arbitrary sequences of words, and to find the globally
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optimal best matching sequence of words. Heuristics allow the system to limit the

search by excluding (pruning) regions that are very unlikely to contain the correct

sequence of words. Sometimes the correct hypothesis may be lost in this pruning

process. Recognition errors caused by such flaws in the search for the best match-

ing word sequence are called search errors.

• Language model error: Language models are designed to capture the typical word

usage of language, according to application requirements. Since no current model-

ing technique is perfect, a wrong prediction from the language model may over-

whelm acoustic evidence, which may have favored the correct hypothesis.

Alternatively, the language model may not be able to disambiguate acoustically

confusable alternative hypotheses.

• Acoustic model error: The acoustic models of an automatic speech recognizers

capture acoustic characteristics of speech signals. For state-of-the-art large vocab-

ulary recognition systems, acoustic modeling occurs on three level: preprocessing

of the signal, phonetic modeling, and word modeling (via pronunciation lexica).

Modeling on any of these levels is imperfect and can cause recognition errors.

As mentioned before, this classification can guide the improvement of speech recognition

algorithms. For example, search errors can be eliminated by relaxing the pruning in the

search, at the cost of an increase in recognition time. In the course of this dissertation work,

the classification has helped to identify the main causes for initially very poor performance of

the continuous speech recognizer on corrections by respeaking (see Section 4.4.1, page 94).

In designing a new speech recognition application, an important issue is to judge what recog-

nition accuracy can be expected from available speech recognition systems. While the abso-

lute performance obviously depends on the current state-of-the-art of technology, knowing

what factors influence speech recognition performance in general can help to extrapolate

available benchmark results to the specific application at hand.
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2.1.1 Factors Affecting Speech Recognition Performance

Some researchers have tried to identify factors which generally (across recognition systems

and speech applications) influence the recognition accuracy. Regular performance evaluations

of speech recognition systems on standard benchmark tasks are good opportunities to infer

such statistics. For instance, Fisher [Fisher 1996] examined what factors affect recognition

error rate based on results of the official 1994 Wall Street Journal dictation evaluation (for

information on speech recognition benchmark tasks, see Appendix C). The statistical analyses

identified the following factors: speaking rate (fast speech is correlated with high error rates),

length of utterance (long utterances are recognized more accurately), and signal-to-noise ratio

(low ratio is correlated with high error rates). Another study [Weintraub 1995] suggests that

word length (short words are more difficult to recognize) and speaking style ("read dictation"

versus "read conversational" and "spontaneous conversational") influence recognition accu-

racy as well. 

A recent study [Alleva, Huang et al. 1997] pointed out the impact of another dimension in

speaking style on recognition accuracy: whether speech is spoken fluently, or with pauses

between words. People intuitively elongate pauses between words when they encounter com-

munication problems (e.g., [Oviatt, Levow et al. 1996]), because that strategy facilitates

understanding in human-human communication. However, the performance of most continu-

ous speech recognizers deteriorates when words are separated by pauses - unless the recogni-

tion algorithm is enhanced to handle both continuous and isolated speech well, for example,

by pooling continuous and isolated speech data to train the acoustic models [Alleva, Huang et

al. 1997].

2.1.2 Predicting Recognition Errors

Predicting whether an automatic speech recognizer committed an error in recognizing some

speech input would obviously be useful to facilitate error detection and correction. For

instance, a dialogue system could ask the user to repeat a query which is likely to have been
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misrecognized. Predicting exactly which words are likely to be incorrect would permit to flag

errors automatically and to take appropriate error recovery actions. What action is appropriate

depends on the application. For example, in audio annotation applications, likely misrecog-

nized words could be filtered from the speech recognizer’s output. In speech-to-text dictation,

the system could display likely recognition errors in a different color or style. 

Confidence measures are methods that allow to predict speech recognition errors. Most

approaches assign an a posteriori probability P(correct|word) how likely a word is correct for

each word in the recognition hypothesis. The following sections review recent work on confi-

dence measures for speech recognizers, and their application to predicting a certain kind of

recognition error, namely out-of-vocabulary words. Confidence measures are used in this dis-

sertation as one method to automatically locate recognition errors (see Section 4.2.2, page 82).

2.1.2.1 Confidence Measures for Continuous Speech Recognition

According to Chase [Chase 1997], confidence measures can differ along the following four

dimensions: at what level of abstraction confidence is annotated, how an error is defined, what

method is used to generate confidence annotations, and how their goodness is measured. The

next paragraph describes typical choices for each of these dimensions in current confidence

annotation algorithms.

Confidence can be annotated at either the sentence level (for utterance rejection, e.g. in dia-

logue systems), the level of semantic concepts, or the word level. An error is defined as mis-

match in the alignment of the recognition hypothesis and the true word sequence. All current

confidence annotators are based on combining a set of predictor variables. Sets of predictor

variables can be combined using regression models, decision trees, or neural networks. To

evaluate confidence annotators, the following measures have been used: the cross entropy

reduction of predicting the correct confidence labels (which more intuitively equals to the

amount of uncertainty left after applying a confidence annotator to predict errors), the rates of

false alarms (correctly recognized words mistakenly labelled as error) and missed detections
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(misrecognized words not labelled as error), and the overall accuracy of classifying words as

either correct or misrecognized.1 Whereas the first measure is general - but not very intuitive -

the two other measures are very intuitive, but specific to applying confidence annotators as

error predictors. The set of predictor variables is crucial for the development of a good confi-

dence annotator. What variables are good predictors of recognition errors?

Many different predictor variables have been proposed and evaluated (see [Chase 1997],

[Kemp and Schaaf 1997], [Schaaf 1996]). Chase [Chase 1997] defined different acoustic pre-

dictors (normalized acoustic score, distance between hypothesized and best score phone,

number of occurrences in training data, number of phones in word), language model predic-

tors (language model score, information on how the language model score was computed) and

predictors based on information in the N-best list of alternative hypotheses (normalized num-

ber of occurrences in the various N-best hypotheses, number of unique words present in the

N-best lists averaged over each frame in the guessed segmentation). The best confidence

annotator that Chase derived for a large vocabulary read speech recognition in American

English achieved a cross entropy reduction of 20.9%, which corresponds to an error/correct

classification accuracy of around 80%.

Kemp et al. [Kemp and Schaaf 1997] introduced a new lattice based predictor variable, called

"gamma". Interpreting the acoustic scores as emission probabilities and language model

scores as transition probabilities, the word lattice for some speech input can be interpreted as a

Hidden Markov Model (HMM, for a tutorial on HMMs see e.g. [Rabiner 1991]). Thus, the

posteriori probability for each link in the lattice (representing a word) can be computed using

the standard forward-backward algorithm for HMMs. This probability can be interpreted as

confidence score for each word in the lattice. Schaaf [Schaaf 1996] compared the performance

of "gamma" and five other lattice based predictors with eleven non-lattice predictors.

"Gamma" alone achieves a classification accuracy of 89% on a database of spontaneous con-

1. For more information on evaluation of confidence annotations, see [Chase 1997; Kemp and Schaaf 
1997]
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versational (German) speech, which is almost as high as the best combination of any other

predictor variable, and "gamma" can be calculated in real-time - crucial for deployment in a

user interface. "Gamma" was employed in this dissertation to implement a method to automat-

ically highlight likely errors (see Section 4.2.2) 

Is it also possible to predict the specific kinds of error which occurred? 

2.1.2.2 Predicting Out-of-vocabulary Words

Some work has been devoted to applying confidence annotators to predict out-of-vocabulary

words (OOVs). Since current speech recognition systems try to find the closest match from

among the words within a given vocabulary, OOVs inevitably lead to errors. Asadi first inves-

tigated the new word problem in speech recognition. He presented a new word model that

enables a standard continuous speech recognizer to detect new words [Asadi, Schwartz et al.

1990]. His approach was however tested only on a constrained task, and new words were lim-

ited to names that were eliminated from the recognizer’s vocabulary. In my Master’s thesis

[Suhm 1993], I pursued a similar approach and showed that the language model can signifi-

cantly improve the detection of new words. However, it remains unclear how this approach

scales to large vocabulary speech recognition. Chase applied her approach to confidence

annotation (described earlier) also to the problem of detecting OOVs (see Chapter 6.10 in

[Chase 1997]) - without too much success. For example, on a large database of read speech, a

decent OOV detection rate of 70% is possible only at the cost of high false alarm rates of 25%.

Since OOVs generally are infrequent, high false alarm rates are unacceptable for most appli-

cations.

To illustrate the frequencies of OOVs, Table 1 shows the (static) coverage of matching unseen

newspaper text as a function of vocabulary size for English. For more inflectional languages

such as French or German, larger vocabularies are necessary to achieve similar coverages.

Vocabulary sizes of 20,000 to 30,000 words are typical in current dictation systems. However,

this statistics underestimates the rate of out-of-vocabulary words, because in general, text
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from many different sources will have to be processed by a general-purpose text processing

system, and additionally, language evolves gradually in usage. Hence, out-of-vocabulary rates

of around 5% have to be expected when dictating general text [Acero 1998]. This concludes

the review of work on classification and prediction of speech recognition errors. 

2.2 Lessons Learned from Repair in Human-Human Dialogue

One of the great hopes in automatic speech recognition is to communicate with computers

using speech, the medium we are so familiar with from our daily communication with other

people. We generally deal with communication problems very effectively and usually do not

even notice them consciously. What is known about error resolution and repair in human-

human dialogue, and what lessons can be learned for speech recognition applications?

The investigation of repair in human-machine interaction via speech can benefit from research

on repair in human-human dialogue in a number of ways: First, the repair strategies that users

intuitively employ are likely to be similar for human-human and human-machine dialogue,

because speech recognition applications are expected to enable more "natural", i.e. more

human-like, ways to communicate with a machine. Second, the conceptual framework devel-

oped for repair in human-human dialogue can provide a good starting point for the design of

(and a theory for) repair in human-machine dialogue. While Appendix B reviews the literature

on repair in human-human dialogue, this section focuses on relating this body of research to

this dissertation: issues of grounding in speech recognition applications, relevant categories of

errors, strategies to deal with errors, and motivation for the approach chosen in this disserta-

Table 1: Coverage of (matched) unseen text as a function of vocabulary size (from [Cole, 
Mariani et al. 1995], page 39)

Vocabulary Size Text Coverage

20,000 94.1%

64,000 98,7%

100,000 99.3%

200,000 99.4%
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tion.

2.2.1 Grounding and Feedback

Grounding is the process of extending the shared knowledge of communication partners.

Uncertainty about what knowledge is shared can cause communication problems. Applied to

human-machine dialogue, this leads to a well-known problem of user interface design in gen-

eral: the issue of good feedback. Research on grounding in natural language dialogue can

therefore help to address the problem of feedback in speech recognition applications. 

Brennan and Hulteen [Brennan and Hulteen 1995] address the issue of feedback in speech

recognition applications from the viewpoint of grounding. Feedback should be context-sensi-

tive and based on a model of grounding with spoken language systems. They asserted that

most current systems provide feedback in a rather ad-hoc way. They applied Clark and

Schaefer’s collaborative theory of conversation to spoken language systems (see. Appendix

B). They pointed out the importance of both negative and positive evidence of understanding,

i.e. evidence if one communication partner notices a potential problem, as well as evidence of

what actually has been understood. People use back-channel utterances to provide negative

and positive feedback to the speaker. Back-channel utterances include verbal cues (e.g., "Uh

huh", "Ok" or "What?") and non-verbal cues (e.g., nodding or shaking the head, facial expres-

sions). Extending Clark and Schaefer’s list of communicative stages [Clark 1987], Brennan

and Hulteen identified eight stages of human-machine communication (not attending, attend-

ing, hearing, parsing, interpreting, intending, acting, reporting), and discuss design options for

positive and negative feedback in each of the stages. 

A taxonomy of communication problems according to the communication stage, like the eight

stages Brennan proposed, are therefore useful for the design of good feedback in human-

machine spoken language interaction. What do other taxonomies of communication problems

in human-human dialogue contribute?
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2.2.2 Error Taxonomies

This section relates different taxonomies of communication problems in human-human dia-

logue to the problem of errors in speech recognition applications.

Considering repair in human-machine interaction, the distinction between user and system

errors is very important. Much research in the field of human-computer interaction is devoted

to reducing the frequency of user errors through good user interface design. Work on repair in

speech recognition application however has to focus on user corrections of system interpreta-

tion errors: speech recognition errors are the additional challenge. Since lack of system com-

petence caused them, the system depends on help from the user to recover from them. 

Nevertheless, some research has been conducted that addresses the opposite problem, (sys-

tem) correction of user errors: Bradford [Bradford 1990] proposed a technique which detects

and corrects user errors in command-oriented interfaces, building on the notion of a do-what-

I-mean interface. Generalizing this approach, Nerzig [Nerzig ] examined detection of errone-

ous plans in human-machine interaction, based on a formal theory of plan recognition. The

description why a plan is erroneous can be used to (system-)initiate a clarification dialogue.

However, modeling what the user intended is a difficult problem and still beyond the capabil-

ities of current artificial intelligence methods. System correction of user errors therefore

remains an open research issue.

A taxonomy of communication problems according to the linguistic level where an error

occurs can be applied to errors in speech recognition applications in the following way.

Depending on the application, different linguistic levels of errors are relevant. The semantic

level is appropriate for command/control interfaces and dialogue systems, because the goal of

the interaction is to initiate some system action, for example, retrieval of information or help

in making travel reservations. By contrast, the lexical or syntactical level is appropriate for

data and text input applications.

Taxonomies of communication problems in human-human dialogue thus help to structure
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work on repair in speech recognition applications. The work on repair in human-human dia-

logue leads to solutions for the problem of error recovery in speech recognition applications

as outlined in the following section.

2.2.3 Repair

Repair strategies that people employ in dealing with communication problems provide useful

analogies and a conceptual framework for error recovery in speech recognition applications. If

we assume that speech recognition applications facilitate human-computer interaction by

making the communication more similar to human-human dialogue, an approach to repair in

speech recognition applications can be considered "natural" if it takes the human-human

counterpart into account. In this sense, the collaborative approach to error correction taken in

this dissertation can be considered "natural". But the analogy to repair in human-human dia-

logue reaches farther: what strategies are used to correct errors, what factor(s) determine strat-

egy preferences, and what approaches to the problem of errors in general exist, can be applied

to repair in speech recognition applications.

The fact that repeating and paraphrasing an utterance are intuitively employed in human con-

versational repairs suggests that repeating input and paraphrasing may be an intuitive correc-

tion method in human-computer interaction as well. There is some evidence that in human-

computer interaction, repetition and reformulation are "intuitively" employed (see [Robbe,

Carbonell et al. 1996]).

Moreover, the principle of least collaborative effort (postulated by Clark, see [Clark and

Wilkes-Gibbs 1986]) is likely to guide user preferences for different correction strategies also

in human-machine interaction, just as in human-human dialogue. It can be considered as a

reformulation of Card, Newell and Moran’s rational user assumption [Card, Newell et al.

1983] in linguistic terms: just as a rational user will prefer interaction methods that minimize

the effort, people strive to minimize the effort spent during conversation. However, while del-

egation of effort to the machine generally saves work in human-computer interaction, in
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human-human dialogue the cumulative effort spent by both conversation partners is the rele-

vant measure. Obviously, the effort spent by the machine can be ignored as long as the compu-

tational power of the hardware is sufficient.

People employ three main strategies to deal with communication problems in human-human

dialogue [Clark and Schaefer 1989]: preventing communication problems, monitoring the

conversation for potential problems, and collaborating on repair. These strategies correspond

to the following analogous strategies for speech recognition applications:

1) Preventing speech recognition errors by increasing speech recognition perfor-

mance, in particular, on the specific application at hand

2) Facilitating error detection through good feedback

3) Correcting errors in collaboration with the user.

Ordered by these categories, the following sections review previous work on repair in speech

recognition applications. The limited work done on feedback was already reported earlier in

this chapter in Section 2.2.1.

2.3 Preventing Errors in Speech Recognition Applications

Figure 2-1 summarizes various approaches to prevent errors in speech recognition applica-

tions, which are reviewed in brief in the remainder of this section, including improving base-

line recognition algorithms, system adaptation (to application or speaker), and user adaptation

(by speaker training and interface design).

The section assumes the reader is familiar with the basics of speech recognition algorithms.

For an introduction into automatic speech recognition and descriptions of the different compo-

nents of a speech recognizer, refer for example to [Lee 1990; Cole, Mariani et al. 1995;

Woszczyna 1998].
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Figure 2-1.  Approaches to improve speech recognition performance on a 
given application

2.3.1 Improving Baseline Performance of Speech Recognition Technology

Obviously, an important leverage to prevent errors in any speech recognition application is to

improve the recognition algorithm. Without intending to give a full account, this section pro-

vides a cursory compilation of some of the most significant advances on speech recognition

algorithms in the past decade of research. The algorithmic enhancements can be ordered by

components of the speech recognizer: preprocessing, acoustic models, search, and language

models. The final subsection presents two approaches to improve speech recognition perfor-

mance using confidence measures. Along with the main idea of each approach, relative per-

formance improvements on relevant standard benchmark tasks will be mentioned to give the

reader an idea how effective each approach is.

2.3.1.1 Preprocessing 

Linear Discriminant analysis applies the well-known technique of principal component anal-

ysis to the problem of processing the acoustic input signal. Out of a large set of typically 20-

50 input features, which are derived from the acoustic signal (including FFT coefficients, delta

and delta delta coefficients, silence features), linear discriminant analysis identifies the set of

input features (corresponding to the principal components) with maximal discriminative

power.

Application independent Application specific

Enhance
ASR algorithms

Speaker dependent

Speaker Adaptation Speaker training

Task Adaptation Convergence by
Interface Design
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2.3.1.2 Acoustic modeling 

Context dependent acoustic models increase the power of the recognizer’s acoustic models by

taking the phonetic context into account, at the cost of a dramatic increase in the number of

modeling parameters. The development began by using acoustic models which model a pho-

neme with its left and right neighboring phoneme (triphones, see [Lee 1990]). However, triph-

ones introduce a large number of model parameters, and the limited amounts of available

speech data do not allow derivation of reliable statistical estimates for these parameters. This

problem can be overcome by clustering triphones to build subphonetic acoustic units. Several

successful techniques have been proposed over the years, for instance Hwang’s senones

[Hwang 1993], and Dragon’s PICs and PELs [Scattone, Baker et al. 1993]. Hwang reported in

her dissertation a 20% relative word error rate reduction on the Wall Street Journal large

vocabulary dictation task (WSJ).

A new thrust for acoustic modeling improvements was initiated when the field proceeded to

include large vocabulary conversational spontaneous speech recognition in the set of standard

benchmark tasks. Conversational spontaneous speech is characterized by increased co-articu-

lation. Increasing the phonetic context of acoustic models beyond the left and right neighbor

was very successful in improving recognition performance on conversational speech (so-

called polyphones, see [Kuhn, Lazadrides et al. 1995] and [Finke and Rogina 1997]). Finke

and Rogina [Finke and Rogina 1997] reported a 5% word error rate reduction for polyphones

on the Switchboard large vocabulary conversational speech task (SWB) and on WSJ.

More recently, adaptation algorithms for acoustic models have become very popular. It is

well-known that speaker dependent recognizers outperform speaker independent ones. How-

ever, speaker dependent recognizers require a large amount of speech from the speaker. Col-

lecting large amounts of speech prior to usage may be impractical or at least inconvenient.

Adaptation algorithms improve the recognition performance by adapting speaker independent

acoustic models on very small amounts of data. Maximum Likelihood Linear Regression

MLLR adaptation [Legetter and Woodland 1996]) has been very successful. For example,
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MLLR speaker adaptation achieves a 30% reduction in word error rate for the WSJ recognizer

used in this dissertation work (see Section 4.5.1).

2.3.1.3 Search

For a long time, speech recognition algorithms were designed to find the best matching word

or the best matching sequence of words only. Schwartz [Schwartz and Chow 1990] introduced

an effective and efficient algorithm to find the N best matching recognition hypotheses for

time synchronous search methods. Stack decoding based on A* search (e.g., [Paul 1994]) is a

popular and straight forward algorithm to find the N best matching recognition hypotheses. N-

best lists of matching hypotheses (for short, N-best list) and word lattices have become the

standard representation of the speech recognizer’s output.

Another general technique which yields significant improvements in combination with other

techniques is using multiple search passes, instead of finding the best matching hypothesis in

a single search pass (see p.33 in [Cole, Mariani et al. 1995]). After an initial pass constrained

the search space, a later pass can use more sophisticated modeling techniques that would be

computationally infeasible in a single search pass. For example, rescoring of N-best lists or

lattices is quite successful and easy to implement (one of the first references can be found in

[Ostendorf, Kannan et al. 1991]). This dissertation will later present some rescoring algo-

rithms that significantly improve the accuracy of repairs (see Section 4.4, page 92).

2.3.1.4 Language Modeling

Despite many attempts at improving the standard statistical word N-gram language model,

statistical N-gram models remain the most common language modeling technique. (For a

good review, see the chapter on language modeling in [Gibbon, Moore et al. 1997].) Some of

the approaches which achieved significant improvements over N-grams include: clustering

words [Ney, Essen et al. 1994], collating words to word phrases [Suhm and Waibel 1994; Ries

1996], and using long distance constraints (e.g., trigger pairs [Rosenfeld 1994]). Rosenfeld

reported a 15% reduction in word error rate on the WSJ task for a maximum entropy language
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model that combines standard N-grams with long distance constraints [Rosenfeld 1994].

2.3.1.5 Improving Speech Recognition Performance with Confidence Measures

Since more reliable confidence measures for speech recognizers have become available, they

have been successfully applied to improve the recognition process itself. The following para-

graphs present the main idea of two such algorithms.

Setlur [Setlur, Sukkar et al. 1996] proposed an utterance verification algorithm to selectively

correct recognition errors. A confidence score is assigned to each of the different alternative

hypotheses. If the confidence score of the top candidate is lower than that of the second best,

the first and second best hypotheses are swapped. 

Zeppenfeld et. al [Zeppenfeld, Finke et al. 1997] and Chase (chapter 8 in [Chase ]) showed

that confidence scores can significantly increase the effectiveness of unsupervised acoustic

model adaptation. Instead of adapting on the whole recognition hypothesis, as in "standard"

acoustic model adaptation algorithms, adaptation is performed only on parts of a hypothesis

with high confidence scores, thus avoiding adaptation on speech that was not correctly recog-

nized.

Other non-interactive methods to correct errors include postprocessing of recognition hypoth-

eses, for example, using explicit statistical error models that capture the error behavior of a

specific recognizer on a certain tasks [Ringger and Allen 1996]. Such approaches yield signif-

icant improvements as long as the domain is not yet well modeled.

Although these algorithmic improvements have resulted in impressive increases of speech

recognition performance (e.g., from 80% word accuracy on large vocabulary dictation to 94%,

see [Rudnicky, Hauptmann et al. 1994]), and the first commercial large vocabulary dictation

systems have recently become available, the speech recognition problem is far from being

solved: the performance of the best systems on conversational speech and on speech in noisy

real-world environments is still too low for many useful applications (e.g., 70% on the Call
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Home database, see Appendix C). Improving baseline speech recognition algorithms is, how-

ever, beyond the scope of this dissertation. 

There are several approaches to improving speech recognition performance on a specific

application without having to change the baseline recognition algorithms: adapting the speech

recognition system to the application and to the user, and guiding the user towards speech

which is easier to recognize. The developer of a new speech recognition application can such

methods to increase performance of a baseline system to a sufficient level. 

2.3.2 System Adaptation

In addition to developing enhanced speech recognition algorithms and evaluating progress of

the technology on standard benchmark tasks - the approach underlying the previous section -

performance can be increased on specific applications by adapting off-the-shelf speech recog-

nition systems (trained on one of the standard benchmark tasks) either to the application or to

the user. 

A simple, albeit costly, method for adapting a system to an application is to collect a large

number of speech samples. These speech samples have to be "typical" for the intended appli-

cation. If a working system is not available, simulation techniques (such as Wizard-of-Oz sim-

ulations) can be used to collect "realistic" speech samples.1 After collecting sufficient

amounts of speech data, the acoustic models of a speech recognizer trained on benchmark

speech databases are adapted using the collected data.

Since speaker dependent recognizers outperform speaker independent recognizers, most cur-

rent commercial speech recognition applications require the user to adapt the delivered

speaker independent recognizer. This adaptation is typically organized as an "enrollment" ses-

sion consisting of two phases: First, the user reads aloud a large number of sentences (50 -

300), which are recorded by the system. In the second phase, the system adapts its acoustic

1. For a review of the commonly used Wizard-of-Oz technique, see [Fraser 1991; Dahlbäck, Joensson 
et al. 1992].
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models using the speech samples collected from the current user. Enrollment yields significant

performance improvements, both in accuracy and speed. The improvement is larger for users

with low initial performance. The disadvantages of enrollment include inconvenience and loss

of time for the user. Obviously, enrollment is not practical for "walk-up and use" applications.

2.3.3 Adapting the User to the System

Besides adapting a speech recognition system (mainly its acoustic models) to either the appli-

cation or the user, application specific performance can be increased by methods which can be

summarized under "adapting the user to the system". Due to normal learning, a user of a

speech recognition application will automatically adapt to the system. The user will prefer

interactions that the system consistently interprets correctly, and avoid interactions that con-

sistently lead to recognition errors. This natural learning process can be supported in two

ways. First, a speech recognition expert can explicitly train the user in speaking styles that

cause fewer recognition errors. Secondly, the design of the speech user interface can guide the

user to utterances that conform with the system’s capabilities, thus also reducing recognition

errors.

Improving system performance by training the user can be achieved as follows. First, a person

knowledgeable in speech recognition system observes the user while interacting with the

speech recognition application, and identifies speaking habits that are known to increase the

error rate (some such factors were identified in Section 2.1.1 earlier in this chapter). Then, the

user is trained to adopt a speaking style that causes fewer speech recognition errors. A study

[Danis 1989] has shown that this approach "considerably" improves the performance of a

commercial large vocabulary isolated-word dictation system. However, since the procedure

used in this study did not separate user training from adapting the acoustic models (to the

user), it is unclear which factor accounts for the improvement. Besides unclear evidence on

the effectiveness, user training requires time and an expert who is able to analyze the user’s

speech habits. Hence, it is generally not an acceptable solution to improve speech recognition
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performance.

A rather subtle approach is using the interface design to guide the user towards input which is

easier to interpret by automatic recognition systems. Zoltan-Ford [Zoltan-Ford 1991] con-

ducted research on how the vocabulary and phrase structure in system prompts influence user

queries. Oviatt [Oviatt, Cohen et al. 1995] extended this research to multimodal applications.

In Wizard-of-Oz simulations she investigated how input modality (voice or pen) and presenta-

tion format of prompt (structured or unconstrained) can influence user input. The results

showed that both modality and presentation format substantially influence linguistic complex-

ity of user input. Hence, the design of system prompts can be used to reduce the complexity of

user input, and thus the likelihood of system interpretation errors.

2.4 Interactive Error Correction

Using some of the techniques described in the previous two sections, performance on a spe-

cific application can be substantially improved. After exhausting all tricks to increase accu-

racy, we are again faced with the main research question of this dissertation: given imperfect

speech recognition technology, how to minimize the user’s effort spent on recovering from

recognition errors? Since many research and commercial speech recognition applications

already exist, each of them must address the problem somehow. This section presents an over-

view of interactive error correction methods that have been developed prior to this disserta-

tion.

2.4.1 Basic Interactive Error Correction Concepts and Methods

Baber and Hone [Baber and Hone 1993] were the first researchers to systematically address

the problem of error correction in automatic speech recognition applications. They pointed out

that error repair consists of two phases: first, an error must be detected, then it can be cor-

rected. The subsequent paragraphs elaborate on the concept of interactive correction and

describe the three basic correction techniques that are still used (in variations) in most speech
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recognition applications today: repeating input, choosing among a list of alternatives, and

clarification dialogues.

Martin and Welch [Martin and Welch 1980] presented the first implementation of interactive

correction. A buffer stores (preliminary) recognition results, and the user can perform several

interactive operations to edit the buffer: deleting single words or the whole buffer, and the

repeating using speech. Some commercial dictation systems still use a buffer.1 

Correction by repeating using continuous speech (respeaking) can be improved in the follow-

ing simple way. After one attempt at correcting a word, we know that the first-best hypothesis

is incorrect. It is therefore straight-forward to eliminate that word from the recognition vocab-

ulary for the interpretation of the repetition. Two groups of researchers [Ainsworth 1992;

Murray, Frankish et al. 1992] almost simultaneously proposed this method, calling it "repeti-

tion with elimination". They did not formally evaluate the gain by eliminating the word

known to be incorrect. For large vocabulary applications, the expected gain is probably small.

However, a generalization of this concept, as shown later in this dissertation (Section 4.4), is a

very powerful technique to improve the accuracy of correction: if correction input is not inter-

preted as independent event, but correlated with the context. "Repair by elimination" exploits

a bit of context information: the fact that a certain word is known to be incorrect.

The same research papers introduced a second interactive correction method which is still

offered in many speech recognition applications: choosing from a list of alternative hypothe-

ses. Many variations of this method exist today. The list of alternatives can be presented either

visually (when a display is available) or acoustically (e.g., in telephone applications), and the

choice can be made either using mouse, keyboard, or voice. 

1. The popular disconnected speech dictation system DragonDictate® by Dragon Systems, Inc. (Cam-
bridge MA) is an example of a commercial speech recognition application that offers interactive 
error correction using a buffer. The buffer keeps the twelve most recent words available for correc-
tion. The user can delete and replace words from that buffer by help of voice commands. Correction 
is effective without using a keyboard, but navigation and choosing from alternatives by means of 
voice commands is slow. 
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2.4.2 Clarification Dialogues

Albeit used in research systems beforehand, the idea of correcting errors in a spoken language

dialogue (clarification dialogues) was first explicitly discussed in [Baber, Stammers et al.

1990]. Clarification dialogues are appropriate for conversational speech recognition applica-

tions (also called dialogue systems). Although repair in dialogue systems will not be

addressed in this dissertation, the research on repair in this area is important background infor-

mation. 

Clarification dialogues allow the user to recover from recognition errors in the context of a

spoken dialogue with the system. Dialogue systems, one important category of speech recog-

nition applications, support spoken natural language between user and system. In a dialogue

system, several modules interact in complex ways, including automatic speech recognition,

robust natural language processing (including a parser and discourse processor), and dialogue

management. Although all dialogue systems have to somehow cope with recognition errors,

only few published research systems specifically addressed the problem of errors and repair.

The following paragraphs highlight some of the published research on clarification dialogues.

Allen [Allen, Miller et al. 1996] presented a robust dialogue system for a train schedule ser-

vice application which is capable of processing a limited range of user initiated conversational

repairs. The user notices system interpretation errors based on system feedback. Similar to

repair in human-human dialogue, users tend to correct the error in the next interaction with the

system. The system detects and processes the user correction in the following way. The dia-

logue manager infers the speech act of each user utterance and maintains a goal stack (i.e. the

history of what actions the user intended). The discourse model and parser cover a wide range

of conversational repairs. By matching speech act and structure of the most recent user query

with its internal database of repair templates, a repair can be detected. Hence, clarification dia-

logues can be implemented by identifying typical patterns of conversational repairs and by

using parser and discourse processor to detect repairs among the user queries. Of course this

approach is limited by how much the system’s parsing and discourse processing schemes are
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able to discriminate repairs from other user queries. 

Danieli [Danieli 1996] presented a different approach to detecting user initiated conversa-

tional repairs. The main idea is that a user initiated repair can be detected from a mismatch

between the most recent user query and system predictions on what the user is likely to say

next. Such predictions can be derived using a discourse model. Whenever the speech act of

the current utterance is not among the derived set of predictions, the system initiates a clarifi-

cation dialogue. Using pragmatic phenomena that characterize user initiated repairs, the sys-

tem attempts to process the repair appropriately. For instance in Italian, users appear to initiate

repair by repeating the previous utterance. Therefore, if two successive user utterances have

the same speech act, the second utterance probably intended as repair. Such pragmatic phe-

nomena obviously depend both on the specific dialogue design and the language. In summary,

Danieli exploits mismatches between discourse predictions and the actual discourse to detect

conversational repairs, and employs language and system dependent heuristics to successfully

process a repair.

In recent work, LuperFoy [LuperFoy and Loehr 1997] presented a generic error recovery

algorithm. Like Brennan and Hulteen, she used Clark and Schaefer’s analysis of human-

human discourse [Clark and Wilkes-Gibbs 1986] as a starting point to develop a four-step pro-

cess for conversational repair in human-computer dialogue. The four steps to recover from

errors include: detection, diagnosis, repair plan selection, and collaborative plan execution.

Once an error has been detected, the source of the communication problem has to be known

before the most effective repair strategy can be chosen. The problem source is classified

according to Brennan and Hulteen’s [Brennan and Hulteen 1995] eight categories of human-

machine communication failure (presented earlier). Given such a diagnosis, a repair plan can

be selected. The most appropriate repair plan may depend not only on the source of communi-

cation failure, but also on the type of dialogue system. For instance, in a tutoring system,

pointing out system limitations and referring to on-line help may be appropriate, whereas in

an operational flight simulator, the system may just enforce the system limitations. – After
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selecting a repair plan, user and system collaborate on executing it. Repeated repair may be

necessary if the user fails to conform to the selected repair plan, or if the system introduces

more errors while automatically interpreting the user repair input. 

Recently, initial attempts have been made to abstract a more general framework for dialogue

design [Dybjkaer, Bernsen et al. 1996], and to objectively evaluate dialogue systems (e.g.,

[Kamm and Walker 1997]). Evaluation issues will be discussed in more detail in the evalua-

tion chapter of this dissertation. 

2.4.3 Previous Work on Interactive Multimodal Error Correction

The closing section of this literature review summarizes previous work on multimodal error

correction - the approach this dissertation pursues further.

With speech and handwriting recognition technology maturing, multimodal systems have

attracted a lot of interest. Until recently, there was no work that explored the benefits of multi-

ple modalities in the context of error correction. The first subsection summarizes Rhyne and

Wolf’s general discussion of error correction in recognition-based interfaces (i.e. interfaces

that automatically interpret user input in speech, handwriting, and other human input modali-

ties). They suggested that repeated errors may be a problem if error correction is limited to

one modality, and that switching modalities may avoid repeated errors. The following subsec-

tion reports two user studies with a simulated system which was performed while this disser-

tation work was under way: The first study investigated how multimodal flexibility could

improve error resolution in speech recognition applications. The second study explored in

how much users can comply with constraints that are imposed on multimodal interaction (to

increase system performance, similar to the idea of user convergence presented earlier in Sec-

tion 2.3.3, page 39). The third subsection reports work on multimodal repair at the Interactive

Systems Laboratories prior to this dissertation. The section closes with remarks on the interac-

tive error correction methods offered in current commercial dictation systems.
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2.4.3.1 Error Correction in Recognition-based Interfaces

Rhyne and Wolf [Rhyne and Wolf 1993] discussed a range of problems in the design of recog-

nition-based interfaces. Their work also mentioned the problem of error correction. Error cor-

rection is initiated after an error has been detected, based on recognition feedback. Three error

correction strategies are identified: editing the recognition result, selecting the correct result

from a set of alternatives, and adapting the recognizer to learn from an error. 

Rhyne and Wolf noted that error correction involves three steps: specifying the scope of cor-

rection (e.g., by selecting misrecognized words in the visually presented recognition result),

specifying the correction command (e.g., delete, insert, or replace), and providing the correc-

tion input. They pointed out that repeated errors may occur, especially if correction is per-

formed using the same modality as for the input. The problem of repeated errors is aggravated

for speech input, since the speaker’s intuitive response to errors (speaking more slowly and in

an overly correct manner) typically further deteriorate recognition performance. They sug-

gested to avoid repeated modality-specific errors by switching to a different modality for cor-

rection. The optimum correction dialogue may combine several modalities. The trade-offs

among different methods could be calculated based on correction time estimates for each

method.

Rhyne and Wolf’s general discussion captures the essence of interactive multimodal correc-

tion. The main contribution of this dissertation is to get these general ideas to work. The per-

formance model presented later in Chapter 7 builds on the idea of comparing different

correction methods based on the time necessary to successfully complete a correction. The

following subsection presents two simulation studies that confirm multimodal correction may

be useful.

2.4.3.2 Simulation Studies on Multimodal Error Resolution

Work by Oviatt et al. [Oviatt and VanGent 1996] explored potential benefits of multimodal

error correction. Offering multiple modalities in corrections is attractive because the set of
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words which are difficult to recognize varies across different modalities. Therefore, if a word

was misrecognized in one modality, it could be more easily recognized in some other modal-

ity. Using a Wizard-of-Oz simulation, error correction on an interactive service system for

conference registration and car rental transaction services was simulated. Repeated errors

which required 1-6 attempts to correct. The results suggested that user "naturally" switch

modality in error correction if given the possibility. Also, switching modality alleviates user

frustration in repeated failures. Furthermore, this study provided evidence that multiple

modalities are not used simultaneously, in a redundant fashion, but in a contrastive manner.

The design of multimodal correction in this dissertation makes use of this observation.

Although these results are based on simulations, and although self-reports are known to be

unreliable, this study provides scientific motivation for the approach pursued in this disserta-

tion. Furthermore, by building a system that implements and extends the ideas explored in this

study, and by evaluating this prototype in user studies, this dissertation will empirically test

the study’s hypotheses.

In another simulation study, Robbe et al. [Robbe, Carbonell et al. 1996] investigated whether

users would comply with constraints that limit how they can interact with a multimodal inter-

face. They observed that repetitions or reformulations - employed as error correction strate-

gies by the research participants - frequently are misrecognized again. The authors therefore

suggested that switching to other modalities in repeated recognition errors should be a good

strategy. 

2.4.3.3 Previous Work on Implementing Multimodal Interactive Correction

At the Interactive Systems Laboratories, work on implementing interactive multimodal error

correction has begun prior to this dissertation. McNair and Waibel [McNair and Waibel 1994]

describe a method to select an error using speech (automatic subpiece location), and a method

to interactively correct errors by either speaking again (spoken hypothesis correction method),

or by spelling the misrecognized words verbally (spelling hypothesis correction method). All
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these methods assume that the application must get every word correct, such as in dictation

applications. One current commercial dictation system uses the automatic subpiece location

method (see below).

For automatic subpiece location, the user input is recognized using a language model that

allows all substrings of the first-best hypothesis for the original utterance, but nothing else.

The two correction methods proposed by McNair assume that the correct hypothesis is some-

where in the list of alternative hypotheses (or word lattice) of the original utterance. This

assumption is a severe limitation, as will be discussed in more detail in the next chapter. The

user repair input (which may be either continuous speech or verbal spelling) is recognized

using a language model that is limited to substrings found in the N-best list for the repaired

section. This N-best list is rescored using scores from recognizing the repair input.

2.4.3.4 Interactive Correction in Commercial Dictation Systems

Current commercial continuous dictation systems offer correction methods that are variations

of methods discussed in the literature review. 

In Dragon System’s continuous speech dictation product Naturally Speaking®, the user

locates recognition errors using the automatic subpiece location methods. For error correction,

respeaking, choosing among alternatives and typing are available. The only difference

between Dragon’s selection method and the automatic subpiece location method is how the

system is set to "selection mode": in McNair’s implementation, the system enters selection

mode by mouse click, whereas in Naturally Speaking®, selection mode is entered by saying

the keyword "Select".

In IBM’s continuous dictation product ViaVoice®, errors are selected using the mouse, and

errors are corrected by choosing from alternatives or by typing. To get the system to learn

from an error correction, the user has to issue a menu-command that triggers a specific correc-

tion dialogue box.
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In summary, although the literature contains several discussions of the problem of repair in

speech recognition applications, only few researchers have actually built and evaluated repair

methods. Most are limited to the correction methods that are employed in current speech rec-

ognition applications. The multimodal approach (that this dissertation pursues) has been men-

tioned in two publications; but one of them is only a very general discussion of the problem,

and the second only predicts that multiple modalities may expedite error correction based on a

simulation study, without engineering and evaluating an actual system. The review of the

extended literature on repair in human-human communication, which is presented in this

chapter and the Appendix B, provides a useful framework to structure research on the repair

problem in speech recognition applications, and motivates why a collaborative approach can

be considered natural and intuitive. From this review, we identified a range of techniques that

a developer of a new speech recognition application can apply to minimize recognition errors,

by working on both the recognition algorithms and the interface design.
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Not only the study of interactions, but also new technologies are a major component of

research on human-computer interaction in general, and the investigation of recovery from

recognition errors in speech recognition applications in particular. This part is devoted to the

technology of multimodal interactive error recovery in speech recognition applications. The

three steps leading to the development of a multimodal speech recognition application are

described: the multimodal component technologies that are used to interpret multimodal input

streams automatically, the technology of multimodal interactive error recovery that builds on

these components, and the integration of the technology in a (potentially) useful prototypical

application.

Chapter 3 "Multimodal Component Technologies" describes the multimodal component tech-

nologies necessary for multimodal interactive error recovery, as proposed in this dissertation.

It reviews automatic recognition technology for speech (continuous speech and spelled

sequences of letters), handwriting, and pen-drawn gestures. For each modality, the description

addresses three main issues: the state-of-the-art in recognition technology, details of the spe-

cific recognizers used in this dissertation work, and factors that determine recognition perfor-

mance. These factors play an important role in understanding why recognizing corrections is

difficult, and why interactive error correction works.

Chapter 4 "Multimodal Interactive Error Recovery" describes algorithms for interactive multi-

modal error recovery in general terms, without addressing application-specific issues. A

generic interactive error correction algorithm is presented, as well as multimodal methods to

interactively detect, locate, and correct errors. Several algorithms that increase correction

accuracy by correlating correction input with repair context are proposed and evaluated on a

database of multimodal interactive error corrections which was collected as part of this disser-

tation work.

Chapter 5 "A Multimodal Dictation System Prototype" presents the prototype multimodal dic-

tation system that was developed to demonstrate and evaluate the concepts and algorithms of



General Approach for Part I:Technology 51

interactive multimodal error recovery. A multimodal dictation system consists of a large

vocabulary dictation recognizer enhanced with interactive multimodal error recovery. This

chapter describes how multimodal error correction was implemented in this specific applica-

tion.
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3. Multimodal Component Technologies

Multimodal interfaces as understood in this dissertation integrate speech recognition with

other input modalities. Such a multimodal system typically consists of various recognizers

that are capable of processing a certain (input or output) modality, and of one or more integrat-

ing modules. The integrating modules control the sampling of a stream of multimodal input

data, delegate recognition to the appropriate component or components, receive recognition

results, and initiate appropriate action. Recognizers for speech (possibly specialized in differ-

ent types of speech), handwriting and pen-drawn gestures are the main recognition sub-

systems for this dissertation work. The following sections provide a brief overview of the

state-of-the-art in recognition technology for each of these modalities. Additionally, the spe-

cific recognizers are described that were used to build the multimodal dictation system proto-

type in this work.

3.1 Speech Recognition

The central building block for an automatic dictation system is obviously a large vocabulary

continuous speech recognizer. The first subsection explains the principles of continuous

speech recognition and some important characteristics of continuous speech recognizers using

the example of the JANUS recognition toolkit [Rogina and Waibel 1995], which was used in

this work. Spelling words aloud is another speech input modality. It will play an important

role as an alternative to continuous speech for error correction. In principle, spelling can be

recognized using any continuous speech recognizer by simply training it on a database of

spelled words instead of a database of continuous speech. However, spelling recognition per-

formance is better when specialized recognizers are used; recognition is more accurate and
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processing more efficient, compared with a general purpose continuous speech recognizer.

The second subsection describes the specialized connected letter sequence recognizer

employed for this dissertation work.

3.1.1 Large Vocabulary Continuous Speech Recognition

The JANUS Recognition Toolkit [Rogina and Waibel 1995; Finke and Rogina 1997] is a

speaker-independent, large-vocabulary continuous speech recognizer. The basic design is very

similar to a typical state-of-the-art Large Vocabulary Recognition (LVR) system as described

in a recent review [Young 1995]. However, before describing the details of JANUS, we begin

with a rough outline of a generic large vocabulary speech recognition algorithm.

3.1.1.1 One Page Overview of Continuous Speech Recognition

In a typical continuous speech recognizer, the speech waveform A is converted into a

sequence of acoustic feature vectors in a preprocessing step. Each acoustic feature vector rep-

resents a short interval of a few milliseconds of speech with various spectral features. The rec-

ognizer determines the most probable word sequence W, given the observed acoustic signal A,

using a standard decomposition of the conditional probability (based on Bayes’ rule):

The first term of the rightmost side P(W) represents the a priori probability of the sequence of

words W=w1w2...wN and is determined by a statistical language model. The second term

denotes the probability of observing the sequence of acoustic vectors given some word

sequence and is determined by the acoustic model. The search module of the speech recog-

nizer implements an efficient algorithm to find the most likely word sequence W that satisfies

the above equation. A continuous speech recognizer thus consists of four main modules: pre-

processing, acoustic models, language models, and search. Typical methods and algorithms

underlying each of these modules for large vocabulary recognition include:

Ŵ maxWP W A( )arg maxWarg= = P W( ) P A W( )u
P A( )

--------------------------------------
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• Spectral analysis methods such as fast Fourier transformation and Cepstral trans-

formation for preprocessing

• Hidden Markov Models (HMMs), Neural Networks (NNs) and hybrid HMM/NN

architectures for context-dependent acoustic models

• N-gram statistical language models, especially trigrams

• and (dynamic-programming based) time-synchronous or stack-decoding search.

All current continuous speech recognizers limit the search to a sequence of words from a

given vocabulary. For each word in the vocabulary, a (phonetic) dictionary determines the

sequence of phones that represent the word. If the speech input contains a word outside the

vocabulary, it is mapped nonetheless onto some sequence of words within that vocabulary,

resulting in one or more recognition errors.

Having reviewed the basics of continuous speech recognition, the following subsection exam-

ines in more detail the continuous speech recognizer utilized in this dissertation.

3.1.1.2 Large Vocabulary Continuous Speech Recognition with JANUS

This dissertation work employed the JANUS recognition toolkit that was trained on read

speech from the Wall Street Journal (WSJ) database [Rogina and Waibel 1995]. The following

paragraphs describe more specifically the preprocessing, acoustic models, language model,

and search module of the JANUS WSJ system.

Input speech is digitized at 16 kHz. Sixteen melscale coefficients are computed over a 16 mil-

lisecond-wide frame of speech every 10 milliseconds. The preprocessing of these frames of 16

ms of speech consists of a standard spectral analysis (resulting in a melscale fourier spectrum)

and a linear discriminant analysis. 

For acoustic modeling, continuous density HMMs are employed. Thus, each elementary

acoustic unit is modeled as a mixture of a Gaussian codebook with one mixture weight. Most

state-of-the-art systems limit the phonetic context to one phone to the left or right (so-called
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triphones). The JANUS WSJ system however allows phonetic contexts of arbitrary length, i.e.

two or three phones to the left or right of the current phone. To ensure enough training data for

each model, these models are clustered to yield 2,000 to 5,000 sub-allophones (polyphones)

[Finke and Rogina 1997]. The elementary acoustic modeling unit of the JANUS WSJ recog-

nizer is therefore polyphones. 

Figure 3-1.  JANUS Recognition Toolkit large vocabulary dictation recognizer

The search consists of up to three passes: First, a tree-structured forward pass locates prelimi-

nary word boundaries and represents all possible segmentations of the speech input into words

in a large word lattice. Second, an (optional) forward pass uses a flat dictionary structure to

rescore the segmentations located in the first pass, with more sophisticated acoustic models.

The first two recognition passes apply approximations of trigrams as the language model. The

final pass performs an A* search and applies full trigrams as the language model. The recog-
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nition output is a word lattice or an N-best list of alternatives. Figure 3-1 shows an overview of

the JANUS WSJ recognizer.

In a recent Ph.D. thesis [Woszczyna 1998], several sophisticated search techniques were

developed that reduce recognition time, without retraining the acoustic models, from 50-200

times real-time in the evaluation system to close to real-time performance. The most important

techniques employed are more aggressive pruning guided by phonetic and language model

lookaheads, cross codebook bucket box intersection to reduce the cost of score computation in

systems with very large continuous density HMMs (such as the polyphonic CDHMM Janus

WSJ recognizer), and skipping frames in the score computation. Table 2 compares the perfor-

mance of the evaluation system with the version that was tuned for speed on the standard NAB

Wall Street Journal ’94 evaluation test set (see Appendix C). As can be seen, near real-time

performance can be achieved, albeit with a substantial loss of recognition accuracy. 

3.1.1.3 Factors affecting Performance of Continuous Speech Recognition

Factors affecting accuracy of continuous speech recognition have been mentioned in the liter-

ature review (see Section 2.1.1). For our discussion of interactive error correction, the follow-

ing three factors are relevant: speaking style (isolated speech is more difficult to recognize

with a continuous speech recognizer - contrary to intuition), speaking rate (fast speech is more

difficult to recognize), and length of words (short words are more difficult to recognize). In

addition, tuning a recognizer to real-time performance is still a serious challenge in any large

vocabulary application, such as dictation. The following paragraph provides some quantitative

data on the trade-off between recognition accuracy and speed, which any developer of a large

vocabulary application must confront.

Table 2: Benchmark performance of JANUS large vocabulary (60,000 words) WSJ recognizer

System Testset Word Accuracy Real-time Factor

Evaluation Nov’94 93% ~50

tuned for speed Nov’94 80% 1.2
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Speed must be traded off against accuracy in a continuous speech recognizer because search-

ing the space of all possible word sequences is the main computational bottleneck. Pruning

and beam search are the main heuristics employed to make that search computationally feasi-

ble. At any given point in the search, the beams determine whether a hypothesis is maintained

or abandoned (pruned). Since the size of the beam determines how much of the search space is

considered in the recognition process, changing the width of the beams is a powerful and sim-

ple technique to determine the speed-accuracy trade-off. Wider beams mean that larger parts

of the whole search space are actually searched, increasing the computational cost but achiev-

ing increased accuracy. Figure 3-2 shows the speed-accuracy trade-off for the JANUS WSJ

system by means of the beam parameter. Decreasing beam size speeds up recognition at the

cost of accuracy, and increasing beam size slows recognition speed down, gaining accuracy.

The beam parameter is thus implicitly connected to the x-axis in this graph.
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Figure 3-2.  Speed-accuracy trade-off for the JANUS WSJ recognizer

3.1.2 Connected Letter Recognition

Recognizing sequences of spelled letters is difficult, despite a small vocabulary, because let-

ters are easily confused - at least in most Western languages. Therefore, it is beneficial to

develop recognizers that are specialized in connected letter recognition, rather than using a

standard continuous speech recognizer trained on a database of spelled speech. NSpell is a

speaker-independent recognizer specialized in recognition of (connected) sequences of letters

[Hild 1997]. The next subsection presents an overview of the NSpell recognizer: its prepro-

cessing, the special kind of neural network used for acoustic modeling, and additional con-

straints employed in the search to achieve high performance. The final subsection of this

section presents performance results with a focus on factors that influence the performance of

connected letter recognition.

3.1.2.1 Connected Letter Recognition with NSpell

Analogous to a continuous speech recognizer, a connected letter recognizer consists of three

main modules: preprocessing, acoustic models, and search. The characteristics of each of

these modules for the NSpell recognizer are described in the following paragraphs.

Preprocessing the audio input signal in NSpell employs standard techniques which are very

similar to the JANUS WSJ system described in the previous section. Speech is sampled at 16

kHz and processed in frames at a rate of 10 ms/frame. For each frame, a fourier spectrum is

computed and transformed into 16 melscale coefficients as the feature vector.

Using (artificial) neural networks for acoustic modeling distinguishes NSpell from a standard

continuous speech recognizer. A Multi-State Time Delay Neural Network (MS-TDNN,

[Haffner and Waibel 1992]) determines acoustic scores for each phoneme in any frame within

the search. Similar to other neural network architectures, the TDNN consists of an input and a

hidden layer. It differs from other networks because it uses a sliding window of several input

features to calculate scores, both in the input and the hidden layer. Therefore, it can model
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dynamic features of the input signal more effectively, which is crucial for signals that are

acoustically highly confusable, such as connected letters. Phoneme-level scores are trans-

formed into word-level hypotheses by modeling each spelled letter as a sequence of pho-

nemes. Similar to most continuous speech recognizers, a dynamic time-warping (DTW)

search identifies the best matching hypothesis as the path with the highest cumulative score. 

NSpell can operate in two basic modes: recognition of arbitrary sequences of letters and rec-

ognition of letter sequences defined by a vocabulary. In the mode without vocabulary con-

straints, the search is helped by phonetic constraints inherent in any (Western) language: a

statistical N-gram model [Jelinek 1990] assigns probabilities to each sequence of letters,

thereby guiding the search for the best sequence of letters, similar to the use of N-gram mod-

els on the word level for continuous speech recognition. In the mode with vocabulary con-

straints, the search for the best matching sequences of letters can be modeled as a finite state

automaton. A finite state automaton provides stronger guidance for the search than a statistical

language model; therefore recognition with vocabulary constraints is more accurate. Addition-

ally, such a search can be performed very efficiently utilizing tree data structures, hence the
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name tree search. An overview of the NSpell system can be seen in Figure 3-3 below.

Figure 3-3.  NSpell connected letter recognition system

3.1.2.2 Factors affecting Performance of Connected Letter Recognition

Based on Hild’s extensive evaluation of NSpell in his dissertation [Hild 1997], this subsection

identifies vocabulary size and word length as factors with a high impact on recognition accu-

racy of connected letter recognition, when constrained to a vocabulary. 

The results in Table 3 show the impact of search mode on accuracy. The results were obtained

on a test set of 685 spelled last names. In unconstrained search mode, i.e. without vocabulary

constraints, an arbitrary sequence of words can be recognizerd with a word level accuracy of

approximately 70% (see last row in the table). Although this word (name) accuracy may

appear low, it corresponds to a letter-level accuracy of 92.5%. Such a performance could still
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help to determine the spelling of new words in a continuous speech recognition application.

In the search mode constrained to a vocabulary, the size of the vocabulary has a significant

impact on accuracy. Additional probabilistic constraints are crucial to achieve high perfor-

mance for large vocabularies. In the first four rows, the search is biased with the empirically

determined probability of each name. The second to last row reveals that without this addi-

tional constraint, 14% word (name) accuracy is lost. Therefore, either small vocabulary size or

additional probabilistic constraints are necessary to achieve high performance.

Word length is the second important performance variable. Figure 3-4 reveals that short words

are more difficult to recognize. Furthermore, the figure confirms that vocabulary size is an

important performance variable.

In summary, vocabulary size and word length are important performance variables for con-

nected letter recognition with vocabulary constraints. Probabilistic constraints (e.g., unigram

biases) can ensure high performance with large vocabularies. In addition to vocabulary size

and word length, accuracy varies significantly across different speakers. For instance, with a

20,000 word vocabulary, NSpell shows a standard deviation in the word accuracy of 5%

across speakers.

Table 3: Benchmark performance of NSpell connected letter recognizer on spelled names 
(from [Hild 1997])

Vocabulary Size Name Accuracy

1,000 97.7%

100,000 94.4%

1,000,000 91.5%

14,000,000 89.3%

14,000,000 
(no probabilities)

75.2%

Unlimited 70.2%
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Figure 3-4.  Word length and vocabulary size as primary performance 
variables of connected letter recognition

3.2 On-line Cursive Handwriting Recognition

After the overview of continuous speech and connected letter recognizers, this section consid-

ers on-line cursive handwriting as an additional input modality available in multimodal inter-

faces.

Written language recognition transforms language represented in its spatial form of graphical

marks into its equivalent symbolic representation as ASCII text. Handwriting recognition

shares many of the challenges of speech recognition. These challenges include: recognition

independent of the author (writer-independent); segmentation at the level of characters or dig-

its, words, or sentences; writing styles (printed vs. cursive, North American vs. European);
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vocabulary size; and finally, For on-line handwriting recognition, the hardware must approxi-

mate the look and feel of paper and pencil as much as possible. Hardware considerations will

be discussed later in the description of the prototype multimodal dictation system which was

developed as part of this dissertation work (see Section 5.4). 

The remainder of this section on handwriting recognition is organized as follows: the first sub-

section presents a brief overview of the state-of-the-art in handwriting recognition, main

approaches, and published performance results. The second subsection describes in more

detail NPen++, the on-line handwriting recognizer used in this dissertation work. Finally, fac-

tors affecting the recognition rate of on-line handwriting are discussed in the last subsection,

using NPen++ as the example.

3.2.1 Overview of the State-of-the-Art in Handwriting Recognition

This overview of the state-of-the-art in handwriting recognition is based on several recent sur-

veys [Nouboud and Plamondon 1990; Hildebrandt and Liu 1993; Govindaraju, Gyeonghwan

et al. 1997; Manke 1998]. Recognition of isolated characters is feasible at 95% accuracy both

for Western and Eastern languages, recognition of isolated words at 90-98% (depending on

the vocabulary size), and recognition of handwritten sentences at close to 90%. 

According to the mode of data acquisition used, automatic handwriting recognition systems

can be classified into on-line and off-line systems. In Off-line systems (or Optical Character

Recognition OCR), the handwriting is given as an image or scanned text, without time

sequence information. In On-line systems, the handwriting is given as a temporal sequence of

coordinates that represents the pen trajectory. Our discussion will focus on on-line systems

because most applications in multimodal interfaces require on-line systems. First, the main

paradigms of handwriting recognition (holistic and analytical) will be reviewed. Then, more

details of each approach are described, including the performance of the most accurate sys-

tems.
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3.2.1.1 Paradigms in Handwriting Recognition

Handwriting recognition can be at the level of isolated characters (or digits), at the level of

words, or at the level of sentences. Some recent commercial products (e.g., 3Com’s PalmPi-

lot) require the user to learn a simplified alphabet (which makes recognition easier), but the

recognition algorithms are similar whether the "native" or a modified alphabet is used1. 

Character recognition is a typical pattern recognition problem; shape and time features are

extracted from the trajectory (given as time sequence or spatial representation) and are used to

assign the trajectory to the appropriate class. Artificial Neural Networks (NNs), Hidden

Markov Models (HMMs), and hybrid approaches (that combine neural network modeling

techniques with Hidden Markov Models) have been successfully employed as classifiers for

character recognition.

There are two basic approaches to word recognition: the analytical approach first identifies

the individual characters (using character recognition methods) and then builds word-level

hypotheses from character-level hypotheses. By contrast, the holistic approach identifies the

word directly from its global shape. In both cases, constraining recognition to a vocabulary

increases accuracy substantially. 

Recognition of sentences builds on word-level recognition methods. In addition, language

models are useful to incorporate statistical information about word sequences, similar to the

use of language models in automatic speech recognition systems. For instance, a trigram lan-

guage model increased the performance of an on-line handwriting recognition system with a

21,000 word vocabulary from 80% to 95% [Srihari and Baltus 1993]. 

The problem of handwriting recognition shares many of challenges of speech recognition.

Therefore, it is not surprising that similar algorithms and techniques are successful. With

adaptations of the preprocessing and topology of the basic modeling units, a continuous

speech recognition system can be trained on handwriting data and achieve very reasonable

1. The PalmPilot employs a modified alphabet to achieve higher recognition accuracy.
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performance. For instance, using the BYBLOS continuous speech recognizer without chang-

ing its algorithms, a word accuracy of greater than 95% was achieved on a 3,000 word vocab-

ulary [Starner, Makhoul et al. 1994]. However, algorithms specialized in handwriting

recognition yield higher performance. 

Therefore, we will review the most successful specialized handwriting recognition algorithms.

The next subsection briefly describes the different features that are extracted from the input

image and that serve as input to the ensuing classification step. The following two subsections

review algorithms to classify handwriting using these features: holistic and analytical

approaches to word and sentence recognition.

3.2.1.2 Feature Extraction for Handwriting Recognition

Features for handwriting recognition can be classified into local and global features. Local

features represent the main topological characteristics of a small subsection of the trajectory.

Global features represent the relationship of different line segments within a trajectory. While

local features are applicable to any character set, global features attempt to capture specific

characteristics of certain character sets (e.g., strokes in Chinese characters). For detailed dis-

cussion of different local and global features, refer to [Hildebrandt and Liu 1993; Manke

1998].

3.2.1.3 Holistic Approaches to Handwriting Recognition

Holistic approaches to handwriting word recognition identify words directly from their global

shapes; features are extracted from the global shape, and standard pattern classification meth-

ods are applied to assign the shape to one of the words within the vocabulary. Holistic meth-

ods must constrain the search to a given vocabulary, unlike some analytical methods that can

recognize any word. 

The following features have demonstrated their usefulness for holistic handwriting recogni-

tion: word contour (e.g., ascenders, descenders, holes, i-dots), length of word (e.g., estimated
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by the number of crossing of the center line), and "significant" visual structures, called graph-

emes. 

Additional methods are necessary to make holistic recognition feasible for large vocabularies.

Lexicon reduction algorithms determine, from a large lexicon (vocabulary), a set of words that

is likely to match some handwritten input [Madhvanath 1996].

Performance of holistic methods is sufficiently high for small vocabularies (e.g., 98% on a 10

word vocabulary [Farag 1979]). Lexicon reduction could used to apply holistic methods to

large vocabulary tasks (a 3,000 word lexicon can be reduced to 50-100 words with a 95%

accuracy [Madhvanath 1996]), but no such system has been published to date.

3.2.1.4 Analytical Approaches to Handwriting Recognition

Analytical approaches to handwriting word recognition first identify the constituent charac-

ters. Then, based on character-level information obtained in the first step, a second step identi-

fies word-level hypotheses. 

Analytical approaches can be classified further into approaches with explicit and implicit seg-

mentation. Explicit segmentation, also called OCR postprocessing, has two distinct stages: the

first stage identifies sequences of characters, and the second stage matches character

sequences with ASCII representations of words. By contrast, approaches with implicit seg-

mentation use a lexicon to drive the segmentation and the recognition process. The algorithm

matches input with words within a given vocabulary in a single step, using both character and

word-level information. While approaches with implicit segmentation have superior accuracy,

they inevitably fail when the word input is not present in the given vocabulary (new word).

OCR postprocessing can be extended to recover from the presence of new words.

The best published recognition accuracies for analytical handwriting recognition systems are

more than 95% for character recognition [Guyon, Henderson et al. 1992], 93.4% for word rec-

ognition (with a 20,000 vocabulary) [Manke 1998], and 86.6% for sentence recognition (with
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a 20,000 word vocabulary) [Manke 1998]. Each of these systems is writer-independent.

3.2.2 On-line Handwriting Recognition with NPen++

NPen++ [Manke, Finke et al. 1995] is a writer-independent, large-vocabulary on-line recog-

nizer for cursive handwriting. As an example of an analytical approach to handwriting recog-

nition, it uses implicit segmentation in a lexicon-driven search for the best matching word-

level hypothesis. The following paragraphs describe some details of the preprocessing and

recognition phase in NPen++.

The preprocessing applies several normalization techniques to remove undesired variability in

the coordinate sequence. First, to compensate for differences in sampling rates and writing

speeds, the coordinates that originally were sampled equidistant in time are resampled equi-

distant in space. After smoothing the trajectory, several lines characterizing word orientation

are estimated: the baseline, and the lines demarcating ascenders and descenders. Using the

directional information obtained from the baseline, the word is rotated to a near horizontal ori-

entation. Finally, the word is rescaled to a normalized size using the distance of baseline and

centerlines.

Feature extraction follows the normalization step. Two sets of features are calculated; local

features describing (among others) the curvature of the trajectory and the writing direction,

and global features capturing the context in low resolution, bitmap-like descriptions of coordi-

nates that are close to the current coordinate.

The recognition module of NPen++ segments the trajectory into words in a single step, using

a MS-TDNN as classifier. (The MS-TDNN is similar to the one employed in the connected

letter recognizer NSpell.) A TDNN neural network determines a score for each character (out

of 26 in the Roman alphabet) given a sliding window of five (in the hidden layer) times seven

(in the input layer) input feature vectors. The search for the best word hypothesis combines

character scores to word scores for each sequence of characters in the given vocabulary by



Multimodal Component Technologies 69

performing a standard non-linear time alignment (dynamic time warping, DTW). Figure 3-5

shows an overview of the NPen++ system. 

Figure 3-5.  NPen++ on-line cursive handwriting recognition system (from 
[Manke, Finke et al. 1995])

3.2.3 Factors affecting the Performance of Handwriting Recognition

Using the NPen++ system [Manke 1998] as an example, this section identifies factors that

influence performance of handwriting recognition. Similar to recognition of letter sequences,

vocabulary size, word length, and the individual writer have a significant impact on recogni-

tion accuracy. In addition, writing style has a minor influence on accuracy. The following

paragraphs quantify each of these aspects.

Table 4 shows the performance of NPen++ with different vocabulary sizes, on a test set of

2500 words chosen randomly from the standard dictionary for the NAB Wall Street Journal

task (see Appendix C). The time performance is close to real-time on a fast workstation or PC.

High performance of more than 90% requires vocabularies of no more than 20,000-40,000

words.
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Figure 3-6 illustrates the dependence of recognition accuracy on the length of the input. As

with recognition of spelled words, accuracy decreases on short words. There are two reasons

for the difficulty of recognizing short words. First, short words provide less context informa-

tion. Badly written or poorly modeled characters are more likely to cause recognition errors.

Second, the normalization algorithms in the preprocessing phase work less accurately on short

words. For example, it is more difficult to determine the baselines and the lines demarcating

ascenders and descenders.

Figure 3-6.  Influence of word length on handwriting recognition accuracy 
(from [Manke 1998])

Table 4: Benchmark performance of NPen++ on-line cursive handwriting recognizer on WSJ 
vocabularies

Vocabulary Size Recognition Accuracy

5,000 95.3%

10,000 93.4%
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The following example illustrates the high variation of recognition accuracy across different

writers. Using a 40,000 word vocabulary, on a test set from 130 writers, the standard deviation

of the word accuracy is 11.9%, with a mean accuracy of 80%. 

Finally, the writing style (printed vs. cursive handwriting) has a minor influence on recogni-

tion accuracy [Manke 1998]. On a testset of German written words, the accuracy on the cur-

sive subset was 90.8%, while the accuracy on the printed subset was 97.1%. On a testset of

English words, the difference was much smaller (92.2% vs.vs. 92.8%). In accordance with

intuition, printed words are easier to recognize than cursive written words.

3.3 Recognition of Pen-drawn Gestures

With the development of algorithms to recognize gestures, so-called gesture-based interfaces

have become feasible. Gesture-based interaction with a computer offers an alternative to tradi-

tional interfaces driven by keyboard, menus, and direct manipulation input. Gesture-based

interaction may appeal to both novice and expert users for a number of reasons [Wolf and

Morrel-Samuels 1987]: objects, operations and optional parameters can be specified effi-

ciently in the same movement, the learning and recall is facilitated since gestures tap into

well-practiced paper and pencil behaviors, and using gestures is an obvious extension of direct

manipulation interfaces which have improved significantly the usability of human-computer

interfaces. In this dissertation, we are concerned with gestures that are drawn directly on a

flat-panel display (subsequently called pen-drawn gesture or pen gesture). Our usage of the

term gesture does not include gestures of fingers, hands, or the whole body in three-dimen-

sional space (3d gestures). Such 3d gestures constitute a whole research field on its own; auto-

matic recognition can be achieved either with dedicated devices (e.g., data gloves) or based on

video images (by applying sophisticated computer vision algorithms). The following para-

graphs review different approaches that have been developed for the recognition of pen-drawn

gestures. There are two main approaches: hand-coded algorithms, and a feature-based

approach using either decision trees or template-matching as classifiers. 



72

While creating hand-coded gesture recognizers is feasible (e.g., [Coleman 1969]), it makes the

resulting system difficult to create, maintain and modify. Since hand-coded gesture recogniz-

ers are useful only within the application for which they were created, they will not be dis-

cussed in any more detail. However, some hand-coded heuristics were developed in this

dissertation to improve the performance of a generic gesture recognizer for the multimodal

dictation system prototype.

Kankaanpaa [Kankaanpaa 1988] introduced a more general approach to gesture recognition

that is illustrated in Figure . Similar to handwriting recognition, features are extracted from the

gesture input, potentially using additional preprocessing steps. For example, Kankaanpaa’s

gesture recognizer applies some smoothing and filtering to the sequence of time-stamped sam-

ple points, and then computes features that characterize the shape, size, direction and orienta-

tion of the gesture. After preprocessing and feature extraction, standard pattern classification

algorithms can be used to classify the gesture, including template matching, decision trees,

and artificial neural networks. For example, Kankaanpaa used decision trees, while Vo’s fea-

ture-based gesture recognizer employed template matching as classification algorithm [Vo

1998].

Rubine’s algorithm [Rubine 1991] is another gesture recognizer that adopted the feature-based

classification approach. It was used in this dissertation work for the gesture recognition mod-

ule of the multimodal dictation system. His system allowed the application developer to spec-

ify gestures with small sets of examples (typically, 15-20 examples per gesture class are

sufficient). Although it was designed for single-stroke gestures only, it can be applied without

modification to multi-stroke gestures, provided the set of gestures does not contain (multi-

stroke) gestures that are ambiguous when interpreted as a single-stroke gesture. Rubine’s rec-

ognizer achieved a writer-dependent accuracy of 97% on gesture recognition problems with

no more than 15 gesture classes (trained on around 40 examples for each gesture class).Archi-

tecture for feature-based gesture recognition system. 
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Figure 3-7.  Architecture for feature-based gesture recognition system

Summarizing the whole chapter, we reviewed the state-of-the-art in the recognition technolo-

gies necessary for multimodal error correction: large vocabulary speech recognition, con-

nected letter recognition, on-line cursive handwriting, and pen-drawn gesture recognition. The

performance of these recognizers on standard benchmark tests indicates what recognition

accuracies are feasible with current recognition technology; however, the performance on new

applications may be quite different. Factors that determine recognition accuracy suggest why

performance on some new application is different. Across different types of recognizers, these

include vocabulary size and length of words. The difficulty of recognizing short words con-

tributes to the difficulty of recognizing corrections by repeating: short words are misrecog-

nized more frequently, and therefore, repeated input (in any modality) represents a more

difficult recognition task than standard benchmarks. It is therefore not surprising that the accu-

racy of recognizing multimodal corrections (reported later) is well below the more than 90%

reported in this section on standard benchmark tasks of continuous speech, connected letter,
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and cursive handwriting recognition. However, although short words are more difficult to rec-

ognize across all modalities, there is still a significant accuracy gain when correcting multimo-

dally, compared to unimodal correction by respeaking.
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4. Multimodal Interactive Error Recovery

This chapter proposes multimodal interactive error recovery for non-conversational speech

recognition applications with graphic user interfaces. Interactive error recovery means that the

user collaborates with the system to recover from recognition errors. Multimodal error recov-

ery means that the input modality can be switched for error correction. This main concept of

multimodal error recovery was proposed in general terms in earlier work (see Chapter 2). 

Interactive error recovery proceeds in two phases: locating and correcting errors. Different

methods are available for each of these phases. Moreover, choosing the appropriate method

depends on the application, because applications vary in the methods they offer. Methods by

which to locate errors are presented in Section 4.2, and methods by which to interactively cor-

rect errors are presented in Section 4.3. 

This thesis assumes that differential effectiveness of correction methods (across different error

types, across different correction or editing tasks, and across different users) determines which

tools users prefer1. Thus, the designer of a new speech recognition application determines the

bag of multimodal correction tools that is feasible, given current recognition technology and

application constraints, but the user (at least in principle) has choice among different correc-

tion methods. 

Since recognizing correction input is difficult (as argued in the summary of the previous chap-

ter), this dissertation presents algorithms that improve correction accuracy. The idea common

1. Effectiveness of correction methods as main determinant of user preferences will be quantified in the 
performance model of multimodal error correction presented in Chapter 7. The user study in Chapter 
8 will provide some empirical evidence that correction accuracy is one of the main factors determin-
ing user preference.
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to these algorithms is to correlate correction input with the (repair) context, instead of inter-

preting correction input as an independent event. This can be achieved in several ways. In this

thesis, four approaches were developed and evaluated: word context modeling, bias towards

frequently misrecognized words, correlation of N-best lists, and vocabulary reduction in par-

tial-word corrections. These algorithms are presented in more detail in Section 4.4.

The best method of error recovery is obviously to avoid recognition errors in the first place.

Once the user goes through the trouble of correcting errors, the rational user will expect the

system to learn from the correction. Section 4.5 outlines some ideas how speech recognition

applications can interactively learn from recognition errors. However, learning speech recog-

nition algorithms involve research challenges that are beyond the scope of this thesis. 

The following section describes multimodal interactive error recovery in very general terms.

The details of the various steps and methods of multimodal interactive error recovery are

explained later in Sections 4.2 through 4.4.

4.1 Multimodal Interactive Error Recovery Algorithm

This section describes multimodal interactive error recovery at the level of user interactions,

application feedback, system components, and the flow of control between the components.

The main components of an application that supports multimodal interactive error recovery

include the multimodal components (as described in the previous chapter; in this thesis, recog-

nizers for continuous speech, spelled letters, handwriting, and gestures), input/output mod-

ules, and integrating modules (e.g., the dialogue manager, the module implementing

correction algorithms, and the application module). Figure 4-1 shows the flowchart of multi-

modal interactive error recovery. The following paragraphs describe the different steps of the

generic multimodal interactive error recovery algorithm.

User interaction with a multimodal interface begins with user input in some modality. In

speech recognition applications, such primary user input is frequently continuous speech. The
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primary user input is automatically recognized using an appropriate multimodal recognition

component ("continuous recognition" in the flowchart). Depending on the application, the

"continuous recognition" module may range from solely a continuous speech recognizer (for

instance, in dictation applications), to an array of recognizers specialized in different modali-

ties (similar to the ones used for interpreting multimodal correction input shown in the flow-

chart). 

After primary user input has been recognized and processed, the application provides some

form of feedback on the recognition. This feedback may range from visual presentation of the

recognition output (e.g., in dictation applications) to execution of the action intended by the

user input (e.g., in an automatic flight booking system, retrieval of information on flights, and

presentation of the results). After the feedback phase is completed, either the application or

the user decides whether the recognition is accepted or whether a recognition error has

occurred that requires correction. If the recognition is accepted, no repair is necessary, and

user interaction with the application can proceed (cf. "repair done" in the flowchart). If an

error is detected, correction interactions follow to recover from the error. Before correction,

the exact location of an error within a larger sequence of input may have to be determined.

The steps of detecting and locating recognition errors are described in more detail in Section

4.2.
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Figure 4-1.  Flowchart of multimodal interactive error recovery
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After an error has been detected and located, the user chooses a multimodal correction method

from the bag of correction tools offered by the application, and provides the correction input

required by the chosen method (e.g., speaking some words again). Section 4.3 presents the

bag of correction tools that was developed in this thesis. While simultaneous use of several

modalities for correction could be explored, a simulation study [Oviatt, DeAngeli et al. 1997]

suggests that simultaneous use of modalities in multimodal human-computer interaction is

rather infrequent, probably due to the inherently sequential nature of most human planning

and acting. Therefore, this dissertation does not explore simultaneous use of several modali-

ties for error correction.

The application delegates the recognition of this correction input to the appropriate multimo-

dal recognition component. Before recognition is begun, the repair context is updated with the

most recent primary user input, the recognition result, and information on the located error.

This information may be used in the correlation step. The correlation step selects the recogni-

tion output from appropriate recognizers, and it increases the likelihood of successful correc-

tion by correlating correction input with the repair context. Algorithms for achieving this are

presented in Section 4.4. 

When the final hypothesis has been selected (with or without the correlation step), the applica-

tion provides feedback on the completed correction attempt. The decision must be made

whether the correction has been successful, or whether repeated correction is necessary.

The flowchart in Figure 4-1 provides an overview of the various steps in multimodal interac-

tive error recovery. But how can errors be located and interactively corrected? What kind of

algorithms can increase correction accuracy by correlating correction input with repair con-

text? The remainder of this chapter addresses these questions.
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4.2 Locating Recognition Errors

Before recognition errors can be corrected, they must be detected. When the recognized input

consists of more than one elementary input unit, detection of an error may not be sufficient,

the error may have to be located within the current input. Therefore, the first step of interac-

tive error recovery - locating recognition errors - may involve two stages: error detection and

identification of error location. This dissertation does not propose a novel methods to locate

errors. However, this section briefly reviews available methods with which to detect and

locate (recognition) errors. Before describing these methods in the next subsections, the fol-

lowing paragraphs discuss various general issues related to locating errors: what level of gran-

ularity is appropriate for error detection and location, and who initiates error detection. 

The granularity of error detection and error location methods depends on three factors: ele-

mentary input unit, interaction goal, and type of recognition feedback. First, for different

applications, different elementary input units may be appropriate; input may be on the level of

characters or digits, words, phrases, or sentences (cf. Section 1.3.1). According to the level of

input, errors must be detected either at the level of isolated characters, at the level of words, or

at the level of whole sentences. Second, the interaction goal may range from data entry to issu-

ing actions or conveying information. In data-entry tasks, any recognition error is relevant, and

must be detected and corrected. By contrast, in tasks for which semantic accuracy is sufficient,

recognition errors that result in semantically equivalent interpretations can be ignored. Third,

recognition feedback ranges from very immediate and salient feedback by presenting the rec-

ognition result to the user, to implicit feedback by immediately executing the intended action.

The type of feedback obviously has a large impact on what methods are appropriate for detect-

ing and locating errors.

By analogy to Schegloff’s model of repair in human-human dialogue (as reviewed in the liter-

ature review chapter in Section 2.2), errors in speech recognition applications can be located

either by the user, by the system, or in collaboration of user and system. The following two

subsections discuss different user- and system-initiated methods to locate errors, and indicate
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for what kind of speech recognition application they are appropriate. Application variables

that determine the appropriateness of methods include: type of recognition feedback (explicit

visual or audible feedback versus implicit feedback by performing some action), type of

required accuracy (verbatim versus semantic), whether the application suggests a conversa-

tional interaction metaphor, and whether a graphic user interface is possible.

4.2.1 User-Initiated Error Location

The user can detect and locate errors by pointing, by selecting with voice commands, or by

using conversational error detection and location techniques. The following paragraphs

briefly describe each of these methods. 

User-initiated detection and location of errors by pointing (e.g., with the mouse, or by tapping

on a touchscreen) is natural and effective if the application permits visual feedback. Using

voice to detect and locate errors is possible and doesn’t require visual feedback (and, thus, no

graphic user interface is required). These methods lend themselves more naturally to non-con-

versational applications that require verbatim accuracy, although they could also be useful for

some conversational applications, and applications that require semantic accuracy. Some com-

mercial dictation systems offer user-initiated detection and location of errors by voice selec-

tion - the user can navigate through an editing buffer of words using voice commands such as

"back N words" (e.g., in the disconnected speech dictation product DragonDictate®); the user

can select one or more words by speaking them (e.g., McNair’s automatic subpiece location

method [McNair and Waibel 1994]); or using a voice keyword "select" (e.g., in Dragon’s con-

tinuous speech dictation product NaturallySpeaking ®). 

Errors can also be detected and located based on conversational error cues from the user. Such

conversational cues typically include paraphrases and certain trigger phrases that people use

when they have noticed a communication problem (e.g., "No, I meant Y..."). Paraphrases can

be detected using mismatches between expectations derived by the application from the dis-

course context and the actual user input (cf. [Danieli 1996]). 
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4.2.2 System-initiated Error Location

System-initiated location of errors is possible based on user responses to requests for confir-

mation (mainly applicable to conversational speech recognition applications), or by automati-

cally detecting and locating errors, for example, using confidence measures. 

Requests for confirmation allow the system to detect recognition errors as follows. The system

prompts the user to confirm whenever a significant input item has been processed, or immedi-

ately before the system takes some action. The user either confirms or denies the request, for

example, via direct manipulation (e.g., by pressing a key in telephone applications), voice

(e.g., by responding with "yes" or "no" to a request such as "Do you want me to connect you

to Mr. X" in a call-routing application), or some other, more sophisticated method (e.g., in a

multimodal interface with vision capabilities, by shaking or nodding of the head). A negative

response to the request for confirmation indicates recognition errors. However, frequent

requests for confirmation are annoying and therefore must be avoided, for example, by care-

fully calibrating such requests, according to the kind the application. 

Confidence measures can be used to flag likely recognition errors in applications with explicit

recognition feedback such as visual or audible presentation of the recognition result. This

application of confidence measures is particularly attractive for data-entry and dictation tasks.

For example, likely misrecognized words can be displayed in a different color, and the user

can decide whether or not to select (and correct) the words. Such automatic highlighting of

errors was integrated into the prototype multimodal dictation system which was developed for

this thesis, to test the hypothesis whether imperfect automatic error highlighting can speed up

error correction. More details on the implementation of automatic error highlighting can be

found in Section 5.2.1, and the results of its evaluation can be found in Section 8.3.7.

4.3 Multimodal Interactive Error Correction

Corresponding to the three basic types of speech recognition errors - substitutions, insertions,

and deletions - interactive correction must provide methods for substituting, deleting, and
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inserting items. This section describes multimodal interactive methods for each of these cor-

rection tasks. The first subsection presents correction by repeating as a simple and effective

method to substitute and insert items. For insertion corrections, location of the insertion must

also be indicated. The second subsection proposes the use of pen-drawn gestures to indicate

where to perform an insertion correction, and for other simple editing tasks. Finally, it may be

more intuitive or more effective to perform corrections at the level of characters, rather than at

the level of whole words. The third subsection introduces partial-word correction methods to

perform corrections on the level of characters.

4.3.1 Correction by Repeating

Repeating input that has been misrecognized is a very simple and intuitive correction method.

Repetition is the preferred correction method in human-human dialogue (see Section 2.2.3 in

the literature review, and the review of repair in human-human dialogue in Appendix 3.3).

Unlike in human-human dialogue where repetition in the same modality is generally a very

effective correction method, repeating input in the same modality decreases the chances of

success of automatic interpretation. The following paragraphs explain why repeating in the

same modality is an ineffective correction strategy for automatic interpretation, and they

introduce two approaches for effective correction by repeating.

Repeating in the same modality is ineffective for the following reasons: first, recognition

errors are not random. Therefore it is likely that repetitions will continue to be misrecognized

unless the recognition error was caused by deficiencies in the user input. Second, concerning

repeating in continuous speech, people tend to hyperarticulate when repeating input (see

Appendix B and [Oviatt, Levow et al. 1996]). Although people usually understand hyperartic-

ulated speech better than normally pronounced speech, the performance of most speech rec-

ognizers deteriorates on hyperarticulated speech, in part because recognizers are trained only

with normally pronounced speech.

This dissertation proposes two approaches to make correction by repetition effective: switch-
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ing modality for repetitions (cross-modal repair), and correlating correction input with repair

context. Switching modality is effective because the words that are frequently misrecognized

vary with each modality, with the notable exception of short words. If input is repeated in a

different modality, chances for success are higher, albeit significantly lower than benchmark

accuracy of the respective recognizers1. The following subsections illustrate correction by rep-

etition in various modalities. The second approach for effective correction by repetition, corre-

lating correction input with repair context, is presented later, in Section 4.4.

4.3.1.1 Correction by Respeaking (Repeating using Continuous Speech)

In correction by respeaking, the user simply respeaks verbatim the words (or items) that were

misrecognized, and the located error (region) is replaced by a hypothesis for the spoken cor-

rection input. To improve correction accuracy, spoken correction input can be correlated with

the repair context, as described in the flowchart of multimodal interactive correction presented

earlier in this chapter. Figure 4-2 illustrates correction by respeaking. The user replaces the

misrecognized word "one day" by speaking "Monday".

As mentioned before, if the primary input is continuous speech, the likelihood of success by

respeaking is not very high. Therefore, multimodal interactive error correction offers to cor-

rect recognition errors by repeating input in other modalities. The following subsections

describe two such cross-modal correction methods.

1. The evaluation and results in Chapter 8 will quantify this aspect. Since short words are more difficult 
to recognize in all modalities, correction input that replaces a misrecognized (short) word is more 
difficult to recognize than some arbitrary other input. However, the accuracy of repeating input in a 
different modality is still much higher than of repeating in the same modality.
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Figure 4-2.  Correction by respeaking (repeating in continuous speech)

4.3.1.2 (Cross-modal) Correction by Spelling 

In correction by spelling, the user repeats misrecognized words by spelling them as a

sequence of letters. An example is shown in Figure 4-3; the user replaces "one day" by spell-

ing "M-O-N-D-A-Y".

Accuracy of correction by spelling is significantly higher when a recognizer specialized in

recognition of connected letters is used, and when corrections are constrained to all words

within a given vocabulary (see Section 3.1.2). By using the same vocabulary as employed by

the continuous speech recognizer, this limitation is kept consistent within the overall system.

However, with this limitation, recognition errors that were caused by out-of-vocabulary words

cannot be corrected using repetition by spelling. The new-word problem must be addressed

separately. Section 4.5.2, later in this chapter, will describe some solutions to this problem.

Since people typically spell one word at a time, this correction modality is intuitively limited

to isolated-word corrections. The user can correct multiple words as a sequence of several iso-

lated-word corrections.

A report one day fore-
casts the Dow Jones
will hit another record
high in the weeks to
come.

Speak Spell

"Monday"
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Figure 4-3.  Correction by spelling (repeating as spoken sequence of letters)

4.3.1.3 (Cross-modal) Correction by Handwriting

In correction by handwriting, the user repeats misrecognized words by (hand-)writing them

on a writing-sensitive display (e.g., touchscreen). Although users can learn to write on a verti-

cally oriented standard desktop display, flat-oriented displays are easier to handle. Immediate

visual feedback appears to be important to preserve the intuitiveness of handwriting as a cor-

rection modality, as has been learned in years of writing with pen on paper [Rhyne and Wolf

1993].

Just as with correction by spelling, the accuracy of correction by handwriting is significantly

increased by constraining correction input to a given vocabulary. Unless application-specific

requirements suggest otherwise, the same vocabulary should be used in all recognizers for

equivalent types of correction input (e.g., recognizers for continuous speech, spelling, and

handwriting).

Handwriting intuitively allows correction of both isolated and multiple words. However, the

recognition technology is still significantly less accurate for handwritten phrases and sen-

A report one day fore-
casts the Dow Jones
will hit another record
high in the weeks to
come.

Speak Spell

"M-O-N-D-A-Y"
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tences than for isolated words (see Section 3.2.1). Therefore, correction by handwriting in this

thesis is limited to isolated-word corrections.

4.3.2 Editing using Pen-Drawn Gestures

Correction by repeating (either in continuous speech, connected letters, or handwriting)

addresses only two of the three basic correction tasks: substituting (replacing) recognition

errors, and inserting deleted words. What remains to be addressed are methods to indicate the

location of corrections by inserting, and methods to delete words. This section proposes pen-

drawn gestures for editing tasks. Some commercial dictation products provide various forms

of voice editing that appear to be quite efficient. Nevertheless, a formal comparison of voice

editing with gesture-based editing was not performed as part of this dissertation.

Editing tasks that are part of error correction include deleting items, indicating where items

should be inserted, moving items, positioning items, and formatting. Such editing tasks con-

sist of two parts: selecting a command and indicating the scope of the command. Pen-drawn

gestures appear to be intuitive and effective to issuing commands and indicating their scope

(cf. [Wolf and Morrel-Samuels 1987; Rhyne and Wolf 1993]), because they combine the ease

of referring to objects directly on the screen with employing marks to specify the type and

scope of the commands. Such editing by pen-drawn gestures is applicable only to speech rec-

ognition applications with graphic user interfaces. The following paragraphs review results

from a study on the use of pen-drawn gestures for editing tasks. The last paragraph in this sec-

tion outlines how editing by pen-drawn gestures can be implemented within a multimodal cor-

rection system. 

A paper and pencil study [Wolf and Morrel-Samuels 1987] investigated the use of hand-

drawn gestures for simple editing tasks. The study focussed on identifying gestures that are

intuitively utilized. The key finding was that people consistently used similar gestures - with-

out explicit training. We can therefore expect that a multimodal application must support only

a limited set of gestures for each editing task. Automatic recognition of limited sets of ges-
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tures is sufficiently accurate. Figure 4-4 shows the most common gestures that Wolf’s study

identified for deletion, insertion, movement, and positioning tasks on the level of characters,

words, and phrases.

Landay [Landay 1996] makes extensive use of pen-drawn gestures in his tool for rapid inter-

face development. Interfaces are sketched on the screen, and interface widgets are recognized

directly as they are being drawn. Several interface elements and screens can be combined to

model execution of complete tasks in storyboards. The sketched design can be executed

directly, thus saving the step of implementing the design using an interface prototyping toolkit

(such as MS Director, or Hypercard).

The word
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Insert Character Insert Word Insert Phrase

Move Word Move Phrase
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Figure 4-4.  Common gestures for simple editing tasks (from [Wolf and 
Morrel-Samuels 1987])

How can such editing gestures be supported in a multimodal application? Gestures can be

classified by means of a gesture recognizer as described in Section 3.3, page 71. Integration of

the gesture recognizer into the overall system requires the following functionality: communi-

cation with a gesture recognizer, automatic distinction of gestures from handwriting input, and

disambiguation of object references and gesture scopes. Communication with a gesture recog-

nizer is analogous to communication with a handwriting recognizer. Algorithms to distinguish

handwriting from gesture input are presented in Section 5.3.2, page 125. Spatial relationships

between displayed items and the gesture trajectory can be used to disambiguate object refer-

ences and gesture scopes. For example, for a deletion gesture, the system must determine

which of the displayed items the user intends to delete. The next chapter describes how these

problems were solved for the multimodal dictation system prototype, and identifies what set

of editing tasks and gestures this prototype supports. 

4.3.3 Partial-word Correction

This section introduces methods with which to correct characters within a word (so called

partial-word correction), as an alternative to correction methods at the word level. Error cor-

rection can be performed at different levels: on the level of whole sentences, phrases, isolated

words, or characters within a word. Which level is appropriate depends on the application (or

rather, the task within a speech recognition application), considerations of efficiency, con-

straints from the recognition technology, and constraints of the input (correction) modality. As

an example for a modality constraint, it is very intuitive to speak multiple words, whereas it is

not intuitive to spell multiple words. As an example for an efficiency issue, it may be faster to

correct only the one or two letters that are incorrect in a misrecognized word, rather than hav-

ing to repeat the whole word. 

Partial-word correction includes methods to delete, insert, and substitute characters within a

word. Methods to delete, insert, and replace whole words can be generalized to partial-word
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corrections by applying to the level of characters within a word similar operations to those

used at the word level. For example, a partial-word deletion is issued by covering parts of a

word, rather than the whole word, with a deletion gesture. For a partial-word insertion, the

same gesture that is employed to indicate the location of a word-level insertion can be used to

indicate the point at which characters should be inserted within a word. (However, the scope

of insertion marks within a word is difficult to determine.) For partial-word substitution, the

user must be able to select letters within a word. Then, just as with partial-word insertions, the

correction input (intended to replace the selected characters) is provided in the same way as

for word-level corrections. 

Figure 4-5 illustrates partial-word correction. The upper part shows an example of a gesture to

select characters within a word (in this case, the "e" at the end of the word "multimode"), and

the lower part shows a partial-word substitution by handwriting (in this case, replacing the

word "multimode" with the word "multimodal").

The interpretation of partial-word correction requires extensions of both the recognition sub-

systems and the integrating modules of the multimodal correction system. The recognition

subsystems must be extended to handle character sequences, in addition to (sequences of)

whole words. Recognition of arbitrary sequences of characters is possible both for spelling

and handwriting. However, recognition accuracy is significantly lower than it is for recogni-

tion constrained to a (word-level) vocabulary (see Chapter 3 on the multimodal component

technologies). Section 4.4.5 later in this chapter will describe an effective way to reduce the

vocabulary size for partial-word corrections.

The main additional challenge for the integrating modules is to distinguish between partial-

word and whole-word corrections. The scope for the different types of correction (substitu-

tion, insertion, deletion) implies the user intends a word-level or partial-word correction. If the

scope of the correction method is at the level of characters within a word, the system switches

to partial-word correction mode; otherwise, word-level correction is assumed.
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Figure 4-5.  Partial-word correction by handwriting

Partial-word corrections rely on visual feedback, and that the application lends itself to pre-

senting the recognition result to the user. Partial-word correction are applicable only to speech

user interfaces with a graphic user interface.

4.3.4 Conversational Error Correction

Cross-modal methods for correction by repeating, pen-drawn gestures for simple editing

tasks, and partial-word corrections, present an effective set of correction methods for predom-

inantly non-conversational speech recognition applications with a graphic user interface. But

what about conversational speech recognition applications, or non-conversational applications

without a graphic user interface? The taxonomy of speech recognition applications presented

in Chapter 1 included important examples in these categories: interactive services via tele-

phone, interactive TV, and smart rooms. Although this dissertation does not explicitly address

such applications, the following section gives a rough outline of conversational repair meth-

ods. Conversational error correction offers methods to recover from recognition errors in a

dialogue, similar to repair in human-human dialogue. The following paragraphs outline con-

versational repair methods. 

Double-bar gesture to select characters within a word:

Partial-word correction by handwriting ("e" is selected):
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In human-human dialogue, paraphrases are frequently used to recover from communication

problems, particularly if repetition failed (cf. Section 2.2 and Appendix B). Therefore, using

paraphrases to substitute misrecognized content or to insert missing content, should therefore

be an intuitive correction method for conversational speech recognition applications. How-

ever, detecting a paraphrase repair, resolving the reference (i.e., which content the user intends

to replace or insert), and determining the new contents, are difficult to interpret automatically

- more difficult than recognizing the original input. Consequently, correction by paraphrasing

is an area for further research.

Many published research systems and some commercial dialogue systems implement conver-

sational correction methods through sophisticated dialogue control and robust processing of

natural language input. Some of this work has been reviewed earlier in Chapter 2. 

Multimodal interactive correction can be applied, with modifications, to some applications

without graphic user interface. For example, modality can be switched between different vari-

ations of speech, such as continuous, discrete, and spelled speech. Furthermore, editing can be

performed by using voice commands instead of pen-drawn gestures and pointing (e.g.,

"Delete", "Insert after X", "Replace X with Y"). The scope of the command is either implicit,

or it can be indicated by using speech (e.g., "Insert N words backwards", "Delete Nth word

backwards"). Some commercial dictation systems provide such voice-editing capabilities.

4.4 Increasing Repair Accuracy by Exploiting Repair Context

Interactive error correction is effective if the modality is switched for correction, although rec-

ognizing correction input is less accurate, compared with standard recognition benchmarks.

Without modifications to the recognition algorithms, accuracies in the 90% range (which cur-

rent recognizers achieve on standard benchmark tasks) cannot be achieved on correction input.

To increase effectiveness of such cross-modal correction, or to make interactive correction

effective when unimodal correction is preferred, this section presents algorithms that improve

correction accuracy by correlating correction input with the (repair) context, instead of inter-
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preting correction input as an independent event. Future work may explore efficient correction

methods that combine several modalities. Correlation of correction input with the repair con-

text can be achieved in several ways. 

A very simple way is to avoid making the same mistake twice. Once an error has been identi-

fied for correction, this item can be excluded from the correction vocabulary. Ainsworth and

Pratt proposed this idea in their work on interactive correction as "repeating with elimination"

(see [Ainsworth 1992]). 

This section describes other, more powerful algorithms. It begins by describing some simple

methods to increase the accuracy of respeaking (correction by repeating in continuous

speech). The speech recognition algorithm is modified by adapting certain parameters for cor-

rection input. In subsections 4.4.2 through 4.4.5, four algorithms to correlate correction input

with repair context are developed and evaluated: N-gram context modeling, bias towards fre-

quently misrecognized words, correlation of N-best lists, and vocabulary reduction in partial-

word corrections. 

The algorithms are evaluated on a database of multimodal interactive corrections. The data-

base was collected during the user studies that evaluated multimodal interactive correction in

the context of the multimodal dictation system prototype. The database contains data from

both the pilot and the final study. These user studies are described in detail in Chapter 8. Table

5 summarizes the statistics of this database as they are related to the comparisons of correction

accuracies presented in this section. Note that speech repairs can comprise of multiple words,

therefore we distinguish the counts for repairs (which may be an isolated-word repair or a

multiple word repair) from the word counts.

The evaluation of methods to correlate repair context and correction input uses the standard

methodology of measuring word accuracies (as commonly used in the speech recognition

field) by comparing the true input with the recognized hypotheses, but to distinguish primary

input from correction input, we will use the term correction accuracy to denote word accuracy
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on correction input.

4.4.1 Improving the Accuracy of Corrections by Respeaking

In previous sections, we suggested that recognizing corrections by respeaking is more difficult

than primary continuous speech input (e.g., dictation input). Empirical data from our user

studies confirms the hypothesis that respeaking is significantly more difficult to recognize

than initial dictation input (p<0.01). This result appears to generalize across different continu-

ous speech recognizers1, but the magnitude of the effect will vary between different recogniz-

ers. An error analysis was performed to determine why the accuracy on respeaking was so low

with the JANUS WSJ recognizer. The following paragraphs describe some simple measures

that arose from the error analysis to significantly improve the accuracy of corrections by res-

peaking. The final paragraph argues that new recognition algorithms, specialized in hyperar-

ticulated speech, are needed to achieve high accuracy on corrections by respeaking.

A few simple measures could significantly increase the accuracy of corrections by respeaking.

According to a widely acknowledged rule of thumb for speech recognizers, the rate of inser-

tion and deletion errors should be balanced for maximal recognition accuracy. The error anal-

Table 5: Database of dictation input and multimodal corrections

Type of Data Items in Database

Initial Dictation 503 Sentences (9750 Words)

Respeaking (multiple words) 515 Repairs (1778 Words)

Spelling (word-level) 816 Words

Handwriting (word-level) 1301 Words

Spelling (partial words) 40 Corrections

Handwriting (partial words) 65 Corrections

1. To reject the hypothesis that only the JANUS continuous speech recognizer has low recognition 
accuracy on corrections by respeaking, we performed the following simple experiment. We com-
pared the accuracy of recognizing initial dictation with recognizing respeaking corrections using a 
different state-of-the-art continuous speech recognizer (SPHINX, cf. [Lee 1990]) on the same data, 
without modifications to its recognition algorithm. The experiment confirmed that spoken correc-
tions are significantly more difficult to recognize.
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ysis revealed that although the rate of insertion and deletion errors was balanced on the initial

dictation, corrections by respeaking had many more insertion than deletion errors. This prob-

lem was solved by using separate language model weights when recognizing corrections by

respeaking. The separate weights are optimized to balance the rate of insertion and deletion

errors on the subset of corrections by respeaking.

The error analysis also revealed that most recognition errors in the real-time version of the

JANUS WSJ recognizer were due to search errors, rather than to acoustic model errors or lan-

guage model errors (for an explanation of the different types of errors, and how to identify

them, refer to [Chase 1997]). Search errors can easily be reduced by relaxing the pruning

parameters of the search module, albeit at the cost of slowing down recognition speed. 

Table 6 shows the improvement of accuracy on corrections by respeaking after balancing

insertion and deletion errors (using separate language model weight parameters), and after

reducing search errors through relaxing the pruning parameters.

Some observations suggest that high accuracy is only possible by using specialized recogni-

tion algorithms for corrections by respeaking. First, corrections by respeaking contain many

isolated-word corrections, and the performance of many continuous speech recognizers

severely deteriorates on isolated words [Alleva, Huang et al. 1997; Soltau and Waibel 1998].

Including isolated word and disconnected speech data in the training data for the continuous

speech recognizer increases the accuracy on isolated words, but it hurts the performance on

continuous speech [Alleva, Huang et al. 1997]. Second, corrections by respeaking tend to be

hyperarticulated, in speech recognition applications [Oviatt, Levow et al. 1996] just as in

Table 6: Improving accuracy of corrections by respeaking (multiple word corrections only)

 Correction by Respeaking Recognition Method Word Accuracy

baseline 40%

after reducing search errors 46%

after balancing insertion/deletion errors 52%
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human-human dialogue. This observation was confirmed in our study of error correction in

the context of dictation. There are currently no speech recognition algorithms that work well

on both normally pronounced and hyperarticulated speech. One could train two sets of acous-

tic models, one on normally pronounced and one on hyperarticulated speech, and switch

between the two models whenever appropriate. In summary, it can be assumed that difficulty

of recognizing isolated words and hyperarticulated speech accounts for the difference in accu-

racy between recognizing initial continuous speech input and recognizing corrections by res-

peaking.

4.4.2 Word Context Modeling

As first method to correlate correction input with repair context, (word) context modeling

exploits the observation that once an error has been located, the input surrounding the error ca

be assumed to be correct. The basic idea is to recognize correction input with the appropriate

dependencies - the ones that are used in recognizing continuous input. This dissertation imple-

mented this idea for word sequence input and dependencies modeled as statistical language

models. However, the idea can be generalized to other types of input (e.g., digit sequences)

and other dependencies between input items (e.g., digit sequences modeled as a finite state

automaton). This algorithm is obviously not applicable to isolated-word input. The subse-

quent paragraphs formalize the N-gram context modeling algorithm that exploits dependen-

cies modeled as statistical N-gram language model, and applies the algorithm to correction by

respeaking, spelling, and handwriting. The effectiveness of N-gram context modeling is dem-

onstrated on the database of multimodal corrections. 

Statistical language models determine probabilities of word sequences. An N-gram language

model factorizes the joint probability of a word sequence into a product of conditional proba-

bilities, as expressed in the following equation (cf. [Jelinek 1990]):

P w1…wN( ) P wi wi N– 1+ …wi 1–( )

i

N

.=
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Correcting by replacing an error region (or also inserting words) can be formalized as follows.

For simplicity, the notation assumes that a trigram language model is used (N=3). Let the error

region (or reparandum) of (M+1) subsequent misrecognized words be denoted as wi...wi+M,

the word context to the left of the error region as wi-2 wi-1, and the word context to the right of

the error region as wi+M+1 wi+M+2. Then, instead of recognizing the correction input as an

independent event, N-gram context modeling recognizes the correction input as if it occurred

in the context of the pre-context wi-2 wi-1 and the post-context wi+M+1 wi+M+2, enforcing the

appropriate language model constraints. Figure 4-6 below illustrates this situation, as well as

the basic idea of context modeling: exploiting the knowledge F[wi-2 , wi-1 , wi+M+1 , wi+M+2]

in interpreting some repair input.

Figure 4-6.  Context modeling for correcting by replacing (and inserting) 
words

Given this situation, word context modeling can be implemented for continuous speech repair

input as follows. Continuous input recognizers that use a search driven by a statistical lan-

guage model typically recognize any new input with a "neutral" language model context. Cus-

tomarily, pseudo symbols for the beginning and end of an utterance are introduced to

vocabulary and language model (e.g., "<s>"and "</s>" in the widely used standard N-gram

language model file format defined by NIST). A new utterance v1...vK is typically recognized

as <s> v1...vK</s>. 1 With N-gram context modeling, the neutral language model context is

w i-2 wi-1 Reparandum (wi ... wi+M) wi+M+1

Repair Input

F[ P(Repair | wi-2, wi-1), P(wi+M+1 | Repair) ]

wi+M+2Reparandum (wi ... wi+M)
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replaced with the appropriate pre- and post-context from the current error region. For exam-

ple, when a trigram language model is employed, the new utterance is recognized as wi-2 wi-1

v1...vK wi+m+1 wi+m+2. Thus, at the beginning of recognizing correction input, language

model scores P(v1|wi-2,wi-1) are used instead of the neutral P(v1|<s>,<s>). In Figure 4-6, the

context modeling function F represents this change in the computation of language model

scores. 

Word context modeling can be applied to isolated-word recognizers by using a rescoring algo-

rithm - assuming that the recognizer is able to provide the K best recognition hypotheses.

First, the recognizer interprets isolated-word correction as an independent event in the usual

way, and provides a K-best list of alternative hypotheses as recognition output. The K-best list

of hypotheses {c1,..., cK}1 is then rescored using context modeling scores. Assuming a trigram

language model, and the pre- and post-context as defined earlier, the context score CS(k) for

the k-th alternative hypothesis is defined as:

Using such context scores, the context modeling function F in Figure 4-6 can be implemented

by interpolating context scores CS(k) with the recognition score for the k-th alternative

hypothesis. In terms of the general flowchart of multimodal interactive correction in Figure 4-

1, context modeling is part of the correlation step.

In the multimodal dictation system prototype, N-gram context modeling was implemented as

follows. For the continuous speech modality, context modeling was integrated in the standard

speech recognition algorithm, a time-synchronous search driving by a language model. For

the spelling and handwriting modalities, context modeling was integrated as a rescoring pass

1. The pseudo words <s> and </s> do not correspond to any acoustic event. 
1. To clarify the notation: alternatives for the same input are indexed with a superscript, for distinction 

from indexes for sequences of input (as subscript).

CS k( ) P ck wi 2– wi 1–( )P wi M 1+ + wi 1– ck
( )P wi M 2+ + ckwi M 1+ +( )=
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after isolated-word recognition. 

N-gram context modeling was evaluated using data from the multimodal correction database.

Table 7 shows the performance of N-gram context modeling for correction by repeating in

continuous speech, spelling, and handwriting. In addition, using only the pre-context is com-

pared with using both pre- and post-context. The first row shows the baseline accuracy with-

out context modeling, the second row shows the accuracy if only pre-context is used, and the

third row shows the accuracy if both pre- and post-context are used. Context modeling signifi-

cantly decreases the correction failure rate by a relative 18-26% (F(2,4)=85.9, p<0.01). It may

be surprising that using more context (post-context in addition to pre-context) does not consis-

tently improve accuracy. Since users apparently do not consistently select maximal contiguous

regions of errors, the post context is frequently not correct, and using an incorrect post-context

in context modeling deteriorates accuracy. In summary, context modeling is a very effective

algorithm to increase the accuracy of interactive correction, both for cross-modal corrections

and for corrections in the same modality (e.g., correction by respeaking).

4.4.3 Bias Towards Frequently Misrecognized Words

As a second method to correlate correction input with repair context, this dissertation pro-

poses to bias recognition of corrections towards frequently misrecognized words. This algo-

rithm exploits the fact that errors are not randomly distributed; within one input modality,

certain words are more frequently misrecognized than others. In first-order approximation, the

recognizer’s error behavior can be modeled as unigram distribution P(incorrect|w, m) that

Table 7: Increase of correction accuracy by N-gram word context modeling

Experiment Condition Continuous Speech Spelling Handwriting

baseline (no context modeling) 43% 73% 67%

pre context 53% 80% 75%

pre and post context 52% 81% 74%
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indicates how likely a word w is recognized incorrectly in modality m. How can this unigram

distribution be used in recognizing correction input?

Similar to the context modeling algorithm described in the previous subsection, we must make

a distinction between recognizers whose search is driven by a language model, and isolated-

word recognizers which do not employ a language model. If the recognizer employs a lan-

guage model, we can modify the language model to compute the joint probability that a word

is correct, as opposed to merely computing the probability for a certain word. For example, if

a unigram language model is employed, we modify the language model to compute P(w, cor-

rect)=P(w)P(correct|w)µ as the product of the regular unigram distribution P(w) and the

weighted unigram bias that w is correct P(correct|w)µ. A weight parameter µ determines how

the regular language model and bias should be balanced. The value for µ an be determined

empirically by maximizing correction accuracy on a cross-validation set of correction data.

Figure 4-7 illustrates how the usual score for a word w given an input signal A is computed out

of the signal model score and language model score, and how the bias is introduced as an

additional factor.

Figure 4-7.  Extending word scores by a bias towards frequent errors

If the recognizer does not utilize a language model, recognizing correction input can be recog-

nized with a bias by applying a rescoring technique; for each alternative hypothesis ck

(obtained from recognizing the correction input as an independent event), a bias score B(k) is

computed as B(k)=logP(correct|ck). Interpolating the bias score for each alternative in the K-

best list with the recognition score results in a new K-best list of hypotheses.

The technique of biasing recognition of correction input towards frequently misrecognized

Score w A,( ) P w A( )P w( )P correct w( )µlog=

L an g u ag e
M o d e lM o d e l

B iasS ig n a l
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words was evaluated using data from the multimodal correction database. Table 8 compares

the correction accuracy when the bias is used with correction accuracy when the bias is not

used, across different modalities. In all cases, the bias was applied in addition to pre-context

modeling. For the continuous speech and spelling modality, the bias was integrated with a lan-

guage model; for the handwriting modality, the bias was implemented as additional rescoring

pass. As can be seen, correction failure rates decrease 8% and 20% for the handwriting and

spelling modalities, respectively. Unfortunately, no improvement was achieved for continuous

speech corrections. Differences in the effectiveness across modalities could be due to differ-

ences in how the bias was integrated in the recognition, as described above. 

In summary, biasing corrections towards frequently misrecognized words can help to further

increase correction accuracy.

4.4.4 Correlating N-best Lists

So far, very little information obtained from recognizing previous user input for the error

region was used in recognizing current correction input. This section presents an algorithm

that uses the information contained in the N-best lists of alternatives for primary and correc-

tion input. Ideally (i.e., if the N-best lists can be sufficiently large), each N-best list should

contain the true hypothesis, albeit possibly far down in the list. Since the sets of words that are

confusable differ across modalities, correlating the N-best lists in cross-modal corrections

should identify the true hypothesis almost immediately; only the true hypothesis is likely to

occur in both N-best lists. 

However, the following practical constraint impedes this method of correlating correction

input with repair context. The recognizer is tuned to achieve real-time performance in interac-

Table 8: Increase of correction accuracy by biasing towards frequently misrecognized words

Experiment Condition Continuous Speech Spelling Handwriting

without bias 52% 80% 75%

with bias 52% 84% 78%
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tive applications, commonly by pruning more aggressively in the search for the best matching

hypothesis. Under such conditions, the true hypothesis is frequently not among the N-best list.

For example, with the real-time JANUS large vocabulary continuous speech recognizer used

in this thesis, the maximal word accuracy is 93% for primary input, 79% for multiple word

corrections by respeaking, and only 36% for isolated-word corrections by respeaking. Under

these circumstances, not much improvement through correlating N-best lists can be expected. 

Correlating N-best lists was implemented in the following way. For any correction, the N-best

list obtained for the correction input is merged with the current N-best lists for the error region

(obtained either from the primary input or from previous corrections). Alternatives that occur

in both lists are placed first, followed by the alternatives that occur only in the N-best lists for

the correction input.

4.4.5 Vocabulary Reduction for Partial-word Corrections

Earlier in this chapter (see Section 4.3.3), partial-word correction was proposed as an addi-

tional correction method, attractive mainly for data-entry and dictation applications. Correlat-

ing correction input with repair context can be applied to partial-word correction, resulting in

a significant improvement in partial-word correction accuracy as follows.

Vocabulary reduction for partial-word corrections exploits constraints on the level of words.

The recognition vocabulary for partial-word corrections (insertion or substitution repairs) is

limited to all words that complete the word fragment to a word within the word-level vocabu-

lary. The following example for large vocabulary dictation illustrates the idea. Assuming that

the user dictated "The market seems to continue very favorably for Blue Chip stocks", and the

system recognized "The market seemed to continue very favorably for Blue Chip stocks". The

word "seems" was misrecognized as "seemed". The user decides to try a partial-word correc-

tion and selects the final "s" in "seems". By applying the vocabulary reduction algorithm

described above, only the words "seem", "seemed", "seeming", "seemingly", and "seems"

match the word fragment "seem" within a standard 20,000 word vocabulary. Knowing that
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"seems" cannot be the correct alternative, and applying the vocabulary reduction algorithm,

the recognition of the following partial-word correction input can therefore be limited to the

character sequences "ed", "ing", "ingly", instead of arbitrary character sequences. Figure 4-8

below illustrates the situation. Although we described corrections by replacing the end of the

word, the technique applies to corrections at the beginning or in the middle of a word. 

Figure 4-8.  Vocabulary reduction in partial-word correction of "seem"

Vocabulary reduction for partial-word correction was evaluated on the subsets of corrections

by handwriting and spelling from our database of multimodal corrections. Table 9 compares

the correction accuracy for correction on the level of whole words with partial-word correc-

tions. Partial-word corrections are significantly more accurate (p<0.05). 

In summary, vocabulary reduction makes partial-word corrections superior in accuracy to

word-level corrections. The result is a significant increase in correction accuracy. Other algo-

rithms that correlate correction input with repair context, such as N-gram context modeling

and biasing towards frequent recognition errors, can be applied to partial-word corrections in

addition to vocabulary reduction. Yet this observation alone does not ensure that partial-word

corrections actually expedite the correction process, as we will see in the evaluation of partial-

word correction in a user study, as presented in Chapter 8.

Table 9: Increase of partial-word correction accuracy by vocabulary reduction 

Experiment Condition Spelling Handwriting

whole word corrections 84% 76%

partial word corrections 97% 81%

... market seems    to ...
ed
ing
ingly
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Figure 4-9 below illustrates the improvement of correction accuracy obtained by various algo-

rithms that correlate correction input with the context of repair, which were presented in this

section.

Figure 4-9.  Improvement of correction accuracy by different algorithms that 
correlate correction input with the repair context

4.5 Towards a Self-Improving System

For any application with limited performance, it is useful to have methods that can improve

application performance "on the job". This applies in particular to (multimodal) speech recog-

nition applications, because the main factor limiting system performance is the recognition

accuracy of the multimodal components. Accuracy of automatic recognition is bounded by

two factors: the recognition algorithms, and the quality of the (statistical) models that are used

during automatic recognition.

The quality of a recognizer’s models can be improved "on the job". This section outlines two

methods that were examined as part of this thesis work: adapting the acoustic models of the

continuous speech recognizer, and dynamically adding new words to the vocabulary. First, the

acoustic models are one of the major knowledge sources used during automatic speech recog-
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nition. Adapting the acoustic models - to the current acoustic environment, to the current user,

or to the task- improves recognition accuracy considerably. The first subsection briefly dis-

cusses integration of acoustic model adaptation with interactive error correction. Second, the

fact that automatic recognizers typically recognize only words within a given vocabulary is

one of the major limitations of current recognition technology. Interactive error correction - as

presented in this chapter - did not address this problem. However, provided the user realizes

that a repeated recognition error is probably due to the presence of a new word, they can be

eliminated "on the job" by dynamically adding new words to the system’s vocabulary. The

second subsection outlines an algorithm to dynamically add new words, ensuring vocabulary

consistency when several recognizers are employed.

4.5.1 Integrating Acoustic Model Adaptation

This section briefly outlines different methods to adapt the acoustic models of a speech recog-

nizer. In addition, benefits from integrating acoustic model adaptation with interactive error

correction are described.

Within the field of automatic speech recognition, it is widely known that speaker dependent

continuous recognition is more accurate than speaker independent recognition. For applica-

tions where one user interacts with the system over longer periods of time, continuous speech

recognition performance can be improved by adapting the acoustic models to the current user.

This idea is exploited in all current commercial dictation systems. Since the performance

improvement is significant, most commercial systems make acoustic model adaptation man-

datory for every new user, in the form of an "enrollment session". Obviously, adapting the

acoustic models to the current user is not an option for walk-up-and-use applications.

Other methods to adapt the acoustic models include: adaptation to the acoustic environment,

adaptation to the task, and improving acoustic models on consistently misrecognized words.

First, adaptation to the acoustic environment is frequently realized the same way as adaptation

to the user. In fact, the way that adaptation to the user is commonly realized (by collecting a
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number of speech samples from the current user in an "enrollment" session) automatically

adapts the acoustic models to the environment, in addition to adapting to the user. This can

lead to problems when an application is used in various kinds of acoustic environments. For

example, performance of an automatic dictation system can deteriorate dramatically when it is

moved to a noisier room. Second, adaptation to the task is typically employed during applica-

tion development. The speech recognition community shares an infrastructure of commonly

used standard speech databases that are indispensable for the development of any recognizer.

To achieve high performance on any specific application, it is necessary to adapt generic

acoustic models, which are trained on such a standard speech database, to the application’s

task. Generic acoustic models can be adapted to a specific task by collecting a sufficient

amount of speech samples on the specific task, and retraining the acoustic models with that

additional data. Third, the acoustic models of a continuous speech recognizer can be improved

on words that are frequently misrecognized by adapting the models specifically on such

words. Such methods are integrated in commercially available dictation systems (e.g., IBM’s

Via Voice).

Integrating acoustic model adaptation with interactive error correction is beneficial for the fol-

lowing reason: the performance improvement of acoustic model adaptation is higher when the

learning is supervised, i.e. if the reference text is available. During adaptation of a recognizer

to the current user in an enrollment session, as described in the first paragraph of this section,

the reference is known since the user is prompted to read certain sentences out loud. During

regular use of a speech recognition application, the reference is usually not known. However,

after interactive error correction, the reference text for the speech input is available. This

knowledge can be used to improve recognition accuracy incrementally through supervised

acoustic model adaptation.
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4.5.2 Adding New Words to the Vocabulary

One known limitation of current recognition technology is the fact that only words within a

given vocabulary can be recognized. This limitation is not intuitive to most users, as informal

observations confirm: "Users of a speech recognition system are surprised when the system

knows one form of a word but not another" (p. 207 in [Rhyne and Wolf 1993]). 

One solution to the problem is to offer interactive methods to dynamically add new words to

an application’s vocabulary. Current commercial dictation systems offer to add new words to

the continuous speech recognizer’s vocabulary by typing them in. For a multimodal speech

recognition application, the situation is more complicated; to ensure consistency across multi-

ple modalities, new words must be added to all multimodal components (that support word

input). Consistency across multiple components can be ensured using the "observer" design

pattern, known from object-oriented software engineering [Gamma 1995]. The following

paragraph briefly describes this algorithm.

An object-oriented model of a multimodal speech recognition application that integrates inter-

active error correction includes (among others) the following objects: subsystems for auto-

matic recognition of different input modalities, and objects modeling the repair context (i.e.,

all information required for the algorithms that correlate correction input with the repair con-

text, as described in Section 4.4). For multimodal interactive correction as presented in this

dissertation, the relevant subsystems include: audio input subsystem (continuous speech,

spelled sequences of letters), pen input (handwriting, pen-drawn gestures), and repair con-

text1. 

Within this object-oriented model of multimodal applications, adding words dynamically to

the vocabularies of all recognizers can be realized as follows. The "repair context" model

offers a method to dynamically add a specific word, given as its orthographic spelling. This

1. The system architecture for the multimodal dictation system developed in this thesis is described in 
Section 5.3 in more detail.
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method may be triggered by a user request, e.g. the user pressing a certain button, or issuing

an "add word" command from some menu. The application’s input subsystems are subscribed

to the repair context as "observers", and the input subsystems therefore receive an "update"

call for each "add word" call. The update call includes the orthographic transcription of the

new word as argument. This update call is forwarded to any recognizer subscribed to an input

subsystem. Each recognizer implements a specific "add word" method that performs the nec-

essary steps to update the recognizer’s vocabulary. Thus, the new word is added to the vocabu-

laries of all recognizers within a multimodal application, ensuring vocabulary consistency.

Figure 4-10 illustrates the general flow of method calls while dynamically adding the word

"Suhm" to the application’s vocabulary. Although the gesture recognizer receives a call to

update its vocabulary, it will obviously ignore such a call, since a gesture recognizer does not

support word level input.

Before being able to interactively add new words, the words must be detected within user

input and distinguished from recognition errors that are due to other causes. Therefore, inter-

actively adding new words to an application’s vocabulary solves only half of the "new word

problem". Algorithms to automatically detect new words in user input are not yet sufficiently

reliable (cf. the literature review in Chapter 2). A general solution to this problem is left as a

challenge for future research.
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Figure 4-10.  Algorithm to dynamically add new words within a multimodal 
application

In summary, this chapter described the general approach and implementation of multimodal

interactive error correction. The set of multimodal correction tools developed in this disserta-

tion includes: repeating input by spelling and handwriting, editing using pen-drawn gestures,

and (cross-modal) partial-word corrections. Since recognizing correction input is challenging,

modifications to standard recognition algorithms are necessary to recognize multimodal cor-

rections with high accuracy. We presented three algorithms that increase correction accuracy

by correlating correction input with repair context: word context modeling (that exploits lan-

guage model constraints in interpreting correction input), bias towards frequently misrecog-

nized words, and vocabulary reduction for partial-word corrections. Using these algorithms,

cross-modal corrections using spelling or handwriting are 80-90% accurate, compared to 50%

for unimodal correction using continuous speech.

User request: add word "Suhm"
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5. A Multimodal Dictation System Prototype

This chapter describes the prototype multimodal dictation system that was developed in this

thesis work. The prototype serves two purposes: first, to demonstrate the effectiveness of mul-

timodal interactive error recovery in a potentially useful speech recognition application; and

second, to compare different interactive error-correction methods in user studies.

Section 5.1 presents background information on dictation systems: for what kinds of tasks dic-

tation systems are useful, and other text production methods used historically. Section 5.2

describes how multimodal interactive error recovery was implemented in the context of a dic-

tation application to build a multimodal dictation system: what correction methods were cho-

sen, how application-specific issues such as triggering of different methods were solved, and

what editing gestures are supported. Section 5.3 describes how the processing of multimodal

input was implemented. Both the general system architecture and the algorithms for automatic

classification of input modalities presented here may be useful for other multimodal applica-

tions. Finally, Section 5.4 discusses hardware issues. While audio hardware belongs to the

standard features in all PCs and laptops, a good (and affordable) solution for displays on

which users can write has yet to be found.

5.1 Dictation Systems

Document generation, or more generally data entry, plays an important role in today’s work-

places. The methods used for document generation have evolved over time - from handwriting

to book print, (mechanical) typewriters, and word processors. The first commercial automatic

dictation systems have recently become available. As a prominent example of a non-conversa-

tional speech recognition application with a graphic user interface, dictation was chosen for
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this dissertation to demonstrate the effectiveness of multimodal interactive error correction.

This section provides background information on dictation systems. The first subsection dis-

tinguishes between the two tasks that dictation systems can support: text reproduction and text

composition. Then, a brief review of text-production methods follows, from handwriting via

print to automatic listening typewriters (also called dictation systems). Previous studies on

dictation systems present important background information for evaluation issues. A review

of such studies is therefore deferred to the evaluation part of this dissertation, in Chapter 6.

5.1.1 Text Reproduction versus Text Composition

Dictation systems can support different tasks. The task of text reproduction or transcription is

to recreate some given text in machine-readable format. Typing a handwritten or dictated

manuscript are typical examples of text reproduction tasks. Text composition focuses on the

creative act of generating the text. Examples include dictation of a business letter to a secre-

tary by an executive, composition of electronic mail, writing a paper or a book. Converting the

text into a medium suitable for printing is only a secondary concern in such tasks. Extending

the type of content being created, future "dictation" systems may support the generation for

multimedia documents (e.g., Web authoring tools).

5.1.2 From Handwriting to Listening Typewriters

Until this century, text production methods were limited to handwriting, dictating text to a

scribe or secretary, and print (for the dissemination of written material in larger quantities).

How did text production methods evolve during the past century? The invention of the type-

writer revolutionized text production. Typewriters made it possible to generate high-quality

documents efficiently. Since the 1950’s, tape recorders (used as dictation machines) made it

possible to separate the process of dictating text from the process of producing a written form

of the text. Not long after the invention of computers, engineers dreamed about replacing the

standard keyboard with automatically recognizing speech, in a so-called listening typewriter

(or dictation system). Gestures and handwriting as input to computers have been considered
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since the 1960’s; more recently, with progresses in miniaturization of computer technology,

the development of portable devices has led to the creation of a new subfield of computer

applications called "pen-computing". Both continuous speech dictation systems (listening

typewriters) and small hand-held devices that support handwriting recognition have become

available commercially since the 1990’s. 

The following quotations from well-known researchers are intended to give the reader an

impression of the fascination that a listening typewriter has exercised on the field. A listening

typewriter has been termed the "holy grail of ASR" (Automatic Speech Recognition technol-

ogy) [Baber and Hone 1993]. One of the most enthusiastic pledges for the usefulness of such

an application can be found in [Gould, Conti et al. 1983]. We ask the reader’s pardon for

reproducing this quotation in full. "A listening typewriter is a potentially valuable aid in com-

posing letters, memos, and documents. Indeed, it might be a revolutionary office tool, just as

the typewriter, telephone, and computer have been. With a listening typewriter, an author

could dictate a letter, memo, or report. What he or she says would be automatically recognized

and displayed in front of him or her. A listening typewriter would combine the best features of

dictating (e.g., rapid human output) and the best features of writing (e.g., visual record, easy

editing). No human typist would be required, and no delay would occur between the time an

author creates a letter and when he or she gets it back in typed form. This might lead to faster

and better initial composition by the author, psychological closure because of no wait for (and

uncertainty about) a typed copy, quicker and better communication, and displaceable typing

and organizational costs." The near future will reveal whether automatic listening typewriters

are ready to live up to these claims.

5.2 Multimodal Interactive Error Recovery for Dictation Applications

A multimodal dictation system (or multimodal text editor) is an automatic listening typewriter

that offers effective keyboard-free editing and error correction using multimodal interactive

correction methods. This section describes how multimodal interactive error recovery (as
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introduced in general terms in the previous chapter) was integrated with a state-of-the-art

large vocabulary dictation system to build a multimodal dictation system prototype. 

5.2.1 Locating Recognition Errors

For locating recognition errors, two approaches were implemented and evaluated in the multi-

modal dictation system prototype: one user-initiated and one system-initiated method. For

user-initiated detection and location of recognition errors, the recognition hypothesis is pre-

sented visually on the screen. The user reviews the recognition result and selects recognition

errors by tapping on words. For system-initiated detection and location of recognition errors,

automatic highlighting of errors based on confidence measures was implemented and evalu-

ated, as described in more detail in the following paragraphs.

Confidence measures can be used to detect and locate recognition errors by applying a thresh-

old criterion on the confidence scores; if the confidence score for a word exceeds the threshold

the word is tagged as correct, otherwise it is tagged as a recognition error. This application of

confidence measures to the problem of error identification was proposed previously in [Chase

1997]. Confidence measures themselves are not reliable, therefore the tags assigned to the

words may be incorrect. More specifically, misrecognized words may mistakenly be tagged as

"correct" (i.e., missed detections of recognition errors), and actually correctly recognized

words may be tagged as recognition error (i.e., false alarms). Hence, an automatic method to

highlight errors based on imperfect confidence measure must balance missed detections and

false alarms. The following paragraph describes how this was achieved for the automatic high-

lighting of errors in the multimodal dictation system.

Assuming both missed detections and false alarms are equally harmful1, the threshold can be

tuned to minimize the number of classification errors. Figure 5-1 shows the number of classi-

fication errors (the sum of missed detections and false alarms) across different thresholds. The

confidence tagger is based on the gamma feature.2 A detailed description of gamma can be

1. Future research is needed to determine whether this assumption is valid.
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found in Kemp’s paper [Kemp and Schaaf 1997]. To apply gamma in the multimodal dictation

system, the best error classification performance of 89% is achieved with a threshold 0.6.

Figure 5-1.  Optimizing threshold for system-initiated location of recognition 
errors based on confidence measures

The method of automatically locating recognition errors described above was evaluated in

user studies. To determine the impact of classification errors, the imperfect methods are com-

pared to a perfect automatic error locating algorithm using a cheating experiment (i.e., auto-

matically locating errors based on knowledge of the true input). For more information, refer to

the evaluation in Chapter 8.

5.2.2 Interactive Correction

The multimodal dictation system prototype provides the following methods for interactive

correction of recognition errors: unimodal correction by respeaking, cross-modal correction

2. Gamma (see Section 2.1.2) was evaluated on the set of initial dictated sentences from the database of 
multimodal corrections (cf. the introduction of Section 4.4), and using the JANUS WSJ large vocab-
ulary recognizer (see Section 3.1.1). The recognition word accuracy on this test set was about 83%.
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by repeating input using spelling or handwriting, cross-modal partial-word corrections using

spelling or handwriting, choosing from a list of alternatives, and editing using pen-drawn ges-

tures. The correction algorithms were described in Section 5.2 in the previous chapter and

needs no further description. This section focuses on specific design problems that were

encountered during implementation of these correction algorithms for the multimodal dicta-

tion system prototype. 

The most difficult design problems can be summarized under the issue of how to trigger and

distinguish different correction modalities. Table 10 enumerates these design problems, the

different designs that were tried, and the usability problems of each design. Faced with these

design problems, the following decisions were made for the multimodal dictation system pro-

totype (in the order presented in the table). First, to trigger the list of alternatives, the pull-

down gesture proved to be too unreliable to recognize automatically, and too confusing to the

user. Instead, touching a word for an extended moment (approximately one second) appeared

to work best in our informal user tests. Second, to distinguish between the two speech modal-

ities (continuous speech and spelling), separate buttons were introduced (one for continuous

speech, and one for spelling). Automatic classification of speech input in continuous speech

and spelling is the desired solution, but too unreliable with current technology on large vocab-

ulary tasks1. Finally, the end of the two types of pen input (handwriting and editing gestures)

was determined using a time-out of approximately one second of no pen input.

1. Algorithms to automatically distinguish continuous speech from spelled letter sequences were devel-
oped and evaluated in the context of locating spelling sequences, which are embedded in spontane-
ous dialogues [Hild and Waibel 1995]. However, the vocabulary size was much smaller (only 3,000 
words); therefore, this task is significantly easier than 20,000 words necessary for large vocabulary 
dictation. For more information, see Section 5.3.2 later in this chapter.
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Thus far, methods to replace and insert words have been described. The following section pre-

sents the use of pen-drawn gestures to support simple editing tasks (deleting and positioning

the cursor).

5.2.3 Editing using Gestures

Simple editing tasks (such as deleting, selecting, positioning the cursor, moving items, and

formatting) can be performed efficiently using pen-drawn gestures (drawn on a writing-sensi-

tive display), as described in Section 4.3.2 in the previous chapter. The following paragraphs

describe the editing tasks that are supported in the multimodal dictation system prototype, and

Table 10: Selected design and usability problems of multimodal interactive correction

Design Problem Design Usability Problems

Trigger list of alternatives Button Clutters interface

Double tap on word Confusable with single tap on word (used to 
select word)

Touch word "long" Either slows interaction down or is confus-
able with single tap on word

"Pull-down" gesture Gesture recognizer confuses pull-down with 
other editing gestures

Distinguish continuous 
speech from spelling 

Separate button for 
each modality

Clutters interface

Classify automatically Classification imperfect and leads to addi-
tional errors

One button for continu-
ous speech, tap selec-
tion to trigger spelling

Mode errors

How to trigger inserting 
by spelling (applies only 
when tap on selection trig-

"Long" tap between 
two words

Confusable with selecting either word (or 
gap between words has to be overly large)

gers correction by spell-
ing)

Tap cursor May work well

Determine end of hand-
writing/gesture input

Time-out criterion Time-out has to be adapted to user, and 
slows interaction down

Button to launch recog-
nition on input

Users forget to press recognition button
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the set of gestures (editing marks) chosen for each of these editing tasks. 

The multimodal dictation system supports the following three editing tasks, which are the

only indispensable ones for correction of recognition errors in dictation applications: selecting

items, deleting items, and positioning the cursor. All of these operations can occur either on

the level of words (selecting or deleting one or more words, positioning the cursor between

words), or on the level of characters within a word (selecting or deleting one or more charac-

ters within a word, positioning the cursor within a word). 

There are two approaches to distinguish between word-level and character-level as the scope

for editing gestures: defining separate gestures for each scope, and determining the scope

from the interaction context. In the multimodal dictation system, the scope of editing gestures

is determined from the context. For insertions, if the mark is made between characters within

a word, the cursor is positioned between those characters (and the system switches into par-

tial-word correction mode), whereas if the mark is made between two words, the cursor is

placed between those words (and the system switches into whole-word correction mode). For

deletions, if the mark covers only some characters within a word, those characters are deleted;

if the mark covers the whole word (or several words), it is interpreted as a word-level deletion.

For selecting, a separate gesture had to be introduced because characters are small and diffi-

cult to select. Words are selected by tapping them; characters are selected by demarcating

them with two vertical bars. Figure 5-2 shows a screen shot of the multimodal dictation sys-

tem prototype, and Figure 5-3 illustrates the various types of gestures supported by the multi-

modal dictation system, across different scopes (character, word, word phrase).

Even though several designs were tried, not all usability problems with distinguishing the

scope of editing commands could be eliminated. Positioning the cursor on the character-level

is difficult at the beginning or at the end of a word, deleting characters within a word is ambig-

uous with deleting the whole word, and demarcating characters within a word remains diffi-

cult. These usability problems were alleviated in our prototype by using large fonts to display
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recognition results. Further improvements of the hardware may eventually eliminate these

usability problems (cf. Section 5.4.3).

Figure 5-2.  Snapshot of multimodal dictation system prototype
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Figure 5-3.  Editing gestures supported in the multimodal dictation system
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5.3 Processing Multimodal Input

Implementation of multimodal applications is challenging from a software engineering point

of view. First, the system architecture must support a highly distributed system. Since auto-

matic recognition requires high computational resources, each recognizer should be hosted in

a separate process, to distribute the computational burden among different computers if avail-

able. Second, input streams in different modalities must be diverted to the appropriate recog-

nizers, and the recognition result of the matching recognizer must be retrieved. To divert input

streams to the appropriate recognizers, effective and reliable methods to classify different

input modalities are required. 

This section describes how these issues were addressed in the implementation of the multimo-

dal dictation system prototype. The first subsection presents the system architecture. Using a

client-server architecture and object-oriented software design, a front-end that accepts input

and presents feedback, is separated from a back-end that performs all necessary processing.

Thus, the multimodal dictation system front-end can run in different environments (e.g., under

standard X, or in a web browser), while the computationally intensive back-end processing

can be hosted on powerful servers. The second subsection describes automatic classification

methods for audio input (continuous speech and spelling) and pen input (handwriting and

editing gestures). 

5.3.1 System Architecture of the Multimodal Dictation System

The multimodal dictation system was implemented using a client-server architecture that

could be useful for other multimodal applications. This architecture addresses two important

issues: first, it separates input capture and system feedback from all processing; second, it

implements the processing of multimodal input as a server that delegates input to the appro-

priate recognition subsystems. Both ideas are well-known within the software-engineering

and user-interface communities. The first idea makes it possible to run the application’s front-

end (the part visible to the user) in heterogeneous computing environments, for example, in
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both an X windows environment and a web browser. The second idea distributes the heavy

computational burden on the application’s back-end (needed for the automatic recognition of

multiple modalities) among several powerful server hosts. What follows is a review of the

"observer" pattern, an important design pattern of object-oriented programming that cleanly

separates visualization and feedback from the main processing. This design separates the

interface (visualization and feedback) from the back-end (recognition and interpretation) in

the multimodal dictation system prototype. The section concludes with a description of the

system architecture of the multimodal dictation system.

Strict separation of input/output from representation and processing was realized using the

"observer" design pattern of object-oriented programming [Gamma 1995]. The observer

design pattern is a generalization of the MVC (Model-View-Control) object-oriented design.

The main idea of the observer design pattern is to encapsulate the data-structures underlying

the application and all major information processing in so-called "model" objects, and to

encapsulate the control for input/output and visual representation in so-called "observer"

objects. The design pattern ensures all necessary communication between model and its

observers; any change in the model is forwarded to all observers using a generic update call.

The observers know how to represent data visually, how to accept user input, and how to pass

it on to the back-end. Several observers of the same model can realize completely different

visualizations and feedback schema. Thus, input capture and feedback can be easily adapted

to different application requirements. 

What follows is an explanation of how this design pattern can be applied to separating inter-

face from back-end processing in multimodal applications. The back-end implements the pro-

cessing of input streams and interpretation of the recognition results in different "model"

objects. Hereby, it is useful to further encapsulate recognition subsystems, data structures

associated with methods that implement the application’s functionality, and an integration

module that implements all major policies. Such policies determine how to relay input coming

from the front-end to the recognition subsystems, how to retrieve recognition results from
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them, and how to initiate appropriate actions. The front-end implements the actual user inter-

face of the application as an "observer" of the back-end. The front-end’s functionality is lim-

ited to capturing user input, communicating input to the back-end, and generating appropriate

feedback for each of the model’s "update" calls. Ideally, no input processing or interpretation

is performed in the front-end1. Figure 5-4 shows how these ideas were realized in the system

architecture of the multimodal dictation system prototype. On the front-end ("client") side,

user input is captured from two input streams: audio data (via head-set and appropriate audio-

hardware) and pen input (via a writing-sensitive display). Furthermore, the front-end inter-

prets "update" calls from the back-end for two main cases: display of the current text input,

and feedback on the status of the application (whether it is accepting new input, or currently

interpreting input). On the back-end (server) side, there are three main modules: the integra-

tion module "repair logic", the "model", and the recognition subsystems for audio and pen

input. The "repair logic" implements all major policies pertaining to multimodal interactive

error correction: relaying user input, delegating recognition to the appropriate subsystem, and

initiating the appropriate error-correction method. The "model" contains representations for

the current text and the repair context (i.e., all information necessary to implement the

advanced correction methods that correlate correction input with repair context). The recogni-

tion subsystems provide a common interface to the diverse recognizers used in this thesis

work: for audio input the continuous speech recognition JANUS recognizer and the connected

letter recognizer NSpell; and for pen input the on-line handwriting recognizer NPen and a ges-

ture recognizer.

1. Efficiency under real-time constraints can be optimized by shifting of some processing from the 
back-end to the front-end.
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Figure 5-4.  System architecture of the multimodal dictation system

Figure 5-5 illustrates how to implement interactive error correction in a general manner, appli-

cable to applications other than a multimodal dictation system. The "Correction Algorithms"

module encapsulates the error correction functionality as described in the previous chapter,
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nel" module). Both these modules subscribe to automatic recognition services, which are

encapsulated in the recognition subsystems. A recent Ph.D. thesis [Vo 1998] describes an

object-oriented approach to building a toolkit for rapid prototyping of multimodal applica-
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ules. 
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Figure 5-5.  System architecture to integrate multimodal correction in 
arbitrary applications.
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audio-input stream into continuous speech and spelling, and then how pen-input can be classi-

fied as handwriting and pen-drawn gesture, respectively.

5.3.2.1 Classifying Audio Input in Continuous Speech vs. Spelled Letter Sequences

In this thesis work, two algorithms for automatic classification of audio input into continuous

speech and spelled letter sequences were explored. The first approach is a simple application

of Hild’s method to locate sequences of spelled letters within spontaneous continuous speech

utterances [Hild and Waibel 1995]. The second employs standard pattern classification meth-

ods. These algorithms are outlined in the following two paragraphs.

Hild’s method adapts a standard continuous speech recognizer to recognize both continuous

speech and spelled sequences of letters. A speech recognition system can process both contin-

uous speech and spelled letters by modifying its dictionary to contain items for each spelled

letter, in addition to regular word-level items (e.g., an item "A - /ey/" for the letter "a", an item

"B - /b/ /iy/" for the letter "b", etc.), and by modifying the language model to include

sequences of letter items, in addition to regular word sequences. The key point is in which

contexts such letter sequences may occur. Hild was only interested in locating spelled names.

Since names tend to occur only in very specific word contexts (cf. [Suhm 1993]), the language

model can contribute significantly to locating sequences of spelled letters. For the more gen-

eral problem of distinguishing continuous speech input from sequences of spelled letters, the

distinction must be made based on acoustic evidence only. For small vocabularies (5,000

words), classification accuracy of greater than 90% was achieved, but the classification accu-

racy deteriorated to unacceptable levels on for large vocabulary dictation tasks (20,000 words

and more).

The second algorithm applies standard pattern classification methods (a linear classifier) to

separating normalized scores. Normalized recognition scores are obtained by interpreting

audio input in two ways: with a continuous speech recognizer and a connected letter recog-

nizer. The performance of this algorithm appears to be sufficiently high on small-vocabulary
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tasks (e.g., 95% classification accuracy with a 1,000-word Wall Street Journal vocabulary),

but the algorithm does not scale to large-vocabulary dictation.

Since the accuracy of automatic classification methods was insufficient, the multimodal dicta-

tion system prototype classifies into continuous speech and spelled sequences of letters based

on the interaction context. The user interface contains two separate buttons, one to activate

continuous speech input, and another to activate spelling input. Although this simple method

clutters the user interface with two buttons, it avoids mode errors (users confusing continuous

speech and spelling input), and no additional errors are introduced due to incorrect classifica-

tion of modalities.

5.3.2.2 Cursive Handwriting vs. Pen-drawn Gestures

An automatic classification algorithm was developed to distinguish between two types of pen

input: cursive handwriting and pen-drawn gestures. The algorithm is based on the fact that the

recognition scores for gesture and handwriting input are sufficiently different. For the tem-

plate-matching gesture recognizer employed in this thesis work, the Mahalanobis distance

proved to be the most useful feature in distinguishing gesture from handwriting; the distance

is significantly higher on cursive handwriting input than on gesture input. When aided by

additional application-specific heuristics (e.g., the ratio of the pen trajectory over a word helps

to identify deletion gestures), automatic classification of gesture and handwriting input is

more than 90% accurate. Problematic is handwriting input consisting of only one letter, which

consistently led to classification errors in the prototype.

5.4 Hardware

A multimodal interactive dictation system reacts to speech as a "natural" and efficient com-

munication medium, and imitates some favorable properties of paper, including salient visual

feedback and convenient storage and information editing. Consequently, there are two chal-

lenges for the input hardware of a multimodal dictation system: capture of audio input and

capture of pen input. For audio input, headsets in different forms are still the best option for
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desktop applications, although they may be uncomfortable to wear. They are necessary since

close-speaking microphones are necessary for good speech recognition performance on large

vocabulary dictation. For pen input, the feel of editing on paper should be imitated. In the

course of developing the prototype, several display and pen-input technologies were tried. A

touch-screen provided the best trade-off among currently available hardware. Since audio

input is considered standard and needs no further description in this dissertation, the following

sections focus on hardware for pen input, in particular, flat-panel and touch-sensitive display

technologies. 

5.4.1 Flat-Panel Displays

Flat-panel displays can be divided into two categories: active displays, which emit light, and

passive displays, which reflect lighting coming from other sources. Figure 5-6 shows a taxon-

omy of flat-panel technologies that is based both on a comprehensive (yet somewhat out-

dated) survey [Tannas 1985], and on a more recent survey [Harding, Martin et al. 1996].

Figure 5-6.  Taxonomy of flat-panel displays

Table 11 compares the main characteristics of most current flat-panel display technologies

(adapted from [Kankaanpaa 1988]). This paragraph discusses pros and cons of each of these

technologies. Electrolumniscent panels operate at low voltages, thus decreasing the overall

power consumption of a system. This issue is particularly important for small portable

devices, which are becoming increasingly popular. The main problem with LCD is low con-
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trast and thus poor legibility, whereas the major obstacles of using plasma displays are high

cost and unattractive appearance. Recently, TFT displays have been widely used for laptops.

Color has become standard, and resolutions comparable to much larger CRT displays

(1200x1025) have become available.

5.4.2 Touch-Sensitive Panels

Touch-sensitive panels are still under development. Figure 5-7 classifies the most important

technologies for display pointing devices.

Figure 5-7.  Taxonomy of pen input devices

This paragraph discusses some advantages and disadvantages of the different pen-input

devices (based on [Kankaanpaa 1988], p. 73). With optical-resistive sensors, any stylus can be

used. Capacitive methods work with any conductor, including a finger. Most capacitive tech-

nologies cannot distinguish between the touch of a stylus and the touch of parts of the hand;

Table 11: Characteristics of important flat-panel displays 

Characteristic CRT Plasma EL Active 
Matrix LCD

Passive 
Matrix LCD

Max. physical Size 25’’ diago-
nal

40’’ diago-
nal

17’’ diagonal 21’’ diago-
nal

10’’ diago-
nal

Max. Resolution 2048 x 2048 1200 x 1600 1024x800 1280x1024 640 x 480

Thickness >> 2’’ 0.5’’ 0.25’’ 0.25’’ 0.25’’

Weight heavy light very light  light light

Contrast good medium good medium poor

Lifetime 10,000 h > 40,000 h 30,000 h > 30,000 h >30,000 h

Light Pen Wave Methods Touch Sensitive

Optical Acoustic Resistive Capacitive
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whenever several points touch the display, the average position is returned as sensor value.

This leads to severe usability problems since a user cannot rest the wrist while handwriting or

gesturing on the display. Light pens and resistive sensors eliminate this problem because they

ignore input other than the pen, therefore neither fingers nor wrist can corrupt pen input. How-

ever, the data-transfer rate of current light pens is a too small to ensure a smooth trace of the

trajectory in handwriting, which is very disturbing for handwriting input1.

5.4.3 Hardware Decisions for the Multimodal Dictation System

Which hardware decisions were made for the multimodal dictation system prototype? There

was no alternative to using headsets with close-speaking microphones for audio-input. This

section discusses alternatives evaluated for pen-input.

Finding an appropriate pen input device proved to be a challenging hardware problem in the

development of the multimodal dictation system prototype. A good pen-input device and writ-

ing-sensitive display are crucial to minimize usability problems with handwriting and gesture

Table 12: Comparison of touch-sensitive display technologies

Characterist
ic Resistive Capacitive Optical Acoustic Light Pen

Resolution 4000 x 4000 100 x 100 < 100 x 100 2000 x 2000 1000 x 1000

Optical 
Clarity

medium medium good good good

Pointing 
Device

stylus any conduc-
tor

any any stylus

Usability 
for Hand-
writing

good if data 
transfer rate 
from stylus 
high enough

good if wrist 
can be rested 
on display

(not tried) (not tried) bad: delay 
between 
movement 
and display

Calibration 
Procedure

not necessary not necessary can be awk-
ward

Cost medium medium medium high medium

1. We tried a product by Interactive Computer Products, Inc.
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input. In particular, the writing-sensitive display panel may not have a parallax between the

writing-sensitive surface and the actual display surface. A parallax occurs when the display

has considerable thickness and the pointing device is not perpendicular to the display. 

A number of pen-input devices and writing-sensitive displays were tried in the course of this

thesis work. We enumerate them and briefly describe the problem(s) encountered with each:

• Touchscreen mounted on CRT: Wrist cannot be rested on screen while writing. For

all user studies reported in this dissertation, this hardware was employed to capture

pen input.

• WACOM PL-300 LCD Tablet: Screen size is very small (400x600 pixels), and

data-transfer rate of resistive technology is too low to ensure smooth handwriting

trajectories.

• National Display Systems Touch-Laptop: Capacitive touchscreen that can ignore

touches by the writer’s wrist (good). However, no touchscreen driver available for

LINUX, and performance problems with sampling of pen input when front-end

runs in a web browser on a laptop.

• FUJITSU STYLISTIC 1200: Appears to be a much more adequate (yet very

expensive) input device, but was not available for the user studies in this disserta-

tion work.

In summary, this chapter described how the various pieces of interactive multimodal correc-

tion were put together and integrated with a state-of-the-art large vocabulary dictation recog-

nizer to build a prototype multimodal dictation system. We presented a method to

automatically highlight likely recognition errors in the output hypothesis, the set of supported

editing gestures, and algorithms to automatically classify different types of audio and pen

input. We described usability engineering problems that were encountered during the iterative

design process of building the user interface for the multimodal dictation system, and issues in
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the choice of hardware. All these problems are not specific to a multimodal dictation system,

and may be useful for the design of other multimodal applications.



Part 2: Evaluation



134 General Approach for Part II: Evaluation

Baber/Hone, among the first researchers to address the problem of error correction in speech

user interfaces, noted that "... it is often difficult to compare the (correction) techniques objec-

tively because their performance is closely related to their implementation. Furthermore, dif-

ferent techniques may be more suited to different applications and domains." (from [Baber

and Hone 1993]). A number of user interface evaluation methodologies, including acceptance

tests, expert reviews, surveys, usability tests, and field tests are accepted in the field of

human-computer interaction [Shneiderman 1997]. For research on novel user interfaces, two

approaches have predominated: modeling and user studies.1 The former focuses on quantita-

tive models of (specific aspects of) human-computer interaction that are based on fundamen-

tal properties of human cognitive capabilities. Examples include cognitive models (e.g.,

GOMS [Card, Moran et al. 1980], SOAR), but also performance models that may be more

specific to certain kinds of human-computer interaction.

While usability tests with human participants and real speech recognition systems present a

rigorous methodology for evaluating efficiency of error-correction techniques, an evaluation

approach based on user studies has the following limitations:

• External validity. Experimental results depend on the specific speech recognizer

used, as well as the task (vocabulary) and the participants (experience and train-

ing).

• Internal validity. Controlling the occurrence of errors is impossible using real rec-

ognizers.

While model-based evaluation has the advantages of low cost, abstraction from implementa-

tion details, and the possibility to iterate design cycles quickly, its usefulness for the design of

1. [Sweeney, Maguire et al. 1993] proposes a taxonomy of evaluation techniques for interactive systems 
with three main categories: user-, theory-, and expert-based approach. The user-based approach cor-
responds to user studies, and the theory-based approach to modeling. The expert-based approach 
applies mainly to product development, but not to evaluating research issues in novel interaction 
techniques, as we discuss in this context.
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concrete speech user interfaces can be questioned:

• Using average values for the important model parameters (timings and recogni-

tion accuracies) is problematic because they are known to have a large variation

across different users. In particular, if different input modalities are employed, the

"outliers" become more relevant, because they are likely to be different across

modalities. While some modality may be inferior on the average to another (e.g.,

handwriting vs. speech for input speed), it may be the only effective option for a

subset of users (e.g., handwriting as correction modality for all users with very

poor speech recognition performance, such as speakers with foreign accents).

• The assumption of perfect human performance is questionable, because the design

of a correction method determines whether or not users have problems using it.

However, both methodologies - model-based evaluation and empirical studies - complement

each other: lack of external validity of user studies can be compensated with predictions from

model based evaluation, and the impact of high variation in recognition accuracy, as well as

user errors, can be analyzed based on the rich data from user studies. The evaluation of multi-

modal interactive error correction presented in this dissertation includes both approaches.

Chapter 7 presents a simple performance model of multimodal human-computer interaction,

which is applied to multimodal interaction error correction in an automatic dictation system.

Chapter 8 presents an extensive empirical evaluation of interaction multimodal error correc-

tion. As an introduction, Chapter 6 reviews previous empirical studies relevant to dictation

systems.
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6. Previous Studies on Dictation

The way that people generate text in written form has evolved over time, from handwriting, to

dictating to machines, and using typewriters or word processors for transcription. Automatic

dictation systems (or listening typewriters) enable users to dictate text using voice instead of a

keyboard, and the text is available immediately in machine-readable format. This section

reviews previous studies of text-production methods, including dictation. Knowledge of these

studies provides important background information, and makes it possible to compare them to

the empirical evaluation of the multimodal dictation system, presented later in Chapter 8. 

The two sections of this chapter clarify terminology associated with quantitative and qualita-

tive measures and review results from empirical studies of different text production methods,

including handwriting, dictating to a secretary or tape recorder, text editors, simulated and

real1 listening typewriters.

6.1 Terminology: Quantitative and Qualitative Measures for Dictation

Most previous studies on dictation adopted task completion time as the main quantitative

measure. Task completion time can be decomposed into various time measurements. Such a

decomposition is described, along with a terminology that we adopted for the evaluation of

the multimodal dictation system.

Task completion time, in the context of dictation tasks, means the total time required to pro-

duce a certain text. A decomposition of the dictation task suggests finer grained time mea-

sures. A dictation task can be decomposed into three parts: generation of new text, reviewing

1. Prior to this dissertation, only listening typewriters (dictation systems) that require users to pause 
briefly between every word have been formally evaluated (e.g., in [Alto, Brandetti et al. 1989]).
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(editing), and pauses. Figure 6-1 shows a decomposition of the task completion time that cor-

responds to this decomposition: time necessary to generate the raw text (generation time),

time for correcting and editing (review time), and pause times. The generation time can be

subdivided further into time to compose text in the user’s mind (composition time), and time to

dictate the text (dictation time). The review time can be subdivided into time necessary to cor-

rect recognition errors (correction time), and time to revise and modify the text (revision time).

Figure 6-1.  Decomposition of dictation task completion time

Depending on the type of dictation task used in an empirical study, some of these time mea-

surements may not apply. For instance, in text composition tasks (such as composing a letter

or a report), there are composition and revision times. By contrast, in text reproduction tasks,

dictation task completion time decomposes solely into dictation, correction, and pause time.

The latter decomposition will be relevant for the empirical evaluation of the multimodal dicta-

tion system presented in the next chapter.

Besides time as main quantitative measure, some studies investigate qualitative measures.

These measures attempt to capture the process and the quality of the text produced, including:

• Ratio of time spent on correction, as a percentage of error-free time.

• Preference ratings, e.g., for modalities or methods employed.

• Quality ratings of the produced text, e.g., final errors (incorrect words left after the

revision phase) or how convincing the text is.

Dictation Task Completion Time

Generation Time Pause Time Review Time

Composition Dictation Correction Revision
Time TimeTimeTime
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In summary, various time measurements are commonly used in the evaluation of listening

typewriters; however, other measurements such as quality of the output and user preferences

may be equally important, especially for composition tasks. The remainder of this dissertation

evaluates interactive error correction in the context of text reproduction tasks. Therefore, we

have to deal only with some of the times from Figure 6-1, and they relate to measures defined

in the next chapter as follows: "Dictation Time" as the time to actually dictate the text will be

measured as input speed VInput(dictate), "Pause Time" will be part of the overhead time TOver-

head , and "Correction Time" will be measured as correction speed VCorrect. 

6.2 Studies on Dictation

Before reviewing of studies on dictation, this section comments briefly on the kinds of evalu-

ation methodologies and potential confounding factors when comparing results across studies.

Previous studies on dictation are reviewed, beginning with Gould’s study on the way experts

(business executives) dictate. This study evaluates handwriting, dictating to a machine, and

speech, as dictation methods. It provides important baseline numbers on handwriting and text

composition speeds. An important insight into the nature of dictation tasks is that the main

factor limiting composition speed may not be input speed but dictation skill. This study was

later extended to include a simulated listening typewriter. The follow-up study concluded that

imperfect listening typewriters would be useful in composition tasks. 

Roberts and Card introduce another line of work by presenting a methodology for evaluation

of text editors. The methodology employs a set of benchmark tasks, which is relevant to inter-

pret some other studies presented (since they adopted or extended this methodology). One

such study evaluated the use of gestures for editing in text editors - an idea that this disserta-

tion extended by using gestures as one of the multimodal error-correction methods. Finally,

results from studies that used real (not simulated) listening typewriters are reviewed; an early

study by IBM compared text reproduction by voice and keyboard input. The results of this

study are not relevant for today’s continuous dictation systems because voice input in this
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study required the user to pause between every word. However, the experiment design of this

study served as a starting point for the evaluation of the multimodal dictation system proto-

type. A later study evaluated the usefulness of IBM’s continuous speech dictation product for

creation of medical reports, concluding that dictation systems are not acceptable for highly

trained professionals (such as radiologists) unless recognition accuracy is almost perfect. 

6.2.1 Comments on Comparing Dictation Studies

This section points out issues that are important in interpreting the studies presented in the

next section. Each study differ in its basic evaluation methodology and in a number of other

ways, which makes comparisons among them difficult and which must be taken into consider-

ation when interpreting the results. 

The kind of task defines two main evaluation methodologies: a set of benchmark tasks vs. text

composition tasks. All previous studies of text editors are based on performance measure-

ments on benchmark correction tasks, applying Roberts and Card’s evaluation methodology

[Roberts and Moran 1983]. By contrast, Gould’s studies on how experts dictate, and all studies

on simulated listening typewriters, employed text composition tasks.

Caution must be exercised when interpreting the results of these studies, because various con-

founding variables must be considered. The most important potential confounding variables

include:

• Task: Some studies evaluate text reproduction tasks (people reading some given

text), and others investigate text composition tasks. Although both tasks involve

text input into a computer system, the importance of text input speed differs for

each; for text reproduction it is the main limiting factor, whereas for composition

tasks, composition skill appears to have at least equal importance.
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• Typing speed and speaking rate: Many studies do not control for either typing

speed or speaking rate (which differ considerably across speakers, cf. [Pallett, Fis-

cus et al. 1994]).

• Correction time: Most studies exclude errors that take only a short time to recover

(e.g., less than 15 seconds). This assumption is reasonable when time measure-

ments are taken with stopwatches by human experimenters (such as in many of the

earlier studies), because such measurements are not accurate for short intervals.

However, ignoring all short errors also means that all typing errors are excluded

from the analyses. Borenstein [Borenstein 1985] quantifies the inaccuracy intro-

duced by this shortcoming. He estimates how much correction time is lost, across

several error times that are being ignored. For example, ignoring all corrections

less than 15 seconds long eliminates as much as 50% of the total time spent on cor-

rections; cutting off at 5 seconds leads to an estimated 12.5% error.

• Simulation issues (applies to studies on listening typewriters only): Slow speed of

listening typewriter can severely limit the potential gain in speed by a listening

typewriter. Furthermore, the method that is used to simulate recognition errors is

frequently questionable (unless real recognition errors are used).

6.2.2 Review of Experimental Results 

The first formal evaluation of text-production methods was Gould’s study on the way in which

experts dictate [Gould 1978]. Business executives were instructed to compose two types of

business letters (routine and complex) using four different methods: handwriting, handwriting

without visual feedback, dictating to a secretary, and speaking (which means in this context

pretending to speak in front of an audience). There were four key findings. First, dictating

does not take a long time to learn (assuming the skill to compose text is already well devel-

oped). Second, the improvement in dictation speed through years of practice is only small, and

far below the difference between novice dictation speed and speaking rate of up to 200 wpm
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(words per minute), measured for reproducing some given text. The speaking rate while

simultaneously composing the dictated text is much lower, in the order of 40 wpm. Third,

there are significant qualitative differences between dictating and writing, primarily in the

quality of the produced text. And finally, an easily reviewed external record, for example, in

the form of writing appearing on the paper, appears to be important. This study investigated

dictation in a realistic setting, and the participants represent users for which dictation systems

are intended (highly trained professionals). The study provided baselines on input and compo-

sition speeds for handwriting and dictation. The study also addressed the more theoretical

issue of whether dictation can be considered a skill. Furthermore, since even experts in dicta-

tion do not come close to the maximum speaking rate, composition skill is probably the main

limiting factor for dictation performance. 

Table 13 summarizes the most important quantitative results of this study: a comparison of

input (production) and composition speeds, and how much time is spent on planning (i.e.,

composition time in the terminology introduced in the previous section). The composition

speed is the main performance variable in this table. The production speed of dictation to a

secretary includes waiting for the secretary to catch up, clarifications, and instructions; there-

fore, listening typewriters can achieve significantly higher productions speeds. Isolated word

listening typewriters slow dictation down since they require the user to briefly pause between

every word, thus the significant lower production and composition speeds, compared with

Table 13: Text production and composition times [Gould 1978]

Method Production 
Speed (wpm)

Composition 
Speed (wpm)

Time spent on 
planning

Handwriting 17 13 67%

Dictating to Secretary 35 19 67%

Simulated Isolated Word Listening 
Typewriter

36 8 78%

Simulated Continuous Speech Listen-
ing Typewriter (from [Gould, Conti et 
al. 1983])

57 16 72%



Previous Studies on Dictation 143

continuous speech listening typewriters.

As a follow-up to this study, Gould investigated listening typewriters [Gould, Conti et al.

1983]. This study suggested that an imperfect listening typewriter would be useful in compos-

ing letters; listening typewriters were at least as efficient as traditional methods (handwriting,

typewriting), and participants preferred the listening typewriter, despite the slow speed of the

simulated listening typewriter. The study cautioned that speed and accuracy are a major con-

cern, especially for experienced users. 

That accuracy may be the most important factor in determining user acceptance of speech rec-

ognition applications was recently confirmed in a study of a commercial "real" listening type-

writer on a report creation task [Lai and Vergo 1997]. Having the radiologists dictate the

reports directly into a listening typewriter, rather than using transcription services, reduced the

turn-around time (from when the radiologists dictates until he receives a written draft for revi-

sion) considerably overall. But the radiologists had to spent more of their time, because they

had to correct the recognition errors. Consequently, the radiologists preferred the old method

of dictating into a tape recorder and waiting for a typist to type the report. The study con-

cluded that recognition is the most important factor determining acceptance of speech recog-

nition technology by highly specialized professionals. However, delegating the correction of

recognition errors to less trained personnels would reduce the time that the radiologists spend

on creating a report considerably, and would probably lead to a much more favorable evalua-

tion of dictation by the radiologists.

Roberts [Roberts and Moran 1983] developed a methodology to evaluate text editors and pre-

sented results from an empirical comparison of seven editors. The methodology compares text

editors on a set of benchmark correction tasks. As dependent measures, time, errors, learning,

and functionality are used. Since all of the editors still had command-line interfaces, instead

of today’s WIMP-based (Windows, Icons, Menus, Pointing) word processors, the results are

no longer relevant. Moreover, the results on error performance are difficult to interpret since
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all "small" errors were excluded from the analysis (cf. the remarks at the end of the introduc-

tory section in this chapter). The most valuable contribution of Roberts’ work was the first for-

mal evaluation methodology for text editors. Borenstein provided a critical review of Roberts’

evaluation methodology and presents quantitative data on the effect of various confounding

variables [Borenstein 1985]. Borenstein’s study included more recent WIMP-based editors.

He pointed out that the functionality dimension in Roberts’ methodology will soon become

out-dated as vendors continue to expand word-processor functionality. 

In an empirical evaluation of a text editor, Kankaanpaa [Kankaanpaa 1988] applied Roberts’

approach of measuring completion time for a set of benchmark editing tasks. The text editor

used standard editing marks which the user draws directly on the display of a flat-panel touch-

sensitive display. Instead of having real participants perform real tasks, the study predicted

completion times using a keystroke-level GOMS model [Card, Moran et al. 1980]. Kankaan-

paa concluded that editing using pen-drawn gesture is intuitive, and that the GOMS predic-

tions matched well with his study.

IBM conducted an early experiment with a "real" (not simulated) listening typewriter [Alto,

Brandetti et al. 1989]. The experiment evaluated text production speeds using keyboard and

voice, including the time necessary to correct errors. The results of this study are outdated as

well, because the system required the user to pause briefly between each word (isolated word

dictation). However, the study is an important starting point for the design of experimental

evaluation of a multimodal dictation system. The results suggest that document production is

faster using voice rather than keyboard, and that large-vocabulary speech recognition can offer

a very competitive alternative to traditional keyboard input. A confounding factor of the study

is the slow typing speed of the chosen subjects: 25 wpm, which is slower than what is consid-

ered fast non-secretarial typing - 40 wpm.

Table 14 presents a summary of the most important quantitative results from all these studies,

along with stipulations resulting from the experiment design. The fourth column indicates the
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time spent on correction, as percentage of the time spent to compose/generate an initial ver-

sion of the text (therefore, >100% is possible).

In summary, it is important to distinguish between text reproduction and text composition

when considering dictation tasks. Text composition includes the creative act of putting some

content into well-formed words and sentences, getting these words into machine readable for-

mat (to produce a nice layout using standard word processors, and for simplified revision) is

only the secondary task. Concerning text production, handwriting achieves production speeds

of less than 20 wpm, and traditional dictation to a secretary (with or without the help of a "dic-

Table 14: Summary of text production performance variables, gathered from various relevant 
studies

Method Study
Text 

Production 
Speed (wpm)

Time spent 
on 

Correction

Comments (Task, 
Problems)

Handwriting [Gould 1978] 17 not measured composition task

Dictating to 
Machine

[Gould 1978; 
Gould, Conti 
et al. 1983]

25 not measured composition task; 
doesn’t include time to 
transcribe

Dictating to 
Secretary

[Gould 1978; 
Gould, Conti 
et al. 1983]

30-35 not measured see above

Text Editor [Roberts and 
Moran 1983]

n./a. 12% correction benchmark 
tasks; outdated editors, 
typos excluded

[Alto, Bran-
detti et al. 
1989]

20 20-25% subjects slow typists

Isolated Word 
Listening 
Typewriter

[Alto, Bran-
detti et al. 
1989]

21-29 70-130% real system, experiment 
description not detailed 
enough to replicate

[Gould, Conti 
et al. 1983]

36 23% simulation, composition 
task

Simulated 
Continuous 
Listening 
Typewriter

[Gould, Conti 
et al. 1983]

57 18% composition task
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tation machine", which is basically a tape recorder) achieves around 30 wpm. Isolated word

listening typewriters reach input rates of 20-30 wpm, which is just about as fast as the tradi-

tional techniques. Consistently with that observation, commercial isolated word listening

typewriters (i.e., automatic dictation systems from IBM, Dragon, and Kurzweil until 1997)

were targeted only to user populations that didn’t have a choice, such as people with Carpal

Tunnel Syndrome or Repetitive Stress Injury (RSI). Simulation studies predict that continuous

speech listening typewriters could increase text production speed to 50 wpm and more.

Whether these speeds can be achieved depends on dictation accuracy of the underlying large

vocabulary speech recognizer (determining the number of recognition errors to be corrected),

and the efficiency of the offered correction methods. In anticipation of results presented in

Chapter 8, current keyboard-less correction methods are too inefficient to realize this potential

productivity gain, possibly one reason why commercial dictation products have not yet been a

sweeping success.
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7. Performance Model

Recognition-based human-computer interaction is defined in [Rhyne and Wolf 1993] as inter-

action method where user input must be recognized automatically prior to further interpreta-

tion. Examples for such modalities include the communication modalities that people

naturally use, for example, speech, handwriting, and gestures. One main characteristic of rec-

ognition-based interfaces is that automatic interpretation of user input is usually imperfect.

This is in contrast to most current computer interfaces that employ keyboard input and direct

manipulation using a pointing device, where no recognition errors occur - except for human

error. This chapter adopts Rhyne’s terminology, because it allows us to discuss multimodal

interaction in very general terms. 

Given different input methods in recognition-based interfaces (that are feasible with current

technology), an important challenge for the designer of such applications is to be able to pre-

dict which method users prefer. This chapter proposes a performance model of multimodal

human-computer interaction that predicts input speed. Input speed was chosen as the main

performance variable, because a rational user prefers methods that minimize time and effort

spent on interacting with the system. 

In related work, Mellor and Baber proposed a model of speech-based user interfaces that pre-

dicts task completion times using a critical path analysis technique [Mellor and Baber 1997].

Although their model addresses imperfect recognition performance and can also be applied to

multimodal situations, it does not explicitly model the dependency of task completion time on

modality, recognizer, and implementation-specific factors.

The first section presents our performance model of recognition-based multimodal interac-
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tion. The second section applies the model to error correction in a multimodal dictation sys-

tem. Predictions of correction speeds, input speeds (dictation system throughput), and the

accuracies required for multimodal correction to be faster than correction by typing. In Chap-

ter 8, we apply the model to extrapolate results from our empirical evaluation of the multimo-

dal dictation system prototype, and to estimate the impact of recognition technology

improvements on correction speeds and the productivity of future dictation systems.

7.1 Performance Model of Recognition-Based Human-Computer Interaction

This section presents a performance model of input in recognition-based interfaces that is

based on a few basic and easily measurable parameters, including input rate and recognition

accuracy of different input modalities. Since the model is inspired by the work on multimodal

interactive correction, it can easily be applied to interactive correct; but it could be extended to

recognition-based multimodal interaction in general. We first clarify what factors determine

user effort, which in turn determine a rational user’s preferences. The performance model of

recognition-based multimodal input is presented in the second subsection. The model is vali-

dated by comparing predictions of correction speeds and dictation system throughputs with

the empirical values determined during user evaluations.

7.1.1 Factors Determining User Effort in Recognition-based Interfaces

Effort of user input in recognition-based interface is determined by the following three pri-

mary factors:

• Time required by the user to provide the input (dictation time), and by the system

to process it (response time)

• Accuracy of automatic input recognition

• Naturalness of interaction

While the first two factors are intuitive, the third factor requires some clarification. "Natural-
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ness" is meant to capture how intuitive some method of human-computer interaction is for a

user. These factors depend on user and task. For instance, some users have trouble typing and

prefer keyboard-free input methods, and some tasks lend themselves better to speech input

than others.

7.1.2 The Performance Model

Early work of Baber and Hone on modeling error correction pointed out that correction tech-

niques are difficult to compare because their performance is closely related to their implemen-

tation, specifically to the performance of the recognition technology [Baber and Hone 1993].

These remarks apply generally to input in a recognition-based interface. The performance

model presented here overcomes dependence on implementation, by factoring out different

implementation-specific factors in the following way. The first subsection introduces input

speed as main performance variable used in the model. Following subsections describe the

model parameters and how these parameters can be estimated, the decomposition of input

speed into the model parameters, and two refinements of the model. The final subsection vali-

dates the performance model on data from the user evaluation of the multimodal dictation sys-

tem. Although the model is motivated by its origin in a dictation application, we formalized it

for input in recognition-based interfaces in general. 

7.1.2.1 Input Speed as the main Performance Variable

As the main performance variable, the performance model combines time and accuracy into

one single measure: the input speed (or system throughput). This definition of input speed

incorporates recognition accuracy by measuring the total time until successful completion of

input, including the time necessary to correct recognition errors (which may require several

correction attempts). More generally, the main performance variable of the model is the num-

ber of items that the interaction can advance per unit of time. The type of input item depends

on the application; for dictation, words are typically the input item, but for other applications,

input items may correspond to semantic units or completed transactions. Similarly, the input
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speed refers to different measures depending on the application. In a dictation application, the

input speed (or better, dictation system throughput) refers to the number of words that the user

can enter per minute (words per minute, wpm); for error correction, the input speed (or better,

correction speed) denotes the number of errors that can successfully be corrected per minute

(corrections per minute, cpm); and for a service transaction task, the input speed indicates

how many transactions can be completed successfully per unit of time (e.g., transactions per

minute, tpm).

7.1.2.2 Performance Model Parameters

The performance model includes explicitly the factors that determine input speed (as defined

above), including user, modality, recognizer, and interface implementation. Interaction with a

recognition-based interface using an input modality m is modeled by the following four

parameters. 

The first parameter is the accuracy WA(m) of a single attempt at communicating an item to the

application. In a dictation system, the user attempts to input words, and WA(m) is the standard

word accuracy1 (hence its acronym). In the context of error correction, we use the term cor-

rection accuracy CA(m) instead of word accuracy, to distinguish between initial input and

input that occurs while correcting recognition errors. Both word and correction accuracies are

measured in percent (alluding to their interpretation as the probability of correct recognition).

The second parameter is the average input time Tinput(m) that it takes to communicate one item

using modality m to the application. The input time is the inverse of the input rate, for exam-

ple, speaking rate for speech, and writing speed for handwriting. The input time is measured

in seconds per input item (word).

The third parameter captures the system response time; the real-time factor R(m) indicates

1. We use the term word accuracy as commonly defined in the speech recognition field, as the quotient 
of the number of correct items in the recognition hypothesis, diminished by the number of insertion 
errors, and the number of items in the reference.
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how many times longer than real-time it takes to automatically recognize (and interpret) user

input. In the following, R(m) = 1 means that there is no delay at all, i.e. recognition finishes at

the same time as user input.1 

Finally, the overhead time TOverhead(m) summarizes all other times that are necessary to com-

plete an interaction in modality m, which is measured in seconds per correction attempt. The

overhead time includes the time the user needs to plan or select an appropriate interaction

method (if there is a choice), and the time the user spends on initiating an interaction in m,

(e.g., the time to press a button, to pull down a menu, or to move the hand to the screen to

write or gesture on it). Hence, the overhead time depends both on modality and interface

implementation.

How can the model parameters be estimated? 

• Input time TInput: In most applications, commonly known standard estimates can

be used. Although input rates vary across people, they are specific to a certain

input modality, so they do not change across applications. The following estimates

for input rates (in words per minute, wpm) were taken from the studies on dictation

methods (as presented in the previous chapter): handwriting 15-20 wpm, continu-

ous speech 100-200 wpm, (fast non-secretarial) typewriting 40 wpm. For some

modalities, the input rates depend on their usage within an application. As an

example, the input rate of gestures depends on the size and complexity of the ges-

tures. Furthermore, even some of the above "standard" input modalities (speech,

handwriting) may be employed in novel interaction methods in such a way that the

input rate changes, e.g., for handwriting and spelling in partial-word corrections.

• Word/Correction Accuracy WA(m)/CA(m), Real-time Factor R(m): The accu-

racy and real-time factor depend on the recognition system, but estimates can eas-

1. Achieving R=1 is obviously a very challenging goal. However incremental recognition algorithms 
make it possible to start recognition while input is still being generated.
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ily be derived using benchmark recognition tasks for each new release of a

recognizer. Assuming a constant word accuracy across repeated input attempts (a

simplifying assumption, as Chapter 8 will show), the random variable describing

the number of interaction attempts until success has a geometric distribution, and

Equation 7-1 shows the simple formula for the expected mean E[.] of such a geo-

metric distribution. 

Equation (7-1): Estimates for average number of interactions until success 
(assuming CA is constant across multiple correction attempts)

• Overhead Time TOverhead(m): The overhead time depends on the task, the avail-

able interaction methods, and the implementation. Therefore, the overhead time

may be different for each new version of an interface. Instead of measuring the

overhead, reasonable guesses could be used.

Table 15 in Section 7.1.2.5, page 156, shows estimates for all model parameters as measured

in the user study of the multimodal dictation system. 

7.1.2.3 Decomposition of Input Speed in the Performance Model

The core of the performance model is how input speed (as defined in the first subsection) is

expressed as a function of the four model parameters (presented above). The first equation

presented in this subsection describes how the input speed depends on the time for each input

attempt and the number of attempts. The second equation models the time per input attempt

with a simple affine relationship. As a notational comment, all parameters are modeled as ran-

dom variables, because they vary across users. For simplicity, the following description uses

the expected means as if they were regular variables.

Assuming statistical independence between time per interaction and accuracy, the total time to

successfully complete an interaction using modality m is the product of TAttempt(m), the time

E N m( )[ ]
1

CA m( )
----------------=
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necessary for one interaction attempt, and N(m), the number of attempts until the input item

has been communicated successfully (i.e., the first attempt plus any correction attempts that

may be necessary). The input speed VInput(m) in items (words) per minute is the quotient of 60

seconds (one minute) and the total time:

Equation (7-2): Factorization of input speed into time per attempt and number 
of attempts 

To further decompose the time per attempt, we model recognition-based multimodal interac-

tion by the following steps: the user plans the interaction, chooses an interaction method

(modality), provides the necessary input, waits for the system to interpret the input, and finally

decides whether correction is necessary or whether to proceed in the task at hand. How much

time does such a multimodal interaction require? The steps of planning, choosing the modal-

ity, and the preparation of the actual input correspond to one unit of overhead time (per correc-

tion attempt). Then, user input in modality m and its automatic interpretation take R(m) times

Tinput(m) seconds. The time necessary for one attempt at entering an item in modality m fol-

lows:

Equation (7-3): Basic decomposition of time per attempt into overhead, input 
and system response time

The model is generally applied by replacing some of its parameters with appropriate esti-

mates, while other parameters correspond to the independent variable of the problem under

question. For example, in Section 7.2.1 we predict the correction speed (of unimodal and

cross-modal correction by repeating input) as a function of correction accuracy. The input

rates are replaced by standard estimates, overhead times and real-time factors are set to certain

values, and the correction accuracy is the independent variable. 

VInput m( )
60

N m( ) TAttempt m( )u
---------------------------------------------------=

TAttempt m( ) TOverhead m( ) R m( ) TInput m( )u+=
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7.1.2.4 Refinement of the Performance Model

The previous section presented the performance model in its simplest form, suitable for recog-

nition-based multimodal correction by repeating input in one modality. With appropriate

refinements, the model can be applied to more complex situations. This subsection refines the

model in two ways, appropriate for its application to multimodal correction on a dictation

task. First, correction accuracy does not stay constant in repeated correction attempts, but it

deteriorates; second, applications typically provide heterogeneous sets of interaction modali-

ties, which may include modalities that are not interpreted with imperfect recognition technol-

ogy, rather than a single modality.

The first refinement of the model modifies how the average number of input attempts is esti-

mated. Equation 7-1 assumed that recognition accuracy stays constant in repeated interaction

attempts. However, in anticipation of an important result of the next Chapter 8, we know that

correction accuracy deteriorates when input is repeated in the same modality. To model this

deterioration of correction accuracy in a simple way, we assume that the accuracy for the first

correction attempt is CA1, while the accuracy of following correction attempts (in cases of

repeated misrecognitions) is only CA2. With this assumption, the expected mean number of

attempts until success is:

Equation (7-4): Estimate for average number of input attempts until success 
(the correction accuracy is CA1 for the first correction attempt, and CA2 for 
further correction attempts)

The second refinement generalizes the model from interaction in a single modality to hetero-

geneous sets of interaction modalities, some of which may not be interpreted using imperfect

recognition. For example, multimodal interactive correction, as implemented and evaluated in

this dissertation, includes both recognition-based modalities (speech, spelling, handwriting,

and gestures) and other, not recognition-based interaction methods (e.g., correction by choos-

E N( ) CA1 1 CA1–( ) 1 1
CA2
----------+¤ ¦

£ ¥+=
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ing from alternative words). We extend the model to include heterogeneous correction meth-

ods as follows:

• Correction by choosing from a list of alternatives is not interpreted using imperfect

recognition. We model correction by choosing from a list as one correction attempt

that is successful with chance CA(list)%.

• Correction using editing gestures addresses different types of correction tasks than

correction by respeaking, spelling, or handwriting; words are deleted or the cursor

is positioned typically before the user corrects by respeaking, spelling, or hand-

writing. Therefore, the refined models editing gestures separately as 

N(gest)TAttempt(gest), in addition to corrections by repeating input.

• Finally, multimodal error correction offers users a choice between different correc-

tion modalities, for example, respeaking, spelling, and handwriting. We model

user choice between these different modalities m by empirical usage frequencies

freq(m). 

Thus, to model correction by choosing from a list of alternative, editing using pen-drawn ges-

tures, and an additional set M of correction modalities to insert or replace words, the average

correction speed is estimated as:

Equation (7-5): Decomposition of correction speed for choosing from 
alternatives ("list"), pen-drawn gestures ("gest"), and a set M of correction 
modalities.

The empirical user evaluation of interactive error correction - which we will use to validate the

performance model - compared interactive error correction methods (i.e., two sets of correc-

tion modalities): Conventional correction by choosing from alternatives, editing using key-

VCorrect M( )
60

CA list( )TAtt list( ) 1 CA list( )–( ) N gest( )TAttempt gest( ) freq m( )N m( )TAttempt m( )

m MD

-+
¤ ¦
² ´
² ´
£ ¥

+

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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board and mouse, and typing (hence M={typing})1, and multimodal correction by choosing

from alternatives, editing using pen-drawn gestures, and repeating using speech, spelling, and

handwriting (thus M={speech, spelling, handwriting}).

7.1.2.5 Validation with Interactive Multimodal Error Correction

The performance model presented here was validated on data from the user evaluation of the

multimodal dictation system. We derive predictions for the speed of conventional and multi-

modal correction (as introduced in the previous paragraph) and compare them with the correc-

tion speeds measured during the user evaluation. Section 7.2.3 later in this chapter presents

further evidence validating the performance model, by comparing predictions of dictation

speed with data from the user study.

To apply the standard method for model validation - estimating model parameters on a train-

ing set, and evaluating the accuracy of model predictions on a separate test set - we divided the

data from our fifteen participants - five users from each of the three categories of typing skill.

The training set consists of three participants in each category of typing skill (for a total of

nine participants), and the test set consists of two in each category (for a total of six).

Using the training data, we estimated the following model parameters: input rate for editing

with gestures and correction by spelling, word accuracies and recognition response times for

all modalities, and overhead times. Table 15 shows the estimates for word-level correction

modalities with 95% confidence intervals in parentheses. The input speeds are shown in words

per minute (wpm), assuming each word is counted as separate error. Chapter 8 presents a more

detailed analysis, which distinguishes between whole-word and partial-word corrections, and

describes details on how the data was collected.

1. Here, we model typing as input modality in the same way as introduced for recogni-
tion-based modalities: typing is characterized by an input speed, a correction accu-
racy, and an overhead time.
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To derive predictions for correction speeds using the refined model, as expressed in Equation

7-5, the following estimates are still missing: estimates for the usage frequencies freq(m) for

different correction modalities, and estimates of the input rate of correction by typing, given

the typing speed1. Table 16 shows estimates for the relative usage frequencies obtained during

the user study, and Figure 7-1 shows a linear regression analysis that predicts the input of rate

of correction by typing, as a function of typing speed. The standard error is 8.0 (N=16), and

r2=0.24; i.e., 24% of the variance is accounted for by the linear relationship. Given the small

number of available samples, this simple linear model is sufficiently accurate for the purposes

of this dissertation.

Table 15: Performance model parameters for interactive error-correction modalities, as estimated 
from training data (95% confidence intervals in parentheses)

Choosing 
from List Respeaking Spelling Handwriting Editing 

Gestures Typing Keyboard 
Editing 

TInput (wpm) 58(25) 47 (5) 26 (6) 18 (4) 36 (6) 17 (7) n/a

Correction 
Accuracy CA

21% (8%) 36% (23%) 80% (17%) 71% (8%) 86% (6%) 84% (5%) 82% (8%)

Real-time Fac-
tor R

1 2.6 1.5 1.3 1.0 1.0 n/a

TOverhead (sec/
correction)

4.6 (0.5) 5.4 (2.1) 4.3 (0.7) 3.5 (1.1) 5.0 (0.8) 2.6 (0.7) 4.3 (1.0)

1. The input rate for correction by typing is significantly lower than the speed of typing a whole piece 
of text, because the user has to position his hands on the keyboard before each correction.

Table 16: Usage frequencies of repeating using speech, spelling, and handwriting

Modality Relative Frequency

Respeaking 55.8%

Spelling 10.6%

Handwriting 29.1%

Spelling PWC 1.4%

Handwriting PWC 3%
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Figure 7-1.  Linear regression analysis predicting the input rate of correction 
by typing VInput(type), given the typing speed

Now that all necessary pieces have been assembled, we can predict correction speeds using

Equations 7-4 and 7-5, and the parameters as shown in Table 15. Table 17 compares the cor-

rection speed estimates obtained from the performance model with the actual measured cor-

rection speeds (averaged across the 6 participants of the test set). The average absolute

deviation between model predictions and actual values is 17% for multimodal correction

(N=12, 6 participants of the "test set" in both "multimodal" and "multimodal & error highlight

condition, as described in Chapter 8), and 12% for correction using keyboard & list, across

different categories of typing skill (N=6, two participants in each of the three categories of
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typing skill). This deviation is within the reasonable range for such empirical models.1

As can be seen, the performance model of input in recognition-based interfaces can success-

fully be applied to modeling multimodal interactive error correction, and model predictions

match empirical data sufficiently well.

7.2 Application to Multimodal Interactive Correction and Dictation

This section applies the performance model to the following three important questions about

interactive error correction in a multimodal dictation system:

1) How does correction speed depend on recognition accuracy and modalities, and

how will future performance improvements affect the comparison of unimodal and

multimodal correction?

2) What recognition accuracy is necessary so that multimodal correction is faster than

correction by typing?

3) What is the total system throughput of a multimodal dictation system, as a function

of dictation accuracy and error correction methods?

To further validate the performance model, the final subsection will also compare predictions

for dictation speed with data from the user evaluation. The next chapter will apply the model

Table 17: Validation of the performance model, comparing measured correction speeds 
(averaged across participants of test set) with model predictions

Correction Method
Average measured 
Correction Speed 

[cpm]

Predicted 
Correction 

Speed [cpm]

Signed 
Model 
Error

Multimodal 4.5 3.7 -18%

Keyboard & List ("slow" typing) 5.9 6.2 5%

Keyboard & List ("average" typing) 6.2 7.0 13%

Keyboard & List ("fast" typing) 7.3 7.2 -1%

1. A discussion of goodness-of-fit measures and justification for using average absolute error of predic-
tion can be found in [Kieras, Wood et al. 1997].
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to extrapolate the results from the user study, for example, to real-time recognition in all

modalities.

7.2.1 Correction Speeds with Imperfect Recognition

Correction speed depends on the modality and the performance of available recognizers. To

predict speed of correction by repeating in modality m, TAttempt(m) in Equation 7-2 is replaced

by Equation 7-1 (assuming correction accuracy were constant across repeated attempts), and

the input rates TInput(m) are replaced by the estimates shown in Table 15. In anticipation of

faster computers in the future, recognition in real-time is assumed for all modalities (R(m)=1),

and the overhead time TOverhead(m) is set to 3 seconds to normalize for implementation-spe-

cific differences1. Figure 7-2 plots the total input speed for correcting by repeating in continu-

ous speech (respeaking), spelling, and handwriting, over the recognition accuracy in each of

these modalities.

Figure 7-2 shows that at best, with 100% recognition accuracy, correction by respeaking

would achieve 24 corrections per minute (cpm), and correction by handwriting 15 cpm. This

compares favorably to correction by typing for users with good typing skills, who achieved 12

cpm in our user evaluation.

Furthermore, we can use Figure 7-2 to predict under what conditions (unimodal) correction by

respeaking could be as efficient as multimodal correction. Since speech is the fastest modality

for text input, speech would also be the most effective correction modality, if recognition was

accurate enough. At which level of accuracy would corrections by respeaking outperform

multimodal correction? For example, multimodal corrections by spelling are 80% accurate

1. The variation of overhead times TOverhead in our empirical data (cf. Table 15) is due to implementa-
tion specific differences in how the modalities are triggered (e.g., pressing a button to initialize spo-
ken correction takes longer than starting to write on the screen for handwriting and gesture 
corrections), and modality choice patterns (e.g., users preferred to try speech first, and therefore the 
overhead time for speech corrections contains relatively more time spent on searching for errors, 
compared with other correction modalities). For the present consideration, we want to abstract from 
these differences, and assume the same overhead time for all modalities, near the lower end of empir-
ically observed values.
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with current recognizers (cf. Table 15). The arrows in Figure 7-2 reveal that correction by res-

peaking would be faster if they were more than 60% accurate. (Note that the assumptions of

this prediction require that this accuracy remains constant across repeated correction

attempts.) By comparison, Table 15 shows that corrections by respeaking currently achieve

only 36% accuracy; explaining why multimodal correction is faster than unimodal correction

by respeaking in the multimodal dictation system prototype. More generally, similar predic-

tions can help the designer of (multimodal) speech user interfaces to decide which correction

methods are most efficient.

Figure 7-2.  Predicted correction speed for multimodal interactive correction

7.2.2 Is Multimodal Correction faster than Typing Correction?

Since multimodal input and correction can be seen as an alternative to (traditional) keyboard

input, the comparison to typing speed is particularly interesting when discussing correction in

a dictation system. To compare multimodal correction and correction by typing, we predict
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which accuracies are necessary (across different correction modalities) to outperform correc-

tion by typing (across different typing skills). This question can be answered easily by com-

paring predictions for correction speeds, as a function of modality and correction accuracy (as

derived in the previous subsection), with speeds of correction by typing (such as estimated in

Figure 7-1). Figure 7-3 shows the correction accuracies (shown on the y-axis) necessary to

achieve certain speeds of correction by typing (shown on the x-axis).

In anticipation of a result from the user study (see Section 8.3.3, page 185, in the next chap-

ter), average computer workers (who generally are fast non-secretarial typists) can correct up

to 15 errors per minute using keyboard and choice from the N-best list. To reach this correc-

tion speed, accuracy for corrections by respeaking would have to be recognized at more than

60% accuracy. This accuracy may appear quite low, but poses a challenge when maintained

across repeated correction attempts.1 To reach the same correction speed, corrections by spell-

ing would have to be 85% accurate, and corrections by handwriting almost 100% accurate -

assuming the whole-word correction. 

If advanced correction techniques were used, which require only partial input for correction

(e.g., partial-word corrections as described in Section 4.3.3), and if overhead times could be

further reduced (e.g., by reducing the time spent on locating errors), the accuracy required to

correct faster than by typing would be correspondingly lower. Hence, multimodal correction is

not hopelessly slower than keyboard correction, and model predictions allow the designer of

future applications to determine whether multimodal correction is actually faster than correc-

tion by typing.

1. With the recognizer used for this dissertation work, correction by respeaking were 42% accurate in 
the first correction attempt, which deteriorated to 20% and 0% in the second and third attempt (for 
more details, see Figure 8-2 in the next chapter). 
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Figure 7-3.  Predicting correction accuracies necessary to beat typing in 
correction speed

7.2.3 Dictation Speed

In addition to comparing correction speeds, the performance model allows predictions of the

dictation system throughput, i.e., the dictation speed including time necessary to correct

errors. The dictation speed can be predicted based on word accuracy WA(dictate), recognition

speed R(dictate) of the dictation recognizer, and the correction speed TCorrect(m) of a correc-

tion method m, as described in the following paragraph.

Text production with a dictation system consists of three steps: dictation, automatic interpreta-

tion of spoken input, and correction of recognition errors. How much time do these steps

require? A user with speaking rate VInput(dictate) (wpm) dictates wordN=VInput(dictate) * 1

min. words in one minute. The speech recognizer needs T1=R(m)*1min to interpret this dicta-

tion input. During automatic interpretation of the dictation input at accuracy WA(dictate), on

the average errorN=wordN*(1-WA(dictate)) recognition errors occur. The correction of these
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recognition errors requires T2=errorN*TCorrect(m), where TCorrect(m) is the inverse of the cor-

rection speed VCorrect(m) using method m. The total time to enter wordN words including cor-

rection time is thus T=T1+T2, leading to the following formula for the dictation system

throughput, as a function of correction method m and dictation accuracy WA(m): 

Equation (7-6): Estimation of dictation speed based on dictation accuracy, 
recognition speed and correction speed

For example, with a state-of-the-art large vocabulary dictation recognizer that performs at

90% accuracy in real-time, and multimodal correction that achieves a correction speed of 8

errors per minute, a dictation speed of VDictate=49 words per minute can be expected. This

technique of predicting system throughput will frequently be used in the evaluation chapter. 

The empirical evaluation of the multimodal dictation system offers the opportunity to further

validate the performance model, and in particular the Equation 7-6. Table 18 compares empir-

ical dictation speeds with predictions from Equation 7-6, using the following parameters that

were measured in the user study: VInput(dictate)=133 wpm, WA(dictate)=75%, and correction

speeds of various methods as presented in Table 17. Across the different correction methods

and participants, there is an average absolute deviation of 18% (N=18). The high deviation for

"Keyboard&List" with "fast" typing is probably due to the small number of independent "test"

Table 18: Validation of dictation speed predictions

Correction Method
Average measured 
Dictation Speed 
VDictate (wpm)

predicted 
Dictation Speed 
VDictate(wpm)

Signed 
Model 
Error

Multimodal 16 14.8 -8%

Keyboard & List ("slow" typing) 16.3 16.7 +2%

Keyboard & List ("average" typing) 18.4 18.1 -2%

Keyboard & List ("fast" typing) 25.0 18.4 -26%

VDictate m( )
VInput dictate( ) 1minu

R m( ) 1minu VInput dictate( ) 1min 1 WA dictate( )–( ) TCorrect m )( )u u u+
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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samples (only two participants in the "fast" category).

In summary of this chapter, the performance model of input in recognition-based interfaces is

a first step towards formalizing multimodal interaction. We applied the model to interactive

multimodal error correction, and validated it using data from the empirical evaluation of the

multimodal dictation system prototype. Several interesting predictions were derived, includ-

ing how multimodal correction compares to conventional correction using keyboard and

mouse input, how multimodal can unimodal correction may compare with future improved

recognizers, and how the system throughput of a dictation system depends on dictation accu-

racy and available correction methods. 

How does the presented performance model relate to cognitive models in the field of human-

computer interaction, such as the well-known keystroke-level model [Card, Moran et al.

1980]? Similar to the keystroke-level model, it is a model for a specific kind of user input to a

computer system; the model is tailored to recognition-based human-computer interaction.

Unlike the keystroke-level model, it is derived from intuition and not backed by a cognitive

theory of human-computer interaction. Its usefulness for modeling error correction in recogni-

tion-based user interfaces has been shown; however, it is unclear how well it generalizes to

other kinds of recognition-based interaction. With the deployment an increasing number of

speech recognition (and multimodal) applications, there is a need for an evaluation methodol-

ogy that goes beyond standard benchmark evaluations in the speech recognition and related

fields. The model presented in this dissertation is a first step towards a more general evalua-

tion methodology for future multimodal interfaces.
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Experimental Evaluation

8. Experimental Evaluation

In contrast to model-based evaluation (as presented in the previous chapter), user studies

examine how users interact with either a real or a simulated application. Empirical data on the

human-computer interaction is gathered using interaction logs, videotapes, informal observa-

tions, interviews, and questionnaires.

This chapter presents a user study that evaluates multimodal interactive error recovery in the

context of the multimodal dictation system prototype, which was developed in this disserta-

tion. Section 8.1 describes the research questions that the study addressed, including when and

why multimodal interactive error correction is beneficial, and how various error-correction

methods compare. The subsequent Section 8.2 describes the experimental design, and dis-

cusses potential confounding variables and how they were addressed. Section 8.3 presents

quantitative and qualitative results from the user study and the post-experimental question-

naires. The final section discusses the results and explains some key observations based on

performance and cognitive variables.

As primary evaluation measures, correction accuracy and speed are used. Correction accu-

racy was defined in the previous chapter as word accuracy (as commonly used in the speech

recognition field) on correction input. Correction speed was defined the rate at which correc-

tions can be successfully completed, and input speed (or system throughput) as the rate at

which items can be entered, including the time necessary for corrections. 

The chapter includes many details of the experimental design. The reader can gain a basic

understanding of the experiment and the results from Sections 8.1, 8.2.1, and 8.3.
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8.1 The Research Questions and Hypotheses

To develop the research questions for the user study of the multimodal dictation system, the

reader may remember the research question of this dissertation, which was stated in Chapter

1: given unreliable speech recognition technology, how can the user’s effort necessary to

recover from interpretation errors be minimized? This dissertation proposed multimodal inter-

active error recovery as solution for speech recognition applications with a graphic user inter-

face. What is the role of an empirical evaluation of multimodal interactive correction? It has to

provide evidence for the effectiveness of multimodal interactive correction, and determine rel-

ative strengths and weaknesses of different correction modalities. With that knowledge, a

designer of speech recognition applications can make educated decisions on how to address

the problem of error correction, and reduce the user’s effort necessary to correct errors.

The remainder of this section elaborates how evidence for the effectiveness of multimodal

interactive correction modalities can be provided, and how their relative strengths and weak-

nesses can be identified. Each subsection starts out with a research question and hypotheses,

followed by some explanations. The first three subsections address the fundamental issues of

multimodal versus unimodal correction, and the usefulness of a multimodal dictation system.

The final subsection discusses additional research questions that address issues specific to

multimodal interactive error correction in the context of dictation applications. 

8.1.1 Ineffectiveness of Unimodal Correction and Effectiveness of Multimodal 
Correction

Research Question (1): Why is unimodal correction ineffective, and why is multimodal correc-

tion effective? 

Hypotheses (1): Recognizing corrections in the same modality is difficult, and recognition

performance of (most) current recognizers deteriorates on corrections in the same modality.

Switching modality significantly increases correction speed, compared with correction in the

same modality.
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These key issues of interactive error correction have already been discussed several times.

The reasons why unimodal correction by respeaking may be ineffective were identified in

Section 4.3.1. However, no previous research has provided empirical evidence for either the

claim that unimodal correction is ineffective nor the claim that multimodal correction could

speed up correction. The user study on multimodal error correction will test both these claims.

8.1.2 Comparison of Interactive Correction Methods

Research Question (2): How do multimodal correction methods compare with conventional

methods, and how do different multimodal correction methods compare with each other?

Hypotheses (2): With current recognition technology, multimodal correction methods are

faster than (unimodal) correction by respeaking, and slower than correction by typing for

users with good typing skills. 

As identified in our informal survey of interactive correction methods, conventional correc-

tion methods are limited to correction by respeaking, typing, or choosing from a list of alter-

natives. Based on intuition and on predictions derived from the performance model, we expect

that with current recognition technology, multimodal correction is faster than (unimodal) cor-

rection by respeaking, and that keyboard correction remains the fastest correction method.

Multimodal correction should be particularly attractive for applications without a keyboard

(e.g., small mobile devices) and for users with poor typing skills.

8.1.3 Usefulness of the Multimodal Dictation System for Text Reproduction 
Tasks

Research Question (3): Is the multimodal dictation system useful for text reproduction tasks?

Hypotheses (3): Dictation (including correction time) with the multimodal dictation system

compares favorably to average non-secretarial typing. 

Looking at the whole text production process, a multimodal dictation system allows the user

to produce text at a rate that compares favorably to typing the whole text. A multimodal dicta-
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tion system exploits high input rates on continuous speech in the text generation phase, and

avoids time loss in repeated recognition errors by offering to switch modality.

8.1.4 Issues in Multimodal Interactive Error Recovery in the Context of 
Dictation Applications

The previous subsections stated the fundamental research questions of multimodal interactive

error correction. But a number of more specific issues occurs in the context of dictation. The

discussion of multimodal interactive error recovery in Chapter 4 proposed a number of meth-

ods that could potentially improve the error-correction process in the context of dictation

applications, but no evidence was presented. This section introduces each of these issues, in

the style of the previous subsections, as pair of research question and hypothesis, followed by

brief discussions. 

Research Question (4): Does partial-word correction help?

Hypothesis (4): Partial-word corrections increase input speed, correction accuracy, and overall

correction speed.

Since partial-word corrections require less user input, input speed should increase; and since

the vocabulary reduction algorithm for partial-word corrections dramatically reduces the num-

ber of possible alternatives, correction accuracy should also increase. However, it is unclear

whether users sufficiently learn to identify situations where partial-word corrections are bene-

ficial, and whether the hardware allows the user to execute partial-word correction with suffi-

cient accuracy.

Research Question (5): Are gestures and pointing (as described in Section 4.3.2) more effi-

cient for simple editing tasks, compared with editing with keyboard and mouse input?

Hypothesis (5): Editing gestures and pointing outperform traditional keyboard and mouse

based methods.
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Multimodal interactive error recovery proposed pen-drawn gestures and pointing for simple

editing tasks including selecting errors, positioning the cursor, and deleting words. It is not

clear whether such gesture-based interaction is more efficient than conventional direct manip-

ulation interaction techniques for a wide range of manipulation tasks.

Research Question (6): Can system-initiated location of errors (as described in Section 4.2)

speed up error correction?

Hypothesis (6): Imperfect automatic locating of errors is useful for dictation tasks if the

method ensures sufficiently high accuracy.

As mentioned earlier, several researchers have suggested that automatic flagging of recogni-

tion errors (e.g., based on confidence measures) could facilitate error correction. The multi-

modal dictation system prototype offers an opportunity to test this hypothesis on a dictation

task. The crucial issue is what accuracy is necessary so that highlighting errors automatically

is useful. 

8.2 Experimental Design

Given so many research questions, how can one experiment possibly answer all them? There

is no single such experiment. Instead, the experiment design for the user study of the multimo-

dal dictation system addresses several research questions in several sub-experiments. In addi-

tion, some research questions were sufficiently answered in an extensive pilot experiment that

preceeded the final evaluation. The first subsection presents the basic experimental design.

The second subsection discusses potential confounding variables and how the experimental

design avoids them. The final subsection presents alternatives for the experimental design,

and it motivates the choices made in the design of our user study.

8.2.1 Method

The method of a user study specifies the main elements of an experimental design: task (what

participants do during the experiment), experimental conditions (the dependent and indepen-
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dent measures, and how the independent measure are varied systematically across the condi-

tions), procedure (the different steps of the experiment), who participated in the study, data

coding, and data analysis (what measures are taken during the experiment, and how the

obtained data is statistically analyzed). The following subsections specify each of these ele-

ments for the user study of the multimodal dictation system. All written materials and forms

used for the user study can be found in Appendix A. This material includes instructions to the

participants, a quick tutorial on the use of the multimodal dictation system, the various dicta-

tion tasks, the post-experimental questionnaire, and the consent form.

8.2.1.1 Task

This section describes the experimental task and a few technical details of the recognizers

used during the experiment.

Participants were instructed to dictate either one or more sentences, which were chosen from

the Wall Street Journal, and to correct all recognition errors, using different sets of correction

modalities. After reading a sentence, the multimodal dictation system displayed the current

text on the writing-sensitive display (touchscreen). Recognition errors were not simulated, but

the current text contains the actual errors that a state-of-the-art large vocabulary dictation rec-

ognizer made on the participant’s speech. Then, participants visually located recognition

errors, selected them by tapping on the screen, and corrected them using one of the available

correction modalities. The goal was to get every sentence correct word by word, and as fast as

possible.

Figure 8-1 shows a snapshot of the prototype’s GUI during tutorial mode, where an additional

area contains instructions for the next practice task, along with a button to move from one task

to the next. 
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Figure 8-1.  Snapshot of multimodal dictation system prototype in tutorial 
mode. The bottom frame contains instructions for practice tasks. The current 
text input (recognition hypothesis) is displayed in the main frame. User pen-
input ("industrial") is displayed visually.

Some technical details of the recognizers that go beyond the description of the multimodal

dictation system prototype in Chapter 5. The vocabularies were based on the standard 20,000

vocabulary from the last official evaluation on the Wall Street Journal speech recognition

benchmark test in November 1994 [Pallett, Fiscus et al. 1994]. To eliminate any out-of-vocab-

ulary words1, all words that occur in the experimental tasks were included in the vocabulary.

For continuous speech recognition and N-gram context modeling, the standard ’95 60K lan-

guage model (distributed by NIST and the LDC) were used.

8.2.1.2 Experimental Conditions

The experimental conditions differed in the set of modalities that are available to locate and

correct recognition errors. In all conditions, the participant had to locate recognition errors

visually and select them. However in one condition, the system highlighted words that were

1. The problem of out-of-vocabulary words is another important problem of speech user interfaces, 
which was not addressed in this thesis work. 
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likely to be incorrect. 

The experiment conditions compared keyboard-free multimodal correction with conventional

correction methods, with and without keyboard input.1 

• Conventional correction methods ("Keyboard & List" in descriptions below):

Selecting words and positioning the cursor by mouse-click, replacing and inserting

words by typing, replacing words by choosing from a (visually presented) list of

alternative words, deleting words by hitting the backspace or delete key.

• (Keyboard-free) Multimodal correction methods ("Multimodal" in descriptions

below): Selecting words by tapping on screen, positioning the cursor and deleting

by editing gestures; replacing words by choosing from a visually presented list of

alternatives; replacing/inserting words using continuous speech, spelling, and

handwriting; and partial-word corrections using gestures, spelling, or handwriting.

Table 19 shows the experimental conditions used in the final user study. The rows indicate

which of the correction modalities are available in each experimental condition. In "Keyboard

& List", the user located errors and corrected them using the set of conventional correction

methods. In the two multimodal conditions, errors were corrected using the set of (keyboard-

free) multimodal modalities. However, they differed in how errors are located: in "Multimo-

dal", the user located errors, whereas in "Multimodal with imperfect error-locate", the system

highlighted errors automatically. Highlighting errors was imperfect, too, because automatic

location of errors is based on unreliable measures of confidence measures that have only

about 87% accuracy in classifying words as correct versus incorrect.

1. Strictly speaking, since in a dictation task the primary input is typically provided by dictating using 
continuous speech, correcting errors by typing is actually "multimodal" (in the sense that modality is 
switched for correction), and correcting by respeaking is "unimodal". The terminology chosen for 
the sets of correction modalities is motivated by the fact that the "conventional" correction methods 
typically appear in today’s speech recognition applications, and require mouse and keyboard input, 
whereas the "multimodal" methods allow the user to correct errors "multimodally", without key-
board input. 
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We chose a within-subject, repeated measures experimental design. That means each partici-

pant performed all experimental conditions, and the experimental measures were compared

across conditions with the same participant. A repeated measures design was chosen to limit

the impact of the known high variance of recognition performance across users as confound-

ing variable. 

The pilot experiment used other experimental conditions than the final study, as shown in

Table 20. The goals of the pilot experiment was different from the final study: examine the

relative effectiveness of different multimodal correction modalities, and establish empirically

that (unimodal) correction by respeaking is ineffective. Correction by respeaking or choosing

from a list ("Respeak&List") was compared with several multimodal correction methods,

including multimodal correction that allows the user to switch modality only once ("Spell-

ing&List", "Handwriting&List"), and multimodal correction that allows choice among all cor-

rection modalities, except for keyboard input ("multimodal, no PWC (Partial-Word Correction

)", "multimodal"). Note that correction using keyboard and mouse did not include the possi-

bility of choosing from the list of alternatives, unlike the "conventional correction" condition

Table 19: Experimental conditions for the final user study

Experimental Condition Keyboard 
& List

Multimodal 
(user locates 

errors)

Multimodal (system 
highlights likely 

errors)

Choose from list of alternatives X X X

Respeaking X X

Spelling X X

Handwriting X X

Typing/Mousing X

Editing Gestures X X

Partial-Word Correction X X

Imperfect Auto-Locate of Errors X
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in the final study. 

8.2.1.3 Procedure and Participants

An experimental session consisted of three phases: tutorial, experiment, and debriefing phase:

• Tutorial Phase (45-60 minutes): First, the experimenter demonstrated the multi-

modal dictation system using the quick tutorial (see Appendix A). Then, the partic-

ipant practiced using the multimodal dictation system on a set of simple practice

tasks (cf. Figure 8-1). In more practice tasks, the participant learned to master each

correction modality, gaining experience in the relative effectiveness of different

modalities. Finally, the participant performed a set of trial tasks, using all multimo-

dal correction modalities. After this session, all participants showed sufficient

familiarity with the different correction modalities.

• Experimental Phase (60-90 minutes): The experiment itself was subdivided into

four sessions. In the first three sessions, the participant performed three experi-

mental conditions: "keyboard&list", "multimodal", and "multimodal with imper-

Table 20: Experimental conditions for the pilot experiment

Experiment 
Condition

Respeak 
& List

Spelling 
& List

Handwriting 
& List

Multimodal 
no PWC Multimodal Keyboard 

& Mouse

Choose from 
list of alter-
natives

X X X X X

Respeaking X X X

Spelling X X X

Handwriting X X X

Typing/
Mousing

X

Editing Ges-
tures

X X

Partial-Word 
Correction

X
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fect auto-locate". The order of experimental conditions and dictation tasks varied

randomly across participants. In the fourth session, the participant’s typing speed

was measured.

• Debriefing: The participant filled out the post-experimental questionnaire. Then,

the experimenter explained the purpose of the experiment and answered any ques-

tions from the participant.

Participants were recruited from the campus community of Carnegie Mellon University. Posts

were distributed on general electronic newsgroups and physical boards in selected buildings.

A monetary incentive of $25 was given to reach a more diverse participant population. Partic-

ipants included students and administrative staff, they were balanced in gender, and most par-

ticipants did not have any prior experience with speech-recognition software. The typing

speed of the participants was systematically varied according to self-reported low, average,

and high typing speeds.

8.2.1.4 Measures and Data Coding

We measured performance at the level of a single input modality using the following three

measures: input rate (i.e., how man word can a user enter per minute), system response time

(i.e., how much time does automatic recognition require), and recognition accuracies. These

measures correspond to parameters of the performance model - input time, real-time factor,

and accuracy. Performance at the task-level was assessed using the correction speed VCor-

rect(m) and the total input speed (or system throughput) VInput(m), as defined in the introduc-

tion of this chapter. In addition to these quantitative measures, a post-experimental

questionnaire (see Appendix B) assessed some qualitative variables, including ease of learn-

ing, perceived user preference, and subjective variables such as intuitiveness and perceived

strain of a correction modality.

During experimental sessions, data was collected in two ways. First, the prototype multimodal
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dictation system created a time-stamped record of all spoken, written, and typed user interac-

tions. This record was later manually annotated with the correct system response for each

interaction, to assess recognition accuracies. For analysis of modality choice patterns, the

record also contained for each recognition error the sequence of modalities used, until suc-

cessful correction. All sessions were videotaped - the second method of data collection.

8.2.2 Experimental Design Alternatives

The experimental design as described in the previous sections evolved in a longer process, and

many design decisions were made along the way. This section makes these design decisions

explicit, and defends the chosen design against possible alternative designs. Thus, the reader

may gain insights for future user studies of multimodal applications.

8.2.2.1 Basic Experimental Design

In designing a user study of any novel method or system, there are two basic approaches:

First, an experiment that compares the novel method with previously known methods. For that

purpose, previous systems (or methods) either have to be used directly in the experiment, or

they have to be reproduced with sufficient accuracy. The former causes difficulties since capa-

bilities of previous methods and the new experimental task have to be reconciled, and this is

notoriously difficult. Second, an experiment can compare different methods referring to previ-

ously published or commercially available systems, but not claiming an explicit comparison.

In the case of the multimodal dictation system, any direct comparison with other systems

would be severely confounded by the differences in the baseline accuracies of the recognition

systems (which this dissertation did not attempt to improve). The second approach was there-

fore chosen.

8.2.2.2 Task Variables. 

• Choice of dictation task: Dictation tasks are either the reproduction of some given

text, or the composition of new text. While the latter is more realistic, it implies a
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shift in the experiment’s focus from the problem of correcting errors to the prob-

lem of supporting text composition. This dissertation focuses on error-correction

methods, therefore, a text reproduction task was chosen.

Furthermore, the experimental design made a conscious choice for the modality of

the initial input, namely for continuous speech with an eye on dictation applica-

tions. In other applications for which multimodal error correction is applicable, the

typical modality for initial input may be different, for example handwriting in per-

sonal assistants (like Apple’s Newton, or 3Com’s Palm Pilot).

Another choice regarding the dictation task is the type of text that is given to par-

ticipants. Since the continuous speech recognizer that was available for building

the multimodal dictation system was trained on the Wall Street Journal database,

the dictation tasks consisted of sentences from the Wall Street Journal, to maxi-

mize recognition accuracy.

• Choice of correction task: To investigate error correction in an automatic dictation

system, the correction task can be constructed in two ways, either a set of bench-

mark correction tasks (e.g., as in Roberts’ evaluation methodology for text editors

[Roberts and Moran 1983]), or (simulated or real) recognition errors while partici-

pants perform a dictation task. Since simulations of recognition errors is difficult,

and to be able to assess the overall usefulness of a multimodal dictation system as

tool for dictation, this user study evaluated error correction within a dictation task. 

• Task realism: The choice of reproduction of some given text limits the validity of

the experimental results for dictation applications, since many dictation tasks are

composition tasks. Other types of tasks could have been included, in particular

typical tasks for other applications that belong to the category of non-conversa-

tional speech recognition applications with a graphic user interface, for example

numerical data entry. This dissertation defers such experiments to future work.

Another trade-off in task realism was taken with respect to the issue of out-of-
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vocabulary words: a more realistic dictation task would include out-of-vocabulary

words, instead of eliminating them by adding all words within the experimental

tasks to the recognition vocabularies. However, the new word problem is a sepa-

rate research challenge beyond the scope of this dissertation. As rudimentary solu-

tion, the multimodal dictation system prototype had an "ADD WORD" button

which allowed the user to type in new words that would automatically be added to

all recognition vocabularies. However, since this solution does not address the

(more important) issue of deciding whether a recognition error is due to a new

word or to something else, this feature was not formally evaluated (and remains a

challenge for future research).

8.2.2.3 Experimental Conditions. 

Experimental conditions, and the inclusion of a control group are important choices in any

experimental design. Since a basic design that compares different correction method was cho-

sen for the multimodal dictation system study, rather than comparing to a specific existing

system, a control group was not necessary. However, other choices were made regarding the

experimental conditions. 

The pilot experiment compared different multimodal correction methods explicitly. Separate

experimental conditions offered different sets of multimodal correction modalities (i.e., cor-

rection only by respeaking, only by spelling, or only by handwriting). 

After significant improvements of recognition performance on initial dictation and corrections

by respeaking, the final user study examined more high-level issues, in addition to validating

results from the pilot experiment. Such high-level issues include relative strengths and weak-

nesses of multimodal and conventional methods, and user preferences. Therefore, the experi-

mental conditions compare only two correction methods: one with free choice among

keyboard-free multimodal correction modalities, and the other with free choice among "con-

ventional" correction modalities (with keyboard and mouse)
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8.3 Results

This section presents the results of the user evaluation of interactive error correction within a

multimodal dictation system. The first subsection summarizes statistics describing the data

collected during the evaluation. The following subsections discuss results for each research

question, in the same order as when they were introduced in Section 8.1. 

8.3.1 The Data from the User Study

In the final user study, data from fifteen participants was collected, five participants in each

category of (self-reported) typing speed (slow, average, fast); whereas the pilot experiment

included only six participants. By pooling the data across experimental conditions for every

input modality (continuous speech, spelling, handwriting, gesture, typing), we built a database

of multimodal corrections. Table 21 shows important statistics of this database, which

includes data from both pilot experiment and final study. The rows are: initial dictation using

continuous speech; word-level corrections using continuous speech, spelling, handwriting,

choosing from the list of alternatives, and typing; editing tasks (deleting and placing the cur-

sor) using gestures and mouse/keyboard; and partial-word corrections using spelling, hand-

writing, and gestures. Note that speech input allows the user to enter multiple words at a time,

therefore, the table shows the number of words in speech interactions as separate number.

This database was used in previous chapters to evaluate algorithms that improve correction

accuracy (see Section 4.4), and to estimate the basic correction modality parameters for the

performance model (see Section 7.1.2).

Table 22 characterizes the dictation performance and the absolute amount of errors during the

final study. The word accuracy on the initial dictation was with below 80% significantly lower

than 90+% current commercial dictation systems claim. However, unlike those systems, we

did not adapt the acoustic models of the dictation recognizer to the current user’s voice. Such

speaker adaptation requires 100-200 sentences as training data, and reading these sentences



Experimental Evaluation 182

would have extended the duration of the experiment excessively.

8.3.2 Ineffectiveness of Unimodal Correction - Effectiveness of Multimodal 
Correction

This section answers research question 1 - why unimodal correction is ineffective, and why

multimodal correction is effective. The results of the study confirm that unimodal correction

by respeaking is ineffective, and that multimodal correction is effective. Empirical evidence is

provided in two ways: first, by comparing the recognition accuracy on initial and correction

input, and second, by comparing the correction speed of unimodal with multimodal correc-

tion. 

Table 21: Database of dictation and multimodal corrections

Modality Number of Interactions

Continuous Speech, Initial Dictation 503 Sentences (9750 Words)

Respeaking 515 Repairs (1778 Words)

Spelling (word level) 816 Words

Handwriting (word level) 1301 Words

Choose from list of alternatives 478 Words

Typing 685 Words

Gestures (word level) 747 Corrections

Editing with Mouse/Keyboard 431 Corrections

Spelling (character level) 40 Corrections

Handwriting (character level) 65 Corrections

Gestures (character level) 206 Corrections

Table 22: Dictation and error statistics (final study)

Experimental Condition Word Accuracy on 
Initial Dictation Errors

Keyboard & List 73% 867

Multimodal Correction 77% 593

Multimodal with Imper-
fect Error-Locate

78% 739



Experimental Evaluation 183

Comparing correction speed of unimodal with multimodal correction is more costly, because

it requires to isolate unimodal and multimodal correction for each modality in separate exper-

imental conditions. This design was chosen for the pilot experiment. Correction by respeaking

("Respeak &List" condition) is compared with different multimodal correction methods: mul-

timodal methods that allow switching modality once ("Spelling&List", "Handwriting&List"

conditions), or free choice among all modalities ("Multimodal" condition). 

Table 23 shows the (empirical) correction speed of different correction methods. As can be

seen, correction by respeaking ("Respeak&List") is slower than any multimodal correction

method ("Spelling&List", "Handwriting&List", "Multimodal, no PWC", "Multimodal", "Key-

board &List"). An analysis of variance reveals that unimodal correction by respeaking is sig-

nificantly slower that any multimodal correction method (F(5,25)=27.33, p<0.05).

Comparing recognition accuracies across repeated correction attempts offers a second way to

establish ineffectiveness of unimodal correction and effectiveness of multimodal correction.

The recognition accuracies in different modalities can be tabulated across correction attempts

in the same modality. Figure 8-2 shows the correction accuracies assuming that the original

input was in speech. Note that the counter for the correction attempt is reset after each switch

of modality, even if the same recognition error is corrected. For example, if some recognition

error required three correction attempts, the first two in speech, and the final attempt in hand-

Table 23: Correction speeds (cpm=corrections per minute)

Correction Method
Correction Speed 

VCorrect (cpm)

Respeak & List 2.3

Spelling & List 5.3

Handwriting & List 5.2

(Free choice among) Multimodal 4.5

Multimodal, no PWC 4.9

Keyboard & List (depending on typing skill) 6.0 - 7.3
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writing, this final attempt is assigned to category "1", because it was the first attempt after a

switch of modality.

First, if users repeat input in speech, correction accuracy is much lower (only 40%) than if

users switch to a different modality (75% for handwriting, 80% for spelling). If multiple cor-

rection attempts are necessary, correction accuracy in successive attempts remains high if the

user switches modality after each attempt. In terms of Figure 8-2, this means staying within

category "1". An analysis of variance confirms that correction accuracy is significantly lower

if repeated in the same modality (F(2,6)=36.2, p<0.01). 

Figure 8-2.  Deterioration of correction accuracy on repeated attempts in the 
same modality

Second, Figure 8-2 reveals that the correction accuracies are significantly lower than word

accuracies known from standard benchmark tasks (which are in the 80-90% for the modalities

reported here). Recognizing correction is more difficult than standard benchmark tests

(remember: subset of more difficult to recognize words, short words, hyperarticulation).

Despite the difficulty of recognizing correction input, correction accuracy is higher if modal-

ity is switched. For example, the figure below indicates around 80% for multimodal correc-

tion using spelling or handwriting, instead of 40% for unimodal correction by respeaking.
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8.3.3 Comparison of Interactive Correction Methods

Addressing research question 2 - how multimodal correction methods compare to conven-

tional methods - this dissertation focuses on two measures: task completion time and user

preferences (as indicated by modality choice patterns). Different correction methods can be

compared using their correction speed, combining input speed and recognition accuracy into a

single measure, as described in Chapter 7. Alternatively, we can look at what correction meth-

ods users prefer, given free choice. In both cases, every instance of an error and its correction

constitutes a data point for a correction method. Thus, statistics for both correction speed as

well as user choice of correction method can be accumulated across an experimental condi-

tion.

This section compares interactive correction methods quantitatively and qualitatively: 

• Quantitatively on the level of single correction interactions, by deriving basic

modality parameters (input rate, recognition accuracy, recognition speed, and

overhead times), and on the level of completed correction interaction sequences,

by comparing overall correction speeds. 

• Qualitatively by examining modality choice patterns and preference ratings (as

participants indicated in the questionnaires). 

In summary of the results, the user study shows that multimodal correction is faster than uni-

modal correction by respeaking, and slower than correction by typing for users with good typ-

ing skills. Regarding user preferences between modalities, there is evidence that correction

accuracy has a significant influence on user preference between different modalities. How-

ever, speech is preferred initially. 

The section contains a lot of material; Tables 24, 26 and Figure 8-4 contain the main results.

8.3.3.1 Quantitative Comparisons

As described before, the basic parameters for multimodal correction (as defined in the perfor-
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mance model) can be estimated by pooling the data of all repair interactions across all experi-

mental conditions. Table 24 shows estimates derived from the database of multimodal

corrections, for input rate VInput, word accuracy WA, real-time factor R, and overhead time

TOverhead. The width of 95% confidence interval is indicated in parentheses.

The following bulleted list discusses the data concerning word-level corrections (i.e., the

upper half of this extensive table). The interpretation for the partial-word data (bottom section

of table) is done in Section 8.3.5, and for the different modalities for performing editing tasks

(middle section of table) in Section 8.3.6.

• Input rate: The input rates VInput shown are consistent with those in the literature,

in particular, for continuous speech dictation and handwriting [Gould 1978]. 

• Correction by respeaking: The accuracy on corrections by respeaking is fairly low

due to a very low accuracy on isolated word corrections. The recognizer used in

this study performs at 10% on isolated word recognitions, as opposed to 51% on

multiple word corrections. The poor performance on isolated word corrections

Table 24: Dictation and correction modality parameters (final study)

Modality
Input Rate 

VInput (wpm)

 Accuracy 
WA/CA 

(%)

Real-time 
Factor R

Overhead Time 
TOverhead (sec)

Continuous Speech, Initial Dictation 133 (9) 75% (5) 2.6 3.5 (0.5)

Correction by Respeaking 45 (4) 35% (13) 2.6 5.0 (1.4)

Spelling (word level) 24 (4) 79% (16) 1.7 4.0 (0.8)

Handwriting (word level) 17 (2) 75% (6) 1.4 3.5 (0.9)

Choose from list of alternatives 48 (15) 24% (6) 1.0 4.8 (0.4)

Typing 19 (5) 87% (3) 1.0 2.8 (0.5)

Gestures (word level) 39 (4.3) 86% (4) 1.0 4.9 (0.5)

Editing with Mouse/Keyboard 20 (8) 80% (7) 1.0 3.8 (0.8)

Spelling (partial-word correction) 41 (14) 95% (8) 1.5 2.5 (0.8)

Handwriting (partial-word correction) 25 (3) 81% (15) 1.2 2.5 (0.8)

Gestures (partial-word correction) 31 (5) 46% (11) 1.0 5.5 (1.1)
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appears to be a weakness of the specific recognizer used. However, the significant

decrease in accuracy from dictation to corrections by respeaking generalizes across

different recognition systems (as shown in Section 4.3.1, page 83).

Respeaking is an input rate of 46 wpm significantly slower than dictating with 133

wpm (p<0.01). People elongate pauses between words and enunciate more clearly

in speech repairs [Oviatt, Levow et al. 1996], which explains this slow-down in

speaking rate on corrections. This observation limits the head start of continuous

speech as correction modality, compared with other modalities such as handwrit-

ing and spelling. 

• Correction by spelling and handwriting: Our data shows clearly why switching

modality for corrections is so effective: instead of 35% accuracy for unimodal cor-

rection by respeaking, cross-modal correction by spelling and handwriting is 75-

80% accurate. Cross-modal partial-word corrections are even more accurate. How-

ever, recognizing correction is a more challenging task than standard benchmark

tests for spelling and handwriting recognition, because the accuracy is well below

the 95% that both recognizers achieve on benchmark data.

• Correction by choosing from a list of alternatives: The low accuracy of choosing

from a N-best list of alternatives indicates that the correct alternative is frequently

not among the top choices. The magnitude of this effect is specific to the recog-

nizer used in this study, but the effect appears to generalize across different recog-

nition systems [Huang 1998].

The input rate for choosing from a list of alternatives is determined by two factors:

first, the time necessary to trigger the display of the list (in the multimodal dicta-

tion system by holding down on a word for a second), and second, the time neces-

sary to scan the list and decide whether the correct alternative is among them.
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• Correction by typing: Participants made a surprisingly high number of typing

errors, hence the accuracy of correction by typing is far below 100%. The speed of

correcting by typing at 19 wpm is an average across participants of different typing

skills. 

Table 25 shows the measured average typing speeds and speed of correction by

typing in more detail. As can be expected, correction by typing is slower than typ-

ing consecutive text, because it takes time to position the hands over the keyboard

and to focus on what to type as correction for each correction. Furthermore, the

"slow" category did not cover people with really poor typing skill, because 23

wpm is still a quite decent typing speed. This deficiency in the distribution of the

participants can be compensated by predictions for really slow typing speeds using

the performance model. Refer to Figure 7-1 in the previous chapter for a linear

regression between typing speed and speed of typing correction that was derived

from our experimental data.

Interactive correction methods can also be compared at the level of successfully completed

repair interactions, by adding the times required to successfully correct an error, across differ-

ent correction methods. Table 26 shows the correction speeds VCorrect as measured in the

experiment, based on data from the pilot and the final study as indicated. As can be seen, cor-

rection by respeaking is significantly slower than any method that allows the user to switch

modality for correction (i.e., all other methods). Correction with keyboard input remains

unchallenged in speed for users with good typing skills. Surprisingly, the experimental condi-

Table 25: Typing skills and speed of correction by typing (final study)

Category Typing Speed 
(wpm)

Input rate Vinput of 
Correction by Typing (cpm)

"slow" 23 9.1

average 35 20.0

fast 40 29.3
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tions that gave free choice among non-keyboard correction methods ("multimodal, no PWC"

and "multimodal") do not perform best. The reason is the low accuracy of corrections by res-

peaking, combined with the tendency of participants to try speech first, which frequently fails,

and thus they have to spend time on an additional correction attempt.

To get an estimate of the influence of learning on the speed of multimodal correction, we mea-

sured the correction speed that the developer of multimodal correction achieves: 6.8 cpm.

Learning therefore plays a significant role, and the participants in the experiment still applied

multimodal correction in a suboptimal manner. Experienced users can achieve 7 cpm correc-

tion speed, which compares favorably to correction by typing for users with good typing

skills.

8.3.3.2 Qualitative Comparisons

The design of the multimodal error-correction user studies allows us to analyze qualitative

issues based on user preferences in the "Multimodal" conditions (which gave the user free

choice among all keyboard-free correction methods), and based on answers in the post-exper-

imental questionnaires. We are going to address the following issues: What correction modal-

Table 26: Comparison of correction speeds (from pilot and final study)

Correction Method Correction Speed VCorrect 
(cpm)

Respeak & List (Pilot) 2.3

Spelling & List (Pilot) 5.3

Handwriting & List (Pilot) 5.2

Multimodal with Imperfect Error-Locate 4.0

Multimodal (Pilot and Final Study) 4.5

Multimodal, no PWC (Pilot) 4.9

Keyboard & List ("slow" typing) 5.9

Keyboard & List ("average" typing) 6.2

Keyboard & List ("fast" typing) 7.3 
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ities are used most frequently? What drives the choice of correction modality? And finally,

how do users perceive multimodal correction in comparison with conventional correction

methods? 

Table 27 addresses the issue of modality choice, showing the usage frequencies of the various

correction methods across the experiment conditions in the final user study. The following

explanations may help the reader understand this data. First, gesture and Mousing/Keying are

necessary for most correction in both conditions (to delete words and to place the cursor),

therefore they have to be used frequently. Second, the high usage frequency of correction by

respeaking is noteworty, in view of repeated experience that respeaking is quite inefficient

(35% average accuracy). This provides evidence for our explanation why multimodal correc-

tion is slower than correction by spelling/handwriting & list, as seen in Table 26, namely that

participants continually try to correct by respeaking, wasting time since respeaking frequently

fails. Third, participants use handwriting more often than spelling as correction modality -

although spelling is faster and more accurate (cf. Table 24), suggesting that handwriting is a

more intuitive (or "natural") correction modality. Finally, partial-word corrections are used

only very infrequently. Apparently, it is difficult for users to judge when partial-word correc-

Table 27: Empirical usage frequencies of modalities (final study)

Correction Modality Multimodal Keyboard & List

Respeaking 27% n/a

Spelling (whole word) 5% n/a

Handwriting (whole word) 14% n/a

Choose from List 10% 12%

Gesture 34% n/a

Spelling (partial words) 1% n/a

Handwriting (partial words) 1% n/a

Gesture (partial words) 1% n/a

Typing n/a 50%

Mousing / Keying n/a 38%
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tions may be beneficial, and most users initially ignore the possibility of partial-word correc-

tion. 

What factors drive user modality preferences? The multimodal approach assumes that correc-

tion accuracy is a major factor; if correction accuracy is higher in one modality, users are will-

ing to switch to it. Do users learn which modalities are more efficient? Do all users converge

on the same modality, or does the preferred modality differ across users? To address these

questions, we analyzed modality choice patterns in the "multimodal" experiment condition,

and how they develop over time (at least during the experimental session).

Figure 8-3 shows estimates for the usage frequency of different modalities. One time unit cor-

responds to forty correction interactions, and the whole x-axis to one experimental session

(which lasted for about one hour). The figure illustrates that participants learn to prefer effec-

tive modalities and avoid ineffective modalities. Over time, the usage frequency of effective

modalities increases, while that of ineffective modalities decreases. The most effective modal-

ity is different for the two participants. Therefore, it is beneficial to offer multiple modalities

even though some modality may be inferior to another on average, such as handwriting com-

pared to spelling.



Experimental Evaluation 192

Figure 8-3.  Usage frequencies of different modalities for two typical users. 
Speech corrections were 32% / -32% (upper/lower graph) accurate, spellings 
40% / 85%, handwritings 68% / 85%, and choosing from list 18%/7%. In the 
upper case, the user learns to avoid speech and spelling and favor 
handwriting; in the lower case, the user learns to avoid choosing from list, 
preferring spelling.
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Figure 8-4.  Correlation of usage frequency with effectiveness of correction 
increases with practice, but a bias towards correction by speech remains. 

Figure 8-4 suggests that these observations are not incidental. To show that users prefer effec-

tive modalities, we computed the correlation of modality usage frequency with modality

effectiveness (high correction accuracy means high effectiveness score). A positive correla-

tion means that users prefer effective modalities. Except for the "choose from list" modality,

the correlation between usage frequency and effectiveness increases over time, and this effect

is significant (F(2,4)=7.25, p<0.05). The correlation for spelling and handwriting is positive,

indicating that users follow the rational choice for these modalities (of preferring the more

effective modality). However, user behavior for the speech modality is different. The negative

correlation indicates that users choose speech as correction modality despite evidence that

speech is ineffective for correction. The fact that the correlation gradually becomes less nega-

tive suggests that eventually, users learn that speech is ineffective.

Figure 8-5 provides further evidence for the user bias towards speech, by showing modality

usage frequencies in the first correction attempt. As can be seen, speech is preferred in the
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first correction attempt, and only very slowly speech is used less frequently in favor of spell-

ing or handwriting. The modality differences in this figure are significant (F(3,9)=28.1,

p<0.01). 

Figure 8-5.  Modality choice in the first correction attempt. Users slowly learn 
to prefer effective modalities (spelling and handwriting) over ineffective 
modalities (speech and choosing from the Nbest list.)

How do users perceive multimodal correction? To assess this question, a post-experimental

questionnaire was designed and completed by each participant. In summary, participants feel

that multimodal correction is easy to learn, and judge the overall performance quite positively.

However, multimodal correction does not score significantly better than correction using key-

board and list of alternatives ("Keyboard & List" experimental condition) in liking-scores

along different dimensions. Finally, most participants prefer speech as correction modality if it

was as accurate as other modalities. The results are presented in detail in the following list.

Likert-scales of 1.0 - 5.0 were used, where 1.0 meant "good". 
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• Is multimodal correction easy to learn? Score: 2.0

• Overall performance of multimodal correction? Score: 2.3

• Is multimodal correction ... than conventional (keyboard&list) correction?

a) more intuitive? - No (p>0.1)

b) more pleasant? - Yes (p<0.05)

c) takes less concentration? - No (p>0.1)

d) causes less physical fatigue? - No (p>0.3)

e) would prefer it for text editing? - No (p>0.25)

The fact that conventional "keyboard & list" correction was more efficient (faster) for most

participants in the user study might explain why most participants did not perceive multimo-

dal correction more positively in the direct comparison. Additionally, unsolved hardware and

technical problems (e.g., unwieldy touchscreen) took away from the positive user experience

with multimodal error correction. The following comments from participants on the post-

experimental questionnaire support this explanation: "very difficult to get the pen to mark/

gesture correctly, especially within words", "it gets tiring writing on the screen", "it was diffi-

cult to select from the list of alternatives". In fact, seven out of fifteen participants made sug-

gestions to improve the hardware setup. This may explain why it didn’t receive better

preference scores than conventional "keyboard&list" correction.

Users are quite aware of how well different methods work for them. Table 28 below provides

evidence for this point, by showing the correlation between actual correction accuracy (across

different participants) and the subjective efficiency rating, which the participants assigned to

the correction modalities in the questionnaire. Positive correlation between correction accu-

racy and self-reported efficiency of a correction modality means that the modality which users

believe to be efficient, actually is efficient. As can be seen, users perceive the modalities of

speech, spelling, and handwriting as efficient, when they are accurate - although a standard

test for positive correlation reveals that the evidence presented here is not statistically signifi-
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cant (on a 0.05 level - with the exception of choice-from-list).

8.3.4 Usefulness of Multimodal Dictation System for Text Reproduction Tasks

Moving beyond the issue of error correction, this section discusses implications of this disser-

tation work on the overall text production process, answering the third research question -

whether the multimodal dictation system is useful for text reproduction tasks. To assess the

potential productivity gain of multimodal input methods, we compare the total system

throughput (or dictation speed) of a multimodal dictation system (i.e., first dictating, then cor-

recting multimodally) to that of a conventional dictation system (i.e., first dictating, then cor-

recting using keyboard and choice from list) and a standard text editor (i.e., typing the entire

text). Note that we use the term throughput differently from some commercial vendors of dic-

tation systems who exclude the time necessary for correction.

The user study allows us to measure the total system throughput of the multimodal dictation

system used in the experiment. However, that result depends on the specific recognizers avail-

able at the time of the experiment. To abstract from recognizer-specific issues, and to extrapo-

late to future scenarios (e.g., faster recognition at higher accuracy), this section applies the

prediction method outlined in the previous chapter (see Section 7.2.3). Predictions confirm the

hypothesis that the system throughput of a multimodal dictation system can exceed 40 wpm

(assuming 90% dictation in real-time) and compares favorably to non-secretarial typing. More

Table 28: Correlation between correction accuracy and self-reported efficiency of various 
correction modalities

Correction Modality Correlation

Respeaking 0.39

Handwriting 0.21

Spelling 0.29

Choice from List 0.73

Gesture -0.2

Typing -0.33
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details follow below.

Figure 8-6 illustrates the system throughput of a multimodal dictation system, a conventional

dictation system, and a text editor. The throughput for the dictation systems assumes 90% rec-

ognition accuracy in real-time. Since typing speed has a significant impact on this compari-

son, the results are tabulated across different typing skills. Since the experiment did not really

cover "slow" typists, results for the slow category are derived using predictions from the per-

formance model. Furthermore, "poor" refers to novice users and "good" refers to experienced

users for the multimodal dictation system

As can be seen, a multimodal dictation system compares favorably to fast (non-secretarial)

typing of 40 wpm - without requiring any keyboard input. The dictation speed of conventional

dictation systems varies significantly depending on the user’s typing skill, and this is because

they rely on keyboard input for correction. For users with good typing skills, a conventional

dictation system is currently the most efficient text production method.

Figure 8-6.  Predicted throughput for different text production methods, across 
typing skills, for 90% dictation accuracy

0 10 20 30 40 50 60

Multimodal Dictation
System

Conventional Dictation
System

Text Editor
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Table 29 provides more detailed information on this comparison. The first column shows the

system throughputs VDictate as measured in the experiment, with 75% accurate initial dictation

at 2.6 x real-time. The second column contains the predictions on which Figure 8-6 is based.

The last column indicates the accuracy of the text after completion of the task, i.e. how many

errors were overlooked.

The measured system throughputs in column 1 are quite low, due to the comparatively low

accuracy and slow recognition of initial dictation. Regarding the quality of the produced text

document, although participants appear to have been slightly more careful in correcting multi-

modally, compared to the other conditions, the differences in text accuracy (shown in the last

column) of the final document are not statistically significant.

8.3.5 Effectiveness of Partial-word Correction

This section analyzes the effectiveness of partial-word corrections, providing an answer to

research question 4. Summarizing the discussion below, the research hypotheses regarding

this question were confirmed in part and rejected in part. Our study confirms that partial-word

corrections have higher input rates and correction accuracy, compared to whole-word correc-

Table 29: Comparison of text input rates (including correction time) and text accuracy 

Text Production Method
measured 
VDictation 
[wpm]

predicted 
VDictation 
[wpm]

Text 
Accuracy [%]

Multimodal Dictation System (no key-
board input)

16 40 99

Conventional Dictation System (slow typ-
ist)

not covered by 
participants

22-34 97

Conventional Dictation System (average) 16-18 40-48 98

Conventional Dictation System (fast) 25 >52 98

Text Editor (slow typist) 5-15 n/a not covered

Text Editor (average typist) 23-35 n/a 95

Text Editor (fast typist) >40 n/a 97
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tions. Overall, however, partial-word correction decreased correction speed. Due to problems

with the available touchscreen hardware, selecting characters with pen-drawn gestures caused

many difficulties, and any gain in input rate and correction accuracy was lost in additional

gestures.

The pilot experiment compared multimodal correction with and without partial-word correc-

tion in two separate experimental conditions. Comparing the rows "Multimodal" and "Multi-

modal, no PWC" in Table 26 reveals the disappointing result that partial-word corrections

decreased overall correction speed. However, the following more detailed analysis reveals

that partial-word corrections had some positive effects. 

Table 24 indicates correction accuracies and input rates VInput for word-level corrections and

partial-word corrections by spelling and handwriting. A standard t-test confirms our original

hypothesis (see number (4) in 8.1) that partial-word corrections are significantly more accu-

rate than word-level corrections (p<0.05), and that input rate for partial-word corrections is

significantly higher (p<0.05). So why does partial-word correction decrease correction speed,

if it increases correction input rate and correction accuracy? The explanation is that selecting

and deleting at the level of characters is very difficult with the touchscreen used in the experi-

ments, it is very thick and has a significant parallax. Therefore, users typically needed several

attempts to selecting or deleting characters in a word, thus losing the saved input time in addi-

tional gesture interactions. 

8.3.6 Effectiveness of Gestures/Pointing for Editing Tasks

This subsection reports results relevant to research question 5 - whether (pen-drawn) gestures

and pointing are more efficient for editing than keyboard and mouse input. This question can-

not be answered adequately, because of the limitations of the experimental design. Weak evi-

dence can be obtained by comparing the overhead times in the experimental condition

"Keyboard&List" to the "multimodal" conditions; the time spent on selecting is included in

the overhead time. Table 30 shows that overhead times for conventional keyboard- and
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mouse-oriented correction methods are lower than for multimodal correction, suggesting that

gesture-based interaction using marks on a touchscreen is less efficient than traditional

mouse-based interaction. However, this result may be confounded by the hardware set-up;

with a full-sized 21-inch touchscreen and extremely large fonts to display words (as in the

prototype multimodal dictation system), gestures to delete words and position the cursor

require large hand movements. By contrast, the standard mouse works on a small mouse-pad

and is quite efficient. The situation would be quite different with small, hand-held devices.

Their display area is much smaller, making gesture-based interaction more efficient, but cur-

rently available pointing methods for such devices are rather inefficient. 

8.3.7 Usefulness of Automatic Error Highlighting

The "Multimodal, with Imperfect Error-Locate" experimental condition allows us to address

research question 6 - whether system-initiated location of errors speeds up error correction.

Within the experimental design, this question can be answered only for the level of accuracy

that the current implementation of automatic error highlighting achieved (87% classification

accuracy). Comparing rows "Multimodal" and "Multimodal, with Imperfect Error-Locate", in

Table 26, reveals that imperfect highlighting of likely recognition errors actually decreases

correction speed (p<0.05). Being unable to trust in the error labels, participants scanned the

entire text for errors anyway, and they became confused by incorrect error labels. 

Table 30: Overhead times for keyboard/mouse-oriented correction versus multimodal 
correction

Keyboard & List Multimodal

Respeaking n/a 5.0

Spelling n/a 4.0

Handwriting n/a 3.5

Gestures n/a 4.9

Choose from List 4.2 5.0

Typing 2.8 n/a

Mousing / Keying 3.8 n/a
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This result suggests that automatic highlighting of likely recognition errors must attain high

accuracy levels to be useful. Since users currently spend a significant time locating and select-

ing recognition errors (as captured in the still fairly high overhead times), error correction

should benefit from automatic locating of recognition errors at some level of accuracy.

8.4 Chapter Summary and Discussion

Leading back to the "bigger picture" from the detailed results presented in the previous sec-

tion, this section summarizes the main results, discusses some high-level issues, and com-

ments on some surprising results.

Multimodal error correction circumvents the drawback of many current non-conversational

speech recognition applications that depend on keyboard input for efficient correction

(research question 1). For applications where keyboard input is acceptable and for users with

good typing skills, typing remains the most efficient correction method for text input (research

question 2). However, with improvements discussed below, multimodal correction could

eventually beat even fast typing in correction speed. A dictation system with multimodal cor-

rection can achieve text production rates of more than 40 wpm, which compares favorably to

fast unskilled typing (research question 4). Our study did not provide conclusive evidence for

the remaining research questions. Partial-word corrections (research question 4) could speed

up correction even further, but hardware problems prevented a gain in overall correction

speed, despite decreased input time and increased correction accuracy. Editing with gestures

(research question 5) appears to be less efficient than keyboard and mouse input with current

desktop hardware; however, editing with gestures remains an attractive alternative that can be

expected to beat keyboard input in effectiveness for small or hand-held devices. Finally, the

time spent by users locating recognition errors ought to decrease if the system were to auto-

matically highlight recognition errors (research question 6); however, our study showed that

the automatic classification algorithm must be highly accurate (more than 90%) in order to

realize this gain.
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The knowledgeable reader was probably surprised that the recognition rates on dictation,

handwriting, and spelling input were much lower than what might be found in other publica-

tions. Table 31 provides evidence that explains the significantly lower recognition rates

observed in the user study of the multimodal dictation system prototype. First, tuning all rec-

ognizers to real-time performance without speaker adaptation (unlike all current commercial

dictation systems) deteriorated performance, compared to benchmark results. Second, reiterat-

ing a point made previously, correction input is more difficult to recognize than standard

benchmark data. Standard benchmark data is evenly distributed across easy and difficult-to-

recognize words, while repair is limited to the subset of difficult-to-recognize words. Third,

with limited recognition performance across different recognizers, users need significant time

to learn optimal correction strategies. The fact that the speed of multimodal correction

increases from 4.5 cpm to 6.8 cpm for an expert user provides evidence for this point.

This table also suggests that there remains much room for improvement. Obviously, multimo-

dal correction will benefit from improvements in any of its component technologies. For

example, using predictions from the performance model, we can predict what improvements

would cause multimodal correction to be faster than correction by typing for users with good

typing skills:

• Achieving real-time performance in all modalities, and cutting all word error rates

in half

Table 31: Explanation of performance losses, compared to benchmark results

Modality Benchmark, 
anytime

Benchmark, 
real-time

Dictation in 
User Study

First 
Correction

Repeated 
Correction

Continuous 
Speech

93% 83% 75% 42% 18%

Spelling 94% 81% 44%

Handwriting 93% 75% 44%

Gesture 93% 88% 86%
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• Reducing the overhead time per correction interaction from 3.5-5.0 seconds (as in

the prototype) to 2.5 seconds. However, that may be more difficult to achieve than

it appears; for example, imperfect highlighting of possible recognition errors actu-

ally increased overhead times, decreasing correction speed.

• Achieving a 70% accuracy for corrections by respeaking (across multiple correc-

tion attempts), and in real-time

The user preferences in multimodal correction, and the answers in the post-experimental ques-

tionnaire suggest that users preferred speech, if it was as accurate as other modalities. Why

would speech be preferred, despite repeated evidence that speech works less accurately?

These observations seem to confirm the claims of many advocates of speech recognition tech-

nology: that speech is more "natural" or "intuitive" as input modality, or to communicate in

general.

The data on usage frequencies indicated that handwriting was chosen as correction modality

much more frequently than spelling. Why would handwriting be preferred over spelling? One

reason is that spelling long words is difficult. Why? Basic facts on human cognitive process-

ing suggest the following explanation. For spelling, the letter sequence and the "index" of how

far one has progressed in spelling a word must be kept in short-term memory. With words

longer than 5-7 letters, this information exceeds the capacity of short-term memory. For long

words, information must be retrieved from long-term memory during spelling, and this

increases cognitive stress. By contrast, for handwriting, we can rely on visual feedback: see-

ing what is written so far eliminates the need to keep an index in short term memory, and pre-

vents decay of the letter sequence. Therefore, although it is slower, correction by handwriting

may actually be preferred to correction by spelling.

Comments made by participants on the post-experimental questionnaire suggest overall that,

despite performance and hardware problems with current technology, they felt that multimo-

dal correction is attractive, and if limitations due to current recognition performance and hard-
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ware were eliminated, multimodal correction would be faster, even for users with good typing

skills. The following quotes by participants on what they felt was best about multimodal cor-

rection support this point: "it is easier to correct minor mistakes without typing - similarly, the

handwriting recognition makes mistake correction much easier", "very easy, not as frustrating

as writing, should become even better as recognition improves. Does not distract from task of

dictating as much as pop-ups", "You have a choice of methods, each of which is more useful

for different situations", "fast, accurate, and little concentration needed", "When it didn’t

understand my speech multiple times, I could just write the word", "the spelling is fantastic".



Conclusions 205

9. Conclusions

This final chapter summarizes the dissertation and its main contributions. Section 9.3 dis-

cusses limitations of the interactive approach to error correction. Section 9.4 outlines direc-

tions for future research - first obvious extensions of this dissertation work, followed by

broader issues that would lead to new research projects. The chapter closes with some con-

cluding remarks.

9.1 Thesis Summary

This dissertation investigated interactive error correction for speech user interfaces. It is

widely acknowledged that speech input is preferred over other input methods, such as key-

board and mouse, in applications where hands or eyes are busy, where mobility is required,

and where speech is faster or more convenient. In applications which keep hands or eyes busy

(e.g., inspections or car navigation), non-speech modalities are not available for error correc-

tion, and applications which favor interaction as a dialog with the user (e.g., translation or

automated directory assistance) suggest the use of conversational error-correction techniques.

This dissertation focussed on non-conversational speech recognition applications with

graphic user interfaces, for example mobile personal assistants, form filling, and dictation

applications. 

An informal survey of commercial speech recognition products and published research sys-

tems revealed that error correction is limited to variations of the following three methods: res-

peaking (repeating using continuous speech), choosing from a list of alternatives, and using

mouse and keyboard. With current speech recognition technology, respeaking is ineffective

because most speech recognizers often deteriorate on repetitions, especially when hyperartic-
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ulated. For two state-of-the-art large vocabulary recognizers, the word error rate on correc-

tions by respeaking was more than double the word error rate on the original input. Choosing

from a list of alternatives is not effective in continuous speech recognition applications

because the correct sequence of words is frequently not among the top alternative choices,

especially if several consecutive words are misrecognized. For the recognizer used in this dis-

sertation work, the correct word was among the 6 next best alternatives only in about 25% of

the cases. Finally, using mouse and keyboard defeats the purpose of employing speech as an

alternative to keyboard as input modality. Hence, current correction methods for non-conver-

sational speech recognition applications are either ineffective or require keyboard input. 

This dissertation proposed interactive multimodal correction as an alternative. The user can

efficiently correct errors by switching modalities for repetitions (for example, from continu-

ous speech to isolated words, handwriting, or oral spelling), and by using intuitive pen-drawn

gestures to delete words and to position the cursor. Interactive multimodal correction is effec-

tive because the user provides a signal which is redundant with the original speech input. For

example, with the recognizers available in this research (without modifications to handle iso-

lated or hyperarticulated speech), multiple word corrections by speech are only 50% accurate,

whereas multimodal corrections by spelling or handwriting are 80-90% effective on the first

attempt.

Achieving such high correction accuracies was challenging because recognizing corrections is

difficult. Short words are hard to recognize in any modality, and continuous speech recogniz-

ers frequently misrecognize them. Similarly, the accuracy of recognizing spelled or handwrit-

ten corrections is lower on short words. To achieve 80-90% correction accuracy, three

algorithms were developed in this thesis and integrated with the overall system. These algo-

rithms improve the effectiveness of interactive multimodal correction by correlating correc-

tion input with the context. 
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• First, phrase and sentence level context are utilized by constraining the search

space for correction input with a language model. Using the trigram word context

of an error to rescore lists of alternative hypotheses obtained from decoding iso-

lated word repair input decreases the error rate for corrections by up to 26% (rela-

tive). 

• Second, the interpretation of correction input can be biased towards words which

are frequently misrecognized by the continuous speech recognizer. For instance,

applying a unigram prior to the interpretation of isolated word correction reduces

the error rate by up to 20%. 

• Finally, methods which correct characters within a word were also developed.

Such partial-word corrections increase speed of correction by increasing input

speed and correction accuracy. If the recognition vocabulary is limited to those

sequences of characters that could follow the partial word, the error rate on correc-

tions decreases by 50%, compared with word-level corrections.

Input speed is the most important quantitative evaluation measure for input modalities. To

compare various multimodal correction methods, and to extrapolate results to future recogni-

tion performance, this dissertation presented a performance model of multimodal human-

computer interaction. The model predicts that correction by respeaking would be faster than

typing if recognition accuracy on spoken corrections exceeds 70%1, and that full word hand-

writing will always be slower than typing, even if 100% accurate recognition were available. 

To empirically evaluate interactive multimodal correction, state-of-the-art large vocabulary

recognizers for continuous speech, spelling, handwriting, and pen-drawn gestures were used

to build a prototype multimodal dictation system. In user studies, two categories of correction

methods were compared: methods available in current dictation systems (respeaking, choos-

ing from a list, or typing), and the new multimodal methods. The results show that interactive

1. Recognition rates of current continuous speech recognizers on spoken corrections are closer to 50% -
without modifications to handle isolated word input and hyperarticulated speech.
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multimodal correction almost doubles correction speed, compared with respeaking and choos-

ing from a list of alternatives. Typing currently remains the fastest correction method for users

with good typing skills. For applications where a keyboard is not desirable or not possible, or

for users with poor typing skills1, state-of-the-art continuous speech recognizers with multi-

modal correction achieve text input rates of 40-50 words per minute (including the time nec-

essary to correct errors), which compares favorably to fast non-secretarial typing. Analyses of

the modality usage patterns when users were given free choice among correction methods

showed that user choice between modalities is driven by correction accuracy, although there is

a bias towards using speech initially. Users learn to prefer the more accurate correction modal-

ities and avoid inaccurate ones. 

In summary, multimodal error correction bridges the gap between the promise of speech rec-

ognition technology to deliver fast input without keyboard, and the problem of losing the

potential productivity gain in correction of recognition errors. 

9.2 Contributions

This dissertation contributes to the speech recognition field by developing multimodal inter-

active techniques for correcting speech recognition errors without using a keyboard, in non-

conversational speech recognition applications with a graphic user interface. Previously,

although speech recognition technology offered an alternative to the keyboard as input modal-

ity, the time gained by using speech as fast input modality was largely lost in correcting recog-

nition errors. With multimodal error correction, and with algorithms that increase correction

accuracy by correlating repair input with context information (as proposed in this disserta-

tion), text input without keyboard input can be more efficient than text input by typing. This

advantage will be even more pronounced with further improvements in recognition technol-

ogy and interface hardware.

1. Typing speeds of less than 20 wpm can be considered poor, more than 40 wpm are generally consid-
ered fast unskilled typing, and more than 50 wpm fast secretarial typing.
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A second contribution lies in breaking the focus on word accuracy as single performance mea-

sure, which is still widespread in the speech recognition field. Applying the methodologies of

model-based and empirical evaluation to speech user interfaces, the evaluation of multimodal

correction addresses important task-level and qualitative issues: that not only dictation accu-

racy, but also efficiency of error correction is crucial to realize productivity gains with speech

recognition applications, and that user choice between modalities is driven by recognition

accuracy.

Third, this dissertation contributes to the speech recognition and human computer interaction

field by empirically confirming the hypothesis (proposed by other researchers in both fields)

that multimodal flexibility can improve error correction in speech recognition applications.

Multimodal correction is generally more efficient than conventional keyboard-free correction

(by respeaking and choosing from lists of alternatives), but less efficient than correction with

skilled keyboard input. With further improvements in recognition accuracy, implementation

of multimodal correction, and hardware, multimodal correction will eventually compare

favorably even to correction by fast typing.

Fourth, the performance model of recognition-based human-computer interaction presented is

useful beyond its application to the problem of error correction. As the speech recognition

field matures, performance predictions that abstract from current recognition performance and

interface implementation will be extremely useful in the realization of more and more speech

recognition applications. The model could be a first step towards a formal framework for mul-

timodal interaction.

Finally, this dissertation also suggests which factors determine user preference in speech-

enabled interfaces: both naturalness of the medium (users generally prefer speech) and accu-

racy of interpretation. The developer of speech recognition applications can thus circumvent

limitations of speech by offering other, more accurate modalities to compensate for speech

recognition errors.
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9.3 Limits of Interactive Multimodal Error Correction

As pointed out in the introductory chapter, interactive multimodal error correction as pre-

sented in this dissertation does not try to solve the problem of error correction in speech user

interfaces in general. What follows is a discussion of the most obvious limitations of interac-

tive multimodal correction.

First of all, since handwriting and gestures (editing marks drawn on the screen) were explored

as main alternative modalities to speech, interactive multimodal correction is applicable only

to speech recognition applications with graphic user interfaces. However, the more general

concept of offering alternative input modalities obviously applies to any kind of speech recog-

nition application, because alternatives include variations of one modality, for example speech

as continuous speech, disconnected speech, and isolated words. Furthermore, many conversa-

tional applications also contain subdialogues for which multimodal correction is appropriate,

hence multimodal correction is not limited to only non-conversational applications. Overall,

the benefits of multimodal correction are highest for tasks that favor multimodal interaction

(e.g., handwriting for numerical data entry, or gestures for manipulation of graphical data),

when performance on spoken corrections is particularly poor (e.g., in noisy environments), or

when keyboard input is not available or not efficient (e.g., on small hand-held devices). 

Second, whether multimodal correction is faster than unimodal correction obviously depends

on how poorly unimodal correction works. This dissertation showed that on a dictation task,

multimodal correction is faster than unimodal correction by respeaking - assuming the same

speech recognizer for both initial and correction input. Other work [Soltau and Waibel 1998]

suggests that recognition accuracy on spoken corrections can be significantly increased by

modifying the recognition algorithm appropriately. Performance model predictions can help

to decide whether multimodal correction is beneficial or not. For example, if speech correc-

tions were more than 60% accurate (across multiple correction attempts), they would outper-

form multimodal correction as implemented in the multimodal dictation system prototype.
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Interactive multimodal correction as presented in this dissertation does not solve the problem

of recognition errors due to new words. The new-word problem has not received sufficient

attention in the speech recognition field in recent years, because the ability to handle larger

and larger vocabularies appeared to reduce the problem considerably; with a 60,000 word

vocabulary, the rate of new words on Wall Street Journal texts is less than 1%. However, in

more realistic application settings the new-word problem remains significant. For example,

internal tests of a speech recognition software developer suggest that the new-word rate for

not matching texts is as high as 4% [Acero 1998]. Also, new words tend to contain important

content; for example, new words are frequently names [Suhm 1993]. Deciding whether a rec-

ognition error is caused by a new word, and graceful and efficient ways to incorporate new

words into an existing system remain a challenge for future research.

Finally, this dissertation evaluated text reproduction only, and most dictation involves text

composition. Some research suggests that for text composition, not input rate, but composition

skill is the main limiting factor [Gould 1978], and that for highly specialized professionals,

dictation software is only acceptable if recognition accuracy is almost perfect [Lai and Vergo

1997]. However, speech-enabled dictation and text editing tools could still be attractive for

highly specialized professionals, for example, by delegating the effort required to correct rec-

ognition errors to less skilled assistants.

9.4 Future Research

9.4.1 Extensions of Multimodal Interactive Correction

The results from the user study of the multimodal dictation system prototype suggest a num-

ber of improvements and extensions that would increase its usefulness as data entry and text

editing tool. What follows is a discussion of some obvious next steps.

There are several measures to improve system throughput of the multimodal dictation system.

First, the performance of the dictation recognizer was 75% accuracy in 2-3 x real-time,

instead of more than 90% accuracy in real-time claimed by current commercial dictation sys-
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tems. To achieve this performance, commercial systems adapt the recognizer to the current

user’s voice. Second, since users seem to prefer speech corrections and adopt a more staccato-

like speaking style in corrections by respeaking, a disconnected speech recognizer could be

used for spoken corrections. Disconnected speech recognition is easier than continuous

speech recognition, therefore accuracy of corrections by respeaking in disconnected speech

mode should exceed 80%. Third, how different input and correction modalities are triggered

could be improved. An obvious limitation of the prototype was the use two separate buttons to

distinguish between continuous speech and spelling input. If automatic classification of vari-

ous speech modalities was sufficiently accurate, interaction time could be reduced by having

the system listen continuously for speech input, and process speech input appropriately as

soon as the users speaks, without having to press a button. 

More functionality is necessary to cover all tasks that typically occur during text editing. Cur-

rently, the only supported editing tasks are deleting words and placing the insertion cursor.

Text editing involves many more editing tasks, including formatting, moving items, and

importing tables and graphics. Also, the prototype supports text input only; a system usable

for document production would need to support all kinds of input, including punctuation and

digits. Basically, the functionality of a typical word processor would need to be covered.

Interactive multimodal correction should be explored in other data entry tasks. For example,

the input speeds of different modalities are different for digit input, or input including graphic

information. For those data entry tasks, handwriting and gestures may be faster than speech

input. 

Finally, longitudinal studies of modality usage patterns are needed to determine whether the

observed bias towards using speech diminishes with increasing practice, or whether it persists.

Within the experiment, this bias could be explained as a novelty effect, because most partici-

pants had no prior experience with speech recognition technology.
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9.4.2 New Research Directions

Beyond improving interactive multimodal correction, and developing the multimodal dicta-

tion system into a tool useful for document production, this dissertation suggests several

directions for substantial future research: recognition algorithms that can handle hyperarticu-

lated speech better, interactive correction for conversational speech recognition applications,

interactive correction using several modalities simultaneously, and a framework for multimo-

dal human-computer interaction.

Other research confirms that hyperarticulation of speech corrections is one reason for poor

performance of (unimodal) correction by respeaking [Oviatt, Levow et al. 1996; Soltau and

Waibel 1998]. Users appear to transfer hyperarticulation as an effective strategy to resolve

communication problems in human-human conversation to error resolution in speech-enabled

interfaces. In contrast to hyperarticulation in human-human conversation, hyperarticulated

speech corrections are even more difficult to recognize by a machine - at least with current

speech recognition algorithms that are trained for normally pronounced speech. To account

for people’s natural tendency to hyperarticulate speech corrections, speech recognition algo-

rithms that are good at recognizing hyperarticulated speech must be developed. After all, there

is the potential to do better on hyperarticulated speech, compared to normally pronounced

speech, since at least the human hearing system is able to exploit the additional information in

hyperarticulated speech. Initial research on modifying the recognition algorithm for isolated

word input and hyperarticulated speech shows that accuracy on spoken corrections can be sig-

nificantly increased1.

Second, for many interesting speech recognition applications, conversational interactions are

preferable (see also the taxonomy of speech recognition applications presented in Chapter 1).

Research in dialogue systems addresses conversational error correction in part; some systems

allow the user to correct recognition errors in the context of a spoken dialogue (so-called clar-

1. On a database of German hyperarticulated speech, modifications of the recognition algorithm 
increased the word accuracy on isolated word input to around 80% [Soltau and Waibel 1998].
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ification dialogues). However, a framework for development and evaluation of error correc-

tion in such applications is still missing.

Third, this dissertation did not explore two approaches to interactive correction that could

potentially increase correction accuracy and efficiency further: spoken correction commands

(as already implemented in some commercial dictation systems, such as Dragon’s Naturally

Speaking), and simultaneous or combined use of several modalities for correction. 

Finally, the performance model of multimodal, recognition-based interaction presented in this

dissertation is only a first step towards formalizing multimodal interaction. Future research

could generalize the model to cover interaction that does not occur sequentially (e.g., concur-

rent multimodal input), and interaction that is not necessarily repetition of previous input. Fur-

thermore, current research on multimodal interfaces is limited to case-studies that show

benefits of multimodal interaction in a certain context. A framework of multimodal interac-

tion would need to characterize situations where multimodal interaction helps, based on some

clearly defined criteria.

9.5 Final Remarks

Important speech recognition applications that include data-entry tasks and afford a graphic

user interface include text composition, service transaction systems, and information retrieval.

For such applications, this dissertation shows how keyboard-free input using speech and other

modalities can be more efficient than traditional keyboard and mouse input. This dissertation

thus contributes a piece to the puzzle of where human-computer interaction can benefit from

multimodal interaction, and how to go about implementing such multimodal applications.

Exploring the differential strengths and weaknesses of different input modalities remains a

research challenge, both for the fields that develop the necessary component technologies

(including the speech recognition field), and the human-computer interaction field. Both of

these fields have gone mostly separate ways during the past decade. Early attempts of HCI

researchers to use speech as alternative input modality were disappointed by low speech rec-
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ognition performance at the time, and the speech recognition field has traditionally focused on

improving recognition performance. Now, as the technology matures, both fields will benefit

from pooling their expertise to make speech recognition a success in enhancing human pro-

ductivity. As Newell said: "there is much more to designing a useful speech-driven word pro-

cessor than simply attaching a speech recognition front end to a standard word processor. For

such a system to be acceptable, the performance requirements are very high" ([Newell, Arnott

et al. 1991], p. 131). This dissertation provided further evidence that performance means more

than just speech recognition accuracy.
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Appendix A: Experiment Materials

This appendix contains all the written materials that were used during the experimental evalu-

ation of multimodal error correction: the consent form that was signed by each participant (to

ensure participation was voluntary, and to reaffirm to the participant that the experiment had

been reviewed by the standard human subject review process of Carnegie Mellon University),

the experiment instructions that were handed out to each participant at the beginning, the

quick tutorial of the multimodal listening typewriter (which can serve as user manual for

future reference), the various dictation tasks that were used during the tutorial phase (the trial

tasks) and during the experiment (one for each of the three experiment sessions), and finally,

the post questionnaire that each participant filled out upon completion of the experiment. The

experiment instructions are inspired by [Gomoll 1990].
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Name (Please Print) Signature and Date

E-Mail (optional)

A.1 Participant Consent Form

Project Title: Interactive Multimodal Error Correction

Conducted by: Bernhard Suhm, Computer Science Department

I agree to participate in experimental research conducted by students or staff under the supervision of Dr. Alex

Waibel. I understand that all experiments have been reviewed by the University’s Institutional Review Board and

that to the best of their ability they have determined that the experiments involve no invasion of my rights of pri-

vacy, nor do they incorporate any procedure or requirements which may be found morally or ethically objection-

able. I understand that my participation is voluntary and that if at any time I wish to terminate my participation in

this study I have the right to do so without penalty. I understand I will be paid for my participation when I have

completed the experiment. I further have the right to contact the following people and report objects of any kind,

either orally or in writing to:

Susan Burkett - Associate Provost - Carnegie Mellon University

(412) 268-8746

Alex Waibel - Principal Investigator - Carnegie Mellon University

(412) 268-7676

Purpose of the Experiment: This research involves the evaluation of interactive methods to correct recognition

errors. I understand that I will carry out certain tasks which include dictating and correcting using speech, spell-

ing, handwriting, pen-drawn gestures and typing. Additionally, I will answer questions and fill out a question-

naire concerning my opinion about this computer program. I also understand that some sessions may be

videotaped for later analysis by the researchers.

Anonymity of Participation: I understand that all participants will be given code names, and that videotapes

and transcripts will be labelled with theses code names only. The videotapes will be shown only to research

directly working on this project. However, if the need arises to show any portion of the videotapes of my partici-

pation, I understand that the researchers will obtain my written consent before doing so.
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A.2 Experiment Instructions for Participants

The Nature of the Experiment

• You are helping me by trying out an advanced speech recognition interface.

• I am testing the system; I am not testing you.

• This is a prototypical system. If you have trouble with some of the tasks, it is the

system’s fault, not yours.

• Remember, participation is voluntary. If you should become uncomfortable or take

any objection, feel free to quit any time.

Experiment Phases

• 1. Phase: Tutorial

You learn how to use the speech recognition interface, and how to correct errors

using different correction methods. At the beginning of the tutorial, the experi-

menter demonstrates the different features of the interface to you. Then, you get

familiar with the different correction methods in a series of simple practice tasks.

Finally, to master each method, you have the opportunity to practice more guided

by a series of drill tasks.

• 2. Phase: Experiment

1. Step: To measure your typing speed, you type in several sentences from the Wall

Street Journal.

2. Step: You dictate three sets of sentences from the Wall Street Journal and correct

the errors which occured using different sets of correction methods, as instructed

by the experimenter: "Keyboard/Mouse" and "Multimodal" (explanation see

below), "Keyboard/Mouse with Autohighlight".

• 3. Phase: Debriefing

You will be asked to fill out an evaluation questionnaire. Your critical comments

will be helpful in improving the system.
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Correction Methods:

• Correction Method A: You can replace words by typing or consulting the list of

alternatives (click on word and hold until pop-up menu appears, or a message in

the status line stating there is currently no alternative available for the word you

selected). You can insert words by typing, and delete words by selecting them, and

hitting the backspace or delete key. Place the cursor by clicking between two

words (similar to a standard text editor).

• Correction Method B: You correct errors choosing among: respeaking, spelling,

handwriting and partial word correction. Delete words and place the cursor using

pen-drawn gestures. 

• Correction Method C: The difference from method B is that the system automati-

cally highlights words (in red) which may be incorrect. However, this flagging of

errors is not 100% reliable: the system will fail to flag some errors, and also mis-

takenly flag correct words. Therefore you have to double check to ensure you do

not miss any misrecognized words. You can use the "Select Next Error" button to

select the next consecutive sequence of red words following the currently high-

lighted word or position of the cursor.

Special Instructions:

• All words are displayed in lowercase - do not worry to get upper/lowercase cor-

rect.

• Punctuation: Although the prompts are punctuated (mainly to help reading), punc-

tuation is currently not supported by the multimodal listening typewriter.

• Abbreviations: Slightly inconsistent across modalitites. In continuous speech, they

will appear as separate words (e.g., f. b. i.), in spelling as one word, all lowercase

(fbi), and in handwriting as one word (f.b.i.)

• Numbers: In spelling and handwriting, you have to write numbers out, for instance

spell "f-i-v-e" for "5".
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• Contractions: Supported in all modalities, but in spelling, just ignore them. For

instance, spell "d-o-n-t" to input "don’t".
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A.3 Interactive Multimodal Correction Quick Tutorial

The multimodal listening typewriter combines large vocabulary continuous speech recogni-

tion with interactive multimodal correction. You can switch between providing new input and

correcting/editing at any time. The supported modalities are: continuous speech, spelling,

handwriting, typing and editing gestures (drawn on the display). You can use any of the sup-

ported modalities for both new input and for corrections. However continuous speech is cur-

rently the only modality which allows multiple word input.

How to provide input in different modalities:

Basic Correction Methods

• Replacing Words: Select one or more words, and replace the selection by provid-

ing input in any modality. In addition, you can replace one word by choosing from

the list of alternatives (see below).

• Inserting Words: Place the cursor between the words where you want to insert, and

then provide input in any modality.

Table 32. How to initiate input in different modalities.

Modality To initiate input Input termination criterion

Continuous 
Speech

Press Dictate/Respeak button, listen 
for beep, start speaking

Stop speaking - recording will 
stop after ~1 sec. of silence

Spelling Press Spell button, listen for beep, 
start spelling (just one word)

as above

Handwriting Start writing on the display - avoid 
writing over displayed words, and 
resting the wrist on display

Stop writing - processing will 
begin after ~1 sec. of no fur-
ther pen input

Editing Ges-
tures

Mark gesture on the display - avoid 
resting the wrist on display

as above

Typing Start typing Press Spacebar or Return, or 
initiate input in another 
modality
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• Deleting Words: Use one of the supported deletion gestures to delete one or more

words. You may delete several subsequent sequences of words with a single ges-

ture.

How to select words

Tap with your finger on a word to select that word. If this word is next to another, already

selected word, the word will be added to the selection; otherwise the previous selection will be

deleted, and only the word that you tapped on will be selected.

Potential Problem: You tap a word, and it is deleted. – Reason: You may have "smudged" the

finger a bit while tapping, and the interface interpreted it as editing gesture. 

How to deselect

• Tap on the screen "far" (2-3’’) away from any displayed word OR

• Place the cursor somewhere, using one of the place-cursor gestures OR

• Use the Undo button

How to choose from the list of alternative hypotheses

This correction method is supported only for replacing isolated words. Tap on the word and

hold for ~1 sec. If there is no alternative for this word, a message will appear in the status line.

However if there are alternatives available, they will be displayed as pull-down menu. To

select any of the alternatives, move your finger over the alternative you want (do not release

your finger in the meantime) until the chosen alternative appears highlighted, then release

your finger. If none of the alternatives is correct, release your finger over any other part of the

display. 
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Gestures to Place the Cursor

Potential Problems:

• You mark one of these above gestures between two words, however nothing hap-

pens. – The interface probably failed to recognize your gesture. Try again, or use a

different gesture.

• A word is deleted instead. – Probably your mark covered a word partly, and the

interface misinterpreted it as a deletion gesture.

Gestures to Delete Words
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Potential Problems:

• You use one of these gestures, however nothing happens. – The interface probably

failed to recognize your gesture. Try again, or use a different gesture.

• More words are deleted than I intended. – If your gesture extends across multiple

words, the interface will delete all words which are (partially) covered. Try again,

and be careful not to cover any word that you do not want to delete.

• Only part of the word is deleted. – You have to cover the whole word, otherwise

the interface will interpret your gesture to delete only the characters you covered

(see below under "partial word corrections"). As mentioned above, you do not

need to cover the whole word if you delete multiple words.

Partial Word Corrections

Beside corrections on the level of whole words, you can also correct on the level of characters

within a word. This may be beneficial if a recognition error consists only of a few added (or

substituted) characters. Instead of replacing the whole word, you can select the characters you

want to replace (demarcating the first and last character with a gesture consisting of two verti-

cal bars as shown below) or delete them (using the same gestures as for deletions of whole

words). Then, you can correct by providing only the missing characters. Such partial word

corrections are supported for spelling and handwriting.

Gesture to select characters, and partial word correction by handwriting:
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Potential Problems:

• The characters I intend to select are not selected, instead, they are deleted, or noth-

ing happens at all. – With many current touchscreens, due to the thickness of the

screen it is difficult to select characters. The gesture to select is sometimes misin-

terpreted as gesture to delete, or as handwriting input. Please try again - otherwise

resort to correction on the word level.

• The correction would result in a valid English word, but the system keeps misrec-

ognizing it. – Maybe the word is not in the system’s vocabulary. Check by pressing

the Add Word button, and type the word. A message will appear in the status line,

stating whether the word was already in the vocabulary, or whether it was out-of-

vocabulary and has been added to the vocabulary.

Autohighlighting of Errors

• In this mode, the system will highlight words in red which probably have been

misrecognized. 

• Use the Select Next Error button to select the next sequence of highlighted (red)

words, in preparation of replacing these words in the following repair interaction.

• Note that the autohighlighting will mistakenly highlight some correct words, and

also mistakenly fail to highlight some errors. Therefore double check all words.

How to correct using mouse and keyboard

• Select a word by clicking on it

• Place the cursor by clicking between two words

• Delete word(s) by selecting and pressing Delete or Backspace
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A.4 Experiment Tasks

Trial Experiment Tasks

Digital technology has eliminated the difference and something new is emerging

Apple computers next generation of machines may look like a Mac, beep like a Mac and greet

you with a smiling icon but don’t be fooled

These Macs will act as telephone answering machine television and V. C. R.

Broadcasters and producers filled a large auditorium to hear Clinton’s presentation

Since nineteen eighty two (1982) Lotus has grown into a publicly traded company that has

nearly one billion dollars in annual revenues 

Dictation Task #1

Insurance and risk management professionals say the terrorist bombings in Sacramento and

Oklahoma city did not surprise them 

Such attacks around the globe have been rising for years they said 

But after Oklahoma city it’s a safe bet that executives everywhere realize they are not immune

from the threat of terrorists

The global market for environmental goods and services will surge in the next two decades

The report was prepared for businessmen at a seminar being held as part of a global forum

conference a follow up to the nineteen ninety two (1992) u. n. conference on environment and

development 

The Supreme Court Monday declared constitutional California’s worldwide unitary method of

taxation deciding a long legal battle
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The nation’s court by a seven to two vote rejected a challenge against the controversial taxing

method

But the case still was important because a number of mainly foreign based firms still sought

tax refunds

Why do health insurers businesses not reimburse health care providers at Medicare rates rather

than suffer the effect of government cost shifting

Several employer groups testified against the administration plan saying it isn’t needed

Others said faster funding rules could put many firms in financial jeopardy

As automakers position themselves for California’s nineteen ninety eight (1998) deadline for

zero emission cars american Flywheel Systems Incorporated announces a deal

Dictation Task #2

Unfortunately we live in a society where terrorism is a part of our lives and our futures

Companies historically have been very lax when it comes to security, said a spokesman for the

Risk and Insurance Management society 

Pension and profit sharing spending rose only three percent (3 %) in nineteen ninety two

(1992) from nineteen ninety one (1991) as outlays for health care increased ten percent (10 %)

Employers effectively have been robbing pension funds to help pay for climbing health care

costs

More than two thirds of these employers also contributed to the cost of telecommuting

The statistics were compiled by the Employee Benefit research institute a study group 

They would rather wait for the manager to put together a track record that can be compared to
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those of other funds

Some of the new arrivals have performed well

He found that fifty one percent (51 %) of the aggressive growth funds that have been appeared

since nineteen seventy two (1972) trailed their peers during their first year of operation 

When O. J. Simpson brutally beat his wife five years ago and got off with only a slap on the

wrist it wasn’t because he was a celebrity

Video would be shot and the production house would make the ad 

Dictation Task #3

The favorite targets of terrorists have long been oil companies financial institutions, utilities,

and nuclear power plants

Usually we only hear about the large scale episodes, Harris said

The trend is definitely upward for sabotage and terrorism, said Steven Harris vice president of

a San Francisco based company 

Barry Diller chairman of Q. V. C. Network Incorporated and Laurence Tisch chairman of C.

B. S. are negotiating a deal in which C. B. S. would merge with Q. V. C.

A nineteen ninety two (1992) Roper organization poll showed fifty eight percent (58 %) of

respondents recording programs when they were unable to watch T. V. 

Q. V. C. which earned fifty nine (59) million on revenue of one point two (1.2) billion in the

most recent fiscal year operates two home shopping channels that sell consumer products 

New mutual funds are being formed every day, but does it make sense to put money in a fund

without a track record?
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Investors will have to wait four weeks to bid for U. S. treasury coupon securities again

I have an office full of examples where Medicare payments to hospitals are only seventeen

percent (17 %) to eighteen percent (18 %) of charges 

Richard Darman former director of the federal office of management and budget and now an

investment banker with the Washington D. C. based Carlyle group will join a board of advis-

ers
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A.5 Participant Post-Evaluation Questionnaire

1. How easy were the correction modalities to learn?

2. How well did the different correction modalities work for you?

3. Assuming all modalities had equal accuracy, what method(s) would you prefer, and why?

4. Indicate your opinion on the following statements with respect to correction method A:

5. Indicate your opinion with respect to correction method B (choosing from a list of alterna-

tives, respeaking, spelling or handwriting):

Respeaking

Spelling

Handwriting

Editing Gestures

Partial Word Corrections

Keyboard and Mouse

poor 1 2 3 4 5 good

poor 1 2 3 4 5 good

poor 1 2 3 4 5 good

poor 1 2 3 4 5 good

poor 1 2 3 4 5 good

poor 1 2 3 4 5 good

Choosing from Alternatives poor 1 2 3 4 5 good

agree 1 2 3 4 5 disagree"Correction is intuitive"

"Correction is pleasant"

"takes little concentration"

"causes little physical fatigue"

agree 1 2 3 4 5 disagree

agree 1 2 3 4 5 disagree

agree 1 2 3 4 5 disagree

"would use it for text editing" agree 1 2 3 4 5 disagree

agree 1 2 3 4 5 disagree"Correction is intuitive"

"Correction is pleasant"

"takes little concentration"

"causes little physical fatigue"

agree 1 2 3 4 5 disagree

agree 1 2 3 4 5 disagree

agree 1 2 3 4 5 disagree

"would use it for text editing" agree 1 2 3 4 5 disagree

4

4

difficult 1 2 3 4 5 easy

4
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6. How do you judge the automatic highlighting of errors in correction method C?

7. What are the best aspects of correction method B?

8. What are the worst aspects of correction method B? What were the most common mistakes

the system made?

9. How would you rate the overall performance of correction method B?

10. What would you suggest to improve the system?

Demographic Information

Age:

Sex: 

Education (completed):

How do you rate your typing skills:

poor 1 2 3 4 5 good
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Do you have prior experience with speech recognition applications? If so, what kind?

Any other comments:

poor 1 2 3 4 5 good
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Appendix B : Theory of Repair in Human-Human Dialogue

Communication problems and the strategies people use to resolve them have been studied

extensively both in linguistics and in medicine. The theory of repair in human-human dialogue

provides useful analogies for the investigation of repair in human-machine dialogue for two

reasons: to serve as a measure for what kinds of repair can be considered "intuitive" and "nat-

ural", and to help build theoretical underpinnings for the design of repair in human-machine

dialogue.

Conversation analysis, a subfield of linguistics, investigates how people communicate.

Research in conversation analysis forms the basis of the theory of repair in human-human dia-

logue. The first section B.1 reviews research on the structure of natural language dialogue.

The goal of natural language dialogue is to extend the shared knowledge (common ground) of

the conversation partners. This goal is achieved collaboratively in a sequence of conversation

turns. Linguistic conventions determine when a dialogue partner has ended a turn and when

dialogue control is passed to someone else. 

The following section B.2 looks at what kinds of communication problems occur in human-

human dialogue. Several taxonomies of errors in human-human dialogue are reviewed. Com-

munication problems can occur on different linguistic levels (lexical, syntactical, semantic)

and at different stages in the communication process (from vocalization of the sequence of

words to an understanding of the intended meaning). 

Just as in natural language dialogue in general, repair of communication problems in such dia-
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logues is structured by turns. Section B.3 reviews the repair strategies used in human-human

dialogue. Conversational repair can be categorized into self- and other- repair according to

who initiates and who executes the repair (the speaker versus the listener). Repair strategies

include repetitions, paraphrases, and additions. Repetitions are preferred over more complex

repair strategies unless multiple interactions force the conversation partners to employ the

more complex strategies, such as paraphrases or additions.

B.1The Structure of Human-Human Dialogue

The foundation for the theory of conversational repair is the research in conversation analysis

that investigates the structure of human-human dialogue [Sacks, Schegloff et al. 1974; Clark

and Wilkes-Gibbs 1986; Clark and Schaefer 1989; Clark and Brennan 1991]. This research

shows that conversations progress by reaching a state of mutual understanding about what was

said and what was meant. This process of extending the knowledge shared by the conversation

partners (their common ground) is called grounding [Clark and Schaefer 1989]. Since it is

impossible to objectively determine when mutual understanding on some aspect of conversa-

tion has been reached, conversation partners assume mutual understanding as soon as a

grounding criterion is fulfilled. Furthermore, conversation partners strive to minimize the total

effort spent by both partners - an observation which Clark calls the principle of least collabo-

rative effort [Clark and Wilkes-Gibbs 1986]. For example, it may take more effort to generate

a perfect utterance than to produce a flawed utterance which is easy to repair. In summary,

conversation partners collaborate on extending their common ground. Dialogue is structured

as a sequence of turns. For more details on turn-taking in conversation, see [Sacks, Schegloff

et al. 1974]. But how does this relate to human-computer interaction, in particular multimodal

systems?

Increased interest in and availability of multimedia has initiated research to understand

grounding in multimodal contexts. Clark and Brennan [Clark and Brennan 1991] point out

that different media provide certain resources for grounding, associated with specific con-
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straints and costs. A trade-off between resources, cost and constraints determines the preferred

medium in a given (multimodal) communication setting. Applying the principle of least col-

laborative effort, different styles of grounding can be predicted. However, only a few case

studies limited to artificial tasks have explored grounding in multimodal environments (see for

instance [Traum and Dillenbourg 1996]). The subsequent sections will review research on the

nature of errors in human-human dialogue and the strategies people employ to recover from

them.

B.2 Taxonomies of Error in Natural Language Dialogue

Several taxonomies of errors in natural language dialogue have been proposed. Understanding

categories of errors is valuable since they form the basis of the theory of repair in human-

human dialogue, and they help to structure approaches to repair in human-computer dialogue

via natural language. Two taxonomies are presented which differ in the dimension used to cat-

egorize errors: the linguistic level on which a communication problem occurs, and the com-

munication stage when the problem occurs. Finally, the taxonomies are extended to include

communication problems in natural language dialogue between a human and a computer.

The taxonomy proposed by Véronis [Véronis 1991] classifies errors according to the linguis-

tic level on which they occur: either at the level of words (lexical), at the level of word

sequences (syntactic), or at the level of meaning (semantic). Hirst [Hirst, McRoy et al. 1994]

further subdivides the semantic category by distinguishing nonunderstanding and misunder-

standing. Nonunderstanding is defined as an error where a conversation partner fails to find

any complete interpretation of an utterance, and misunderstanding is defined as an error wher

the listener does not arrive at the interpretation intended by the speaker. Figure B-1 illustrates

this taxonomy.
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Figure B-1.  Taxonomy of errors in natural language dialogue according to 
linguistic level on which an error occurs

Clark classifies communication problems in natural language dialogue according to the stage

of communication when they occur [Clark 1994]. He distinguishes three stages: First, the

stage of vocalization and attention: the speaker vocalizes an utterance, and the listener pays

attention to what the speaker says. Second, the stage of identification: the listener identifies

the sequence of words. Third, the stage of understanding: speaker and listener reach the

mutual belief that the listener understood what the speaker actually meant.

Figure B-2 shows an extension of Clark’s taxonomy adopted by researchers on repair in dia-

logue systems. The taxonomy can help to identify different opportunities for prevention and

resolution of errors in human-machine dialogue (e.g., [Brennan and Hulteen 1995; LuperFoy

and Loehr 1997]). Compared with Clark’s taxonomy, one communication stage is added (ver-

balization) and three high level categories are introduced (generation, channel, interpretation).

The high level categories summarize the stages occuring on the sides of the speaker and lis-

tener, respectively; generation of an utterance by the speaker, transmission of the utterance

from speaker to listener (the channel), and understanding of the utterance by the listener

(interpretation). The stage of verbalization is added under the "generation" category. It is

defined as the process of forming an appropriate sequence of words, before actually saying

anything.

Lexical Syntactic Semantic

Misunderstanding Nonunderstanding
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Figure B-2.  Error Taxonomy according to the communication stage when the 
error occurs

Véronis extended her taxonomy to the situation of natural language dialogue between a

human and a machine [Véronis 1991]. Errors are classified along two different dimensions: by

who caused the error, and by the type of error. Errors in human-machine dialogue can be

caused by either the system or the user. There are two error types: competence and perfor-

mance errors1. Ignorance of the commonly accepted linguistic rules of well-formed language

causes competence errors, whereas the lack of skill in applying these rules results in perfor-

mance errors. These two types of errors are analogous to Norman’s distinction between errors

and slips [Norman 1988]. In summary, Véronis’s taxonomy of errors in human-machine dia-

logue consists of a 2x2 matrix of error categories: user competence, user performance, system

competence, and system performance.

To summarize, communication problems in natural language dialogue can occur on different

linguistic levels, and during different stages of communication. However what strategies do

we employ in dealing with communication problems? How do we recover from errors? What

repair strategies are preferred?

1. The concepts of competence and performance error were originally introduced by [Chomsky 1965].

ChannelGeneration (Speaker) Interpretation (Listener)

Verbalization Vocalization Attention Identification Understanding

Time
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B.3 Repair in Human-Human Dialogue 

Conversational techniques to deal with communication problems are so common that we fre-

quently do not consciously notice when a communication problem has occurred and is being

repaired. This section on repair in human-human dialogue begins by identifying the basic

strategies people employ in dealing with communication problems. Then, research on the

structure of conversational repair is presented. Repair can be categorized according to the

sequential position of the turn in which the repair is initiated, and according to who initiates

and performs the repair. People prefer to correct errors themselves, frequently still within the

same turn in which the communication problem occurs. The final section reviews research in

the medical field on how the hard-of-hearing overcome communication problems. This

research identifies repetitions and paraphrases as preferred communication repair strategies.

Repetitions are generally preferred over more complex repair strategies, unless multiple repair

attempts are necessary to successfully complete a repair.

B.3.1 Strategies to deal with Communication Problems

Conversation analysis identifies three basic strategies that people employ in dealing with

communication problems: preventing communication problems, monitoring conversation for

potential communication problems, and collaborating on recovering from communication

problems (e.g., [Sacks, Schegloff et al. 1974; Clark and Schaefer 1989]). Conversational tech-

niques aimed at achieving the former two goals are described in the following two paragraphs.

The much more developed research on repair in human-human dialogue is topic of the

remainder of this appendix.

Numerous techniques for preventing communication problems have been identified. In noisy

environments people commonly speak more loudly or simply move to a quieter room. In com-

munication when communication problems are more likely to occur (e.g., when speaking with

the hearing-impaired), a common technique is to speak more clearly. Other more generally

useful techniques of rhetoric include repeating important facts, rephrasing, and elaborating
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from the general to the specific. 

Back-channel utterances play a crucial role in monitoring conversation for communication

problems. Back-channel utterances include a variety of non-speech sounds (such as "uh huh",

"um", "ah") and non-verbal cues (e.g., facial expressions, gestures). These back-channel cues

provide feedback to the speaker about whether an utterance has been understood and when it

has not.

The following two subsections review research on error recovery in human-human dialogue:

what is the structure of conversational repair, and what strategies are preferred?

B.3.2 The Structure of Conversational Repair

Schegloff was the first researcher to look more closely at how people recover from communi-

cation problems in natural language dialogue, and his work is central to the theory of repair in

human-human communication. Extending Clark’s work on grounding in natural language dia-

logue (see Section B.1 earlier in this appendix), Schlegloff [Schegloff, Jefferson et al. 1977]

examines how grounding works in the situation of repair. The following paragraph describes

Schlegloff’s characterization of conversational repair according to when repair is initiated and

who performs the repair. 

Schegloff argues that repairs are organized according to the temporal sequence of opportuni-

ties to initiate the repair. Beginning with the turn which caused the communication problem

(trouble source turn), repair can be initiated either within that same turn, during the transition

to the next turn, in that next turn, or in a following turn. According to which conversation part-

ner initiates the repair, and who actually performs it, Schegloff distinguishes four different

repair categories: In self-initated repair, the speaker notices the communication problem and

initiates repair, whereas in other-initiated repair, another conversation partner initiates the

repair. In self-repair, the speaker who caused the communication problems resolves it,

whereas in other-repair another conversation partner. Figure B-3 shows the four main posi-

tions when repairs are typically initiated [Schegloff, Jefferson et al. 1977; Hirst, McRoy et al.
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1994]. Figure B-4 illustrates the different types of repair with examples. 

Figure B-3.  Main positions for initiating repair, according to Schegloff

Figure B-4.  Examples for types of errors according to the position of repair 
initiation (from spontaneous human-human dialogues in a scheduling domain, 
cf. [Waibel 1996])

However not all of these different types of repair are equally important. On the contrary, most

Speaker Turn of Repair Initiation
A Trouble Source

Transition Space
(to next turn)

B 2nd Position

A 3rd Position

B or C 4th Position

Type of Repair
self-initiated
self-initiated

other-initiated

self-initiated

other-initiated

Time

Self-initiated self-repair in trouble source turn:
A: I can’t - hmm - I can meet on Tuesday.

Self-initiated self-repair in transition space to next turn:
A: I can meet on Tuesday (...) I mean Wednesday.

Other-initiation of repair in 2nd position:
A: I can meet on Tuesday.
B: I thought you were busy then.

Self-initiated self-repair in 3rd position:
A: Let’s meet on Tuesday.
B: How about 2pm?
A: Oh, I just realize I’m busy Tuesday all day. Let’s meet Wednesday instead.

Other-initiated other-repair in 4th position:
A: Do you know a group meeting will take place tomorrow?
B: Where?
A: I don’t know.
B: Probably in the Red Conference room.
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repairs are self-repair initiated within the trouble source turn or the transition space to the next

turn. Schegloff describes this phenomenon as the preference for self-correction [Schegloff,

Jefferson et al. 1977]. Why would self-repairs be preferred?

There are multiple explanations for the preference for self-correction. Since speakers con-

stantly self-monitor their speech during the processes of verbalization and vocalization, the

speaker is more likely to notice when an utterance is ill-formed [Jernudd and Thuan 1983].

But also the principle of least collaborative effort can explain the preference for self-correc-

tion: self-repair is preferred because it usually requires less overall effort.

Zahn [Zahn 1984] extends Schegloff’s work by providing more data on the frequency of dif-

ferent conversational repairs, and by looking beyond sequential organization of turns as only

explanation for the findings. He argues that in addition to sequential and structural determi-

nants, repairs are sensitive to content, as well as social and communicative constraints. His

analyses show that sequencing (repair initiation in same-turn versus in the transition space, or

second, third and forth position) and context predict the structure of repair episodes much bet-

ter than either independently. 

Schegloff does not characterize what strategies people employ to resolve the communication

problem, once it has been detected. The next section summarizes research in the field of med-

icine which investigated different conversational repair strategies.

B.3.3 Conversational Repair Strategies

Research in the medical field [Brinton, Fujiki et al. 1986; Brinton, Fujiki et al. 1988; Gagné,

Stelmacovich et al. 1991] has investigated how the hard-of-hearing overcome communication

problems with normal hearing partners. The goal of this research was to identify strategies

which facilitate communication of the hearing-impaired with normally hearing people. It has

been shown that training hearing-impaired adults in such strategies can decrease the number

of unrepaired communication breakdowns [Gibson and Caissie 1994]. Before looking at spe-

cific strategies, the subsequent paragraph defines the concept of "communication repair strate-
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gies". 

Gagné defines a communication repair strategy as "any verbal or non-verbal action taken by

an individual to overcome communication problems" [Gagné, Stelmacovich et al. 1991].

Hereby a communication problem is any message which a communication partner fails to

understand in the way the speaker intended. Requests for clarification are the most common

repair strategy. Gagné distinguishes between non-specific and specific requests for clarifica-

tion. Non-specific requests typically ask to repeat the utterance, for example "What?", "Pardon

me!", "Huh?". Specific requests ask for repetition of a specific constituent (e.g. "Where did he

go?"). In terms of Schlegloff’s taxonomy of conversational repair which was described in the

previous section, requests for clarification elicit other-initiated self-repair. 

Extending Gagné’s work, Brinton [Brinton, Fujiki et al. ] introduces five categories to code

verbal responses to clarification requests which are shown below in Figure B-5. Communica-

tion repair strategies therefore include: repair by repetition, revision (paraphrase), addition and

cue. Are there any preferences in the usage of these strategies?

Various studies examine the effectiveness of different communication repair strategies. Most

studies report that specific requests for clarification are more effective than non-specific

requests [Owens and Telleen 1981; Gagné and Wyllie 1989]. There is evidence that para-

phrases are more effective than simple repetitions [Gagné and Wyllie 1989]. One study [Tye-

Murray, Purdy et al. 1990] suggests that the effectiveness of these five strategies is not signifi-

cantly different.

In summary, specific requests for clarification, and simple repetitions as well as paraphrases

appear to be effective communication repair strategies. However, a communication problem

may require more than one repair interaction to be resolved successfully. Are there any pat-

terns in the use of strategies across multiple attempts at resolving the same communication

problem?
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Figure B-5.  Brinton’s taxonomy of conversational repairs in response to 
requests for clarification

B.3.4 Strategy Preferences in Multiple Repairs

A single attempt at resolving a communication problem may not be sufficient, since the

speaker knows what he wants to communicate, and it is hard to appreciate that the conversa-

tion partners do not share this knowledge. Furthermore, natural language is prone to ambigu-

ity and draws heavily on contextual information. Therefore, multiple attempts to repair a

communication problem may be necessary. Work by Brinton et. al [Brinton, Fujiki et al. 1988]

extends the previously described studies on repair strategies of the hard-of-hearing in interac-

tions with normally hearing people to the situation of multiple repairs.

To investigate repair strategy preferences in multiple repairs, Brinton examined verbal and

non-verbal responses of children to stacked requests for clarification. A stacked request for

clarification consists of several requests to clarify the same message. The results suggest that

repetitions are frequently used initially. If multiple repair attempts are necessary, other strate-

gies are employed. In particular, the frequency of cue responses increases dramatically after

Type

Repetition

Definition

All or part of the original
utterance is repeated verbatim.

Example

Revision Modify surface form, but keep
meaning of utterance

Addition Add some information to original
utterance

A: How about next Tuesday?
B: Huh?
A: How about coming Tuesday
A: How about next Tuesday?
B: Huh?
A: How about next Tuesday
in the red conference room?

Cue Define terms or give background
context

A: How about next Tuesday?
B: Huh?
A: On Monday I am busy, but
I could meet you on Tuesday.

Inappropriate Speaker ignores request for
clarification.

A: How about next Tuesday?

A: How about next Tuesday?
B: Huh?

B: Huh?A: How about next Tuesday?

A: Let’s say at 4pm.
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the second request for clarification. Verbal repairs are often accompanied by changes in stress

of intonation and by gestural cues.

These findings are quite intuitive and confirm that the principle of least collaborative effort

guides strategic decisions in repairs: the easiest strategy to repair is to repeat utterance. If that

fails, the conversation partners are willing to spend more effort by paraphrasing or providing

background information.

B.4 Concluding Remarks

This appendix represents a cursory review of research on repair in human-human dialogue,

with an eye on possible applications to the investigation of repair in human-machine dialogue

in general, and speech user interfaces in particular. Please refer to Section 2.2, page 29, to find

out how the theory of repiar in human-human dialogue relates to the approach chosen in this

thesis.
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Appendix C: Standard Benchmark Tasks for Continuous Speech Recognition

Intensive research on speech recognition algorithms in the past decade has resulted in signifi-

cant performance improvements. In particular, programs like "Speech Language Technology"

and "Human Language Technology", which are funded by the U.S. government’s Advanced

Research Project Agency (ARPA), have contributed to the progress in the field. Regular for-

mal performance evaluations which are mandatory for all research sites funded by these pro-

grams have spurred competition among sites. Speech recognition systems are compared on

standard benchmark recognition tasks, and the evaluations are administered by an independent

organization, the National Institute for Standards in Technology (NIST). The following pro-

vides a cursory overview of the most important benchmark tasks in chronological order. The

characteristics of each task, as well as the specific technological challenges introduced by

each task, are highlighted.

Resource Management (RM): an artificial task centered around logistics in the military. The

vocabulary is limited to 1000 words. The data set consists of 1000 sentences which were

selected from the domain. Evaluations were held 1987-1991.

Air Travel Information Service (ATIS): the task revolves around scheduling flights. A cos-

tumer inquires about flight information, particularly flight schedules. He can ask for any

appropriate constraint, for instance the cheapest flight from one location to another. For the

first time, speech was recorded while the user tries to accomplish a "real" task, and the sys-

tems developed have obvious direct commercial applications. The domain is still very limited,

and the vocabulary is size small.

Wall Street Journal (WSJ) / North American Business News (NAB): the task is to read sen-
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tences from the Wall Street Journal or other major news sources. As evaluations progressed,

additional conditions were included, such as using different microphones to record the speech,

or collecting "spontaneously" dictated sentences. The main challenge in moving to this task

was to tackle a much broader domain, with a large (potentially unlimited) vocabulary. Since

1994, the task was expanded to include business news text other than the Wall Street Journal,

including the New York Times and Reuter.

Switchboard (SWB): phone conversations between people talking from home, about 70 differ-

ent topics, ranging from sports to gun control. Added difficulties are the telephone channel

(low bandwidth and noise) and the spontaneous conversational character of the speech.

Spontaneous Scheduling Tasks: two people try to schedule a meeting. Data is recorded in dif-

ferent languages, including German, English, Spanish, Japanese and Korean. The initial letter

of the language serves as initial letter for the abbreviation of these databases: GSST for the

German database; ESST, SSST, JSST and KSST accordingly. Similar to Switchboard, the

challenge of this task is spontaneous, conversational speech. The vocabulary size is much

smaller, to ease the diffiulty: these tasks were defined for speech translation projects, and

speech translation on a task like Switchboard would not be feasible with current technology.

Call Home: a recent extension of the Switchboard task, people who are travelling are calling

"home". No restrictions on topics are imposed. Speech is collected in several languages,

including English, Spanish and German.

Table 33 shows important quantitative characterists of these benchmark tasks: the years during

which data was collected and regular performance evaluations were held, the method of data

collection, the size of the database (text; the amount of transcribed audio data is considerably

smaller for all benchmark tasks since WSJ), the vocabulary size, the perplexity of standard

language models (until ATIS bigram perplexity, since WSJ trigram perplexity), and the recog-
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nition performance (word accuracy) of the best system in the most recent evaluation.

Task Years Data Collection Database Size Vocabular
y Size PP Best 

WA

RM 87-91 read given text 1000 sentences 1000 60 97.5%

ATIS 89-94 record spontaneous 
dialogues

~20000 sen-
tences

1800 20 97%

WSJ/ 
NAB

92-95 read printed text 38 Bio. / 300+ 
Bio. words

60,000 140 93%

ESST 93-96 spontaneous sched-
uling dialogues

200,000 2,000 40 80%

Broadcast 
News

95-
today

radio and TV news 
broadcasts

50 h (1997) unlimited 73%

SWB/Call 
Home

94-
today

spontaneous tele-
phone conversations

2 Mio. / Mio 
words

20,000 / 
unlimited

70 70%

Table 33: Important benchmark tasks for (U.S. English) continuous speech recognition
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Appendix D: Experiment Data

Table 34: Demographic data of participants of final user study

Participant ID Age 
Group Sex

Complete
dEducatio

n

Prior Experience 
with Speech 
Recognition

(Self-reported) 
Typing Skill 
(scale: 1-6)

Measured 
Typing Speed 

[wpm]

lp <20 f n/a no 3 25

lm 20-30 f high-
school

no 2 19

td 20-30 m B.S. no 4 30

tb 20-30 m undergrad no 3 30

mr 20-30 m high-
school

no 4 28

dj <20 m undergrad no 4 36

br 20-30 m undergrad n/a 5 31

tg 20-30 f undergrad no 5 31

jm 20-30 m undergrad no 4 34

kg <20 f undergrad some Dragon-
Dictate

3.5 40

ss 30-40 f undergrad no 4 48

hd <20 f undergrad no 5 40

jl 30-40 f undergrad no 1 25

ag <20 f undergrad no 3 17

mm 20-30 m M.S. some demo sys-
tems

3 27
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Appendix E: Glossary

Confidence Measure: Statistical method that measures the recognition system’s confidence

in having recognized the input correctly.

Conversational (Interface, Repair, ...): Communication with a computer system that imi-

tates natural spoken dialogue.

Correction Method: Set of correction modalities that allows the user to effectively correct

recognition errors

Clarification Dialogue: Interactive correction of recognition errors in a spoken language dia-

logue, similar to conversational repair methods employed in human-human dialogue. Syn-

onyms: repair dialogue.

Cross-modal correction: Interactive correction of recognition modality that switches modal-

ity, compared to the primary input, for example, from continuous speech to spelling or hand-

writing.

Deictic References: Referring to one object out of many objects which are all within the visi-

ble range, either by language, or using hand gestures.

Dialogue (or conversational) speech recognition application: Speech recognition applica-

tion which involves the user in a dialog, analogous to human-human conversation. Synonyms:

dialogue system, spoken dialogue system.

Error Correction: Method to resolve a communication problem (e.g., recognition errors)

once it has been detected. Used in this thesis mainly in the context of lexical system interpre-

tation errors. Synonyms: error recovery, repair.

(Pen-drawn) Gesture: In the context of this dissertation, mark that is drawn on a writing-sen-

sitive screen, with either a pen or a finger. By contrast, pointing refers to selecting objects with

a pointing device (typically a mouse); and 3d gesture refers to a movement of hands, arms,
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heads, etc. in three dimensional space.

Hidden Markov Model, HMM: Statistical model widely used (among others) in acoustic

modeling for speech recognizers. Automaton with states and transitions that are weighted by

probabilities. State transitions depend only on the previous state (Markov assumption). Each

(hidden) state is associated with an output probability density function that indicates how

probable measurable output events are.

Human-human dialogue: Spoken natural language dialogue between two or more people, as

opposed to written communication between people, and human-machine dialogue. Synonyms:

"conversation", "natural language dialogue", "discourse".

Multimodal: Offering more than one input modalitites, including speech. Includes both

modalities humans traditionally use (handwriting, facial expressions, gestures) as well as artif-

ical modalities (keyboard, pointing devices).

Multimodal Dictation System, Multimodal Text Editor: Automatic dictation system that

offers effective editing and error correction without keyboard input, using multimodal interac-

tive correction methods.

N-best List: Used as short term for the list of the N (N some given constant) best matching

hypotheses that an automatic recognizer can identify for some input signal.

New Word, Out-of-vocabulary Word (OOV): Word that is outside the vocabulary of an

automatic recognition system.

Partial-Word Correction: Interactive method to correct errors (in speech recognition appli-

cations) that allows the user to correct on the level of characters within a word, rather than

entire words or sequences of words.

Repair: Any conversational technique which has the global to prevent or resolve communica-

tion problems in (human-human or human-machine) natural language dialogue. Used as the
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broad category comprising several types of communication problems (lexical, syntactic or

semantic) and several strategies to deal with them (prevention, monitoring, resolution). 

Respeaking: Interactive method to correct errors (in speech recognition applications) by

repeating the input using continuous speech.

Speech User Interface: User interface that incorporates speech recognition technology as an

input modality. Synonym: speech-enabled interface.

Spelling: Interactive method to correct errors (in speech recognition applications) by spelling

words verbally, such as S-P-E-L-L-I-N-G.

Spoken Language System: System which allows users to communicate with it using spoken

language. Synonyms: Dialogue system, speech recognition application.

Time Delay Neural Network, TDNN: Artificial neural network architecture that achieves

time-invariance by feeding a window of input features (over several consecutive times) into

the input layer, and potentially carrying windows of processed features on across the hidden

layers. Word-level information can be incorporated by feeding the results of a TDNN-based

phonetic classifier into a standard dynamic time warping (DTW) search, resulting in a neural

network architecture called "Multi-State TDNN".

Unimodal Correction: Interactive method to correct errors (in speech recognition applica-

tions) that offers only a single modality for correction.
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