
Speech Recognition using Neural Networks

Joe Tebelskis

May 1995
CMU-CS-95-142

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

Submitted in partial fulfillment of the requirements for
a degree of Doctor of Philosophy in Computer Science

Thesis Committee:
Alex Waibel, chair

Raj Reddy
Jaime Carbonell

Richard Lippmann, MIT Lincoln Labs

Copyright ¹1995 Joe Tebelskis

This research was supported during separate phases by ATR Interpreting Telephony Research Laboratories,
NEC Corporation, Siemens AG, the National Science Foundation, the Advanced Research Projects Adminis-
tration, and the Department of Defense under Contract No. MDA904-92-C-5161.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of ATR, NEC, Siemens, NSF, or the United
States Government.



Keywords: Speech recognition, neural networks, hidden Markov models, hybrid systems,
acoustic modeling, prediction, classification, probability estimation, discrimination, global
optimization.



iii

Abstract

This thesis examines how artificial neural networks can benefit a large vocabulary, speaker
independent, continuous speech recognition system.  Currently, most speech recognition
systems are based on hidden Markov models (HMMs), a statistical framework that supports
both acoustic and temporal modeling.  Despite their state-of-the-art performance, HMMs
make a number of suboptimal modeling assumptions that limit their potential effectiveness.
Neural networks avoid many of these assumptions, while they can also learn complex func-
tions, generalize effectively, tolerate noise, and support parallelism. While neural networks
can readily be applied to acoustic modeling, it is not yet clear how they can be used for tem-
poral modeling. Therefore, we explore a class of systems called NN-HMM hybrids, in which
neural networks perform acoustic modeling, and HMMs perform temporal modeling.  We
argue that a NN-HMM hybrid has several theoretical advantages over a pure HMM system,
including better acoustic modeling accuracy, better context sensitivity, more natural dis-
crimination, and a more economical use of parameters.  These advantages are confirmed
experimentally by a NN-HMM hybrid that we developed, based on context-independent
phoneme models, that achieved 90.5% word accuracy on the Resource Management data-
base, in contrast to only 86.0% accuracy achieved by a pure HMM under similar conditions.

In the course of developing this system, we explored two different ways to use neural net-
works for acoustic modeling: prediction and classification. We found that predictive net-
works yield poor results because of a lack of discrimination, but classification networks
gave excellent results. We verified that, in accordance with theory, the output activations of
a classification network form highly accurate estimates of the posterior probabilities
P(class|input), and we showed how these can easily be converted to likelihoods
P(input|class) for standard HMM recognition algorithms. Finally, this thesis reports how we
optimized the accuracy of our system with many natural techniques, such as expanding the
input window size, normalizing the inputs, increasing the number of hidden units, convert-
ing the network’s output activations to log likelihoods, optimizing the learning rate schedule
by automatic search, backpropagating error from word level outputs, and using gender
dependent networks.



iv



v

Acknowledgements

I wish to thank Alex Waibel for the guidance, encouragement, and friendship that he man-
aged to extend to me during our six years of collaboration over all those inconvenient
oceans — and for his unflagging efforts to provide a world-class, international research
environment, which made this thesis possible.  Alex’s scientific integrity, humane idealism,
good cheer, and great ambition have earned him my respect, plus a standing invitation to
dinner whenever he next passes through my corner of the world.  I also wish to thank Raj
Reddy, Jaime Carbonell, and Rich Lippmann for serving on my thesis committee and offer-
ing their valuable suggestions, both on my thesis proposal and on this final dissertation.  I
would also like to thank Scott Fahlman, my first advisor, for channeling my early enthusi-
asm for neural networks, and teaching me what it means to do good research.

Many colleagues around the world have influenced this thesis, including past and present
members of the Boltzmann Group, the NNSpeech Group at CMU, and the NNSpeech
Group at the University of Karlsruhe in Germany.  I especially want to thank my closest col-
laborators over these years — Bojan Petek, Otto Schmidbauer, Torsten Zeppenfeld, Her-
mann Hild, Patrick Haffner, Arthur McNair, Tilo Sloboda, Monika Woszczyna, Ivica
Rogina, Michael Finke, and Thorsten Schueler — for their contributions and their friend-
ship.  I also wish to acknowledge valuable interactions I’ve had with many other talented
researchers, including Fil Alleva, Uli Bodenhausen, Herve Bourlard, Lin Chase, Mike
Cohen, Mark Derthick, Mike Franzini, Paul Gleichauff, John Hampshire, Nobuo Hataoka,
Geoff Hinton, Xuedong Huang, Mei-Yuh Hwang, Ken-ichi Iso, Ajay Jain, Yochai Konig,
George Lakoff, Kevin Lang, Chris Lebiere, Kai-Fu Lee, Ester Levin, Stefan Manke, Jay
McClelland, Chris McConnell, Abdelhamid Mellouk, Nelson Morgan, Barak Pearlmutter,
Dave Plaut, Dean Pomerleau, Steve Renals, Roni Rosenfeld, Dave Rumelhart, Dave Sanner,
Hidefumi Sawai, David Servan-Schreiber, Bernhard Suhm, Sebastian Thrun, Dave
Touretzky, Minh Tue Voh, Wayne Ward, Christoph Windheuser, and Michael Witbrock.  I
am especially indebted to Yochai Konig at ICSI, who was extremely generous in helping me
to understand and reproduce ICSI’s experimental results; and to Arthur McNair for taking
over the Janus demos in 1992 so that I could focus on my speech research, and for con-
stantly keeping our environment running so smoothly.  Thanks to Hal McCarter and his col-
leagues at Adaptive Solutions for their assistance with the CNAPS parallel computer; and to
Nigel Goddard at the Pittsburgh Supercomputer Center for help with the Cray C90.  Thanks
to Roni Rosenfeld, Lin Chase, and Michael Finke for proofreading portions of this thesis.

I am also grateful to Robert Wilensky for getting me started in Artificial Intelligence, and
especially to both Douglas Hofstadter and Allen Newell for sharing some treasured, pivotal
hours with me.



 Acknowledgementsvi

Many friends helped me maintain my sanity during the PhD program, as I felt myself
drowning in this overambitious thesis.  I wish to express my love and gratitude especially to
Bart Reynolds, Sara Fried, Mellen Lovrin, Pam Westin, Marilyn & Pete Fast, Susan
Wheeler, Gowthami Rajendran, I-Chen Wu, Roni Rosenfeld, Simona & George Necula,
Francesmary Modugno, Jade Goldstein, Hermann Hild, Michael Finke, Kathie Porsche,
Phyllis Reuther, Barbara White, Bojan & Davorina Petek, Anne & Scott Westbrook, Rich-
ard Weinapple, Marv Parsons, and Jeanne Sheldon.  I have also prized the friendship of
Catherine Copetas, Prasad Tadepalli, Hanna Djajapranata, Arthur McNair, Torsten Zeppen-
feld, Tilo Sloboda, Patrick Haffner, Mark Maimone, Spiro Michaylov, Prasad Chalisani,
Angela Hickman, Lin Chase, Steve Lawson, Dennis & Bonnie Lunder, and too many others
to list.  Without the support of my friends, I might not have finished the PhD.

I wish to thank my parents, Virginia and Robert Tebelskis, for having raised me in such a
stable and loving environment, which has enabled me to come so far.  I also thank the rest of
my family & relatives for their love.

This thesis is dedicated to Douglas Hofstadter, whose book “Godel, Escher, Bach”
changed my life by suggesting how consciousness can emerge from subsymbolic computa-
tion, shaping my deepest beliefs and inspiring me to study Connectionism; and to the late
Allen Newell, whose genius, passion, warmth, and humanity made him a beloved role
model whom I could only dream of emulating, and whom I now sorely miss.



 Table of Contents

vii

Abstract  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v

1   Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1   Speech Recognition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.2   Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.3   Thesis Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2   Review of Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.1   Fundamentals of Speech Recognition  . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.2   Dynamic Time Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.3   Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

2.3.1   Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2.3.2   Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
2.3.3   Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
2.3.4   Limitations of HMMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

3   Review of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.1   Historical Development  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.2   Fundamentals of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

3.2.1   Processing Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
3.2.2   Connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.2.3   Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
3.2.4   Training  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

3.3   A Taxonomy of Neural Networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
3.3.1   Supervised Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
3.3.2   Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
3.3.3   Unsupervised Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
3.3.4   Hybrid Networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.3.5   Dynamic Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

3.4   Backpropagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
3.5   Relation to Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48



Table of Contentsviii

4   Related Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1   Early Neural Network Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1   Phoneme Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2   Word Classification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2   The Problem of Temporal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3   NN-HMM Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1   NN Implementations of HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2   Frame Level Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.3   Segment Level Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.4   Word Level Training  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.5   Global Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.6   Context Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.7   Speaker Independence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.8   Word Spotting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4   Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5   Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1   Japanese Isolated Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2   Conference Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3   Resource Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6   Predictive Networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1   Motivation... and Hindsight  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2   Related Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3   Linked Predictive Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.1   Basic Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.2   Training the LPNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.3   Isolated Word Recognition Experiments  . . . . . . . . . . . . . . . . . . . . 84
6.3.4   Continuous Speech Recognition Experiments . . . . . . . . . . . . . . . . 86
6.3.5   Comparison with HMMs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4   Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.1   Hidden Control Neural Network. . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.2   Context Dependent Phoneme Models. . . . . . . . . . . . . . . . . . . . . . . 92
6.4.3   Function Word Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5   Weaknesses of Predictive Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5.1   Lack of Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5.2   Inconsistency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



Table of Contents ix

7   Classification Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
7.1   Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
7.2   Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

7.2.1   The MLP as a Posterior Estimator . . . . . . . . . . . . . . . . . . . . . . . . . .103
7.2.2   Likelihoods vs. Posteriors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

7.3   Frame Level Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
7.3.1   Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
7.3.2   Input Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
7.3.3   Speech Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
7.3.4   Training Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
7.3.5   Testing Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
7.3.6   Generalization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

7.4   Word Level Training  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
7.4.1   Multi-State Time Delay Neural Network . . . . . . . . . . . . . . . . . . . . .138
7.4.2   Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

7.5   Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

8   Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
8.1   Conference Registration Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
8.2   Resource Management Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148

9   Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
9.1   Neural Networks as Acoustic Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
9.2   Summary of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
9.3   Advantages of NN-HMM hybrids  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

Appendix A. Final System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

Appendix B.  Proof that Classifier Networks Estimate Posterior Probabilities. . . . .157

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

Author Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173



x



1

1.  Introduction

Speech is a natural mode of communication for people.  We learn all the relevant skills
during early childhood, without instruction, and we continue to rely on speech communica-
tion throughout our lives. It comes so naturally to us that we don’t realize how complex a
phenomenon speech is. The human vocal tract and articulators are biological organs with
nonlinear properties, whose operation is not just under conscious control but also affected
by factors ranging from gender to upbringing to emotional state. As a result, vocalizations
can vary widely in terms of their accent, pronunciation, articulation, roughness, nasality,
pitch, volume, and speed; moreover, during transmission, our irregular speech patterns can
be further distorted by background noise and echoes, as well as electrical characteristics (if
telephones or other electronic equipment are used).  All these sources of variability make
speech recognition, even more than speech generation, a very complex problem.

Yet people are so comfortable with speech that we would also like to interact with our
computers via speech, rather than having to resort to primitive interfaces such as keyboards
and pointing devices.  A speech interface would support many valuable applications — for
example, telephone directory assistance, spoken database querying for novice users, “hands-
busy” applications in medicine or fieldwork, office dictation devices, or even automatic
voice translation into foreign languages. Such tantalizing applications have motivated
research in automatic speech recognition since the 1950’s.  Great progress has been made so
far, especially since the 1970’s, using a series of engineered approaches that include tem-
plate matching, knowledge engineering, and statistical modeling.  Yet computers are still
nowhere near the level of human performance at speech recognition, and it appears that fur-
ther significant advances will require some new insights.

What makes people so good at recognizing speech? Intriguingly, the human brain is
known to be wired differently than a conventional computer; in fact it operates under a radi-
cally different computational paradigm.  While conventional computers use a very fast &
complex central processor with explicit program instructions and locally addressable mem-
ory, by contrast the human brain uses a massively parallel collection of slow & simple
processing elements (neurons), densely connected by weights (synapses) whose strengths
are modified with experience, directly supporting the integration of multiple constraints, and
providing a distributed form of associative memory.

The brain’s impressive superiority at a wide range of cognitive skills, including speech
recognition, has motivated research into its novel computational paradigm since the 1940’s,
on the assumption that brainlike models may ultimately lead to brainlike performance on
many complex tasks. This fascinating research area is now known as connectionism, or the
study of artificial neural networks. The history of this field has been erratic (and laced with



1. Introduction2

hyperbole), but by the mid-1980’s, the field had matured to a point where it became realistic
to begin applying connectionist models to difficult tasks like speech recognition.  By 1990
(when this thesis was proposed), many researchers had demonstrated the value of neural
networks for important subtasks like phoneme recognition and spoken digit recognition, but
it was still unclear whether connectionist techniques would scale up to large speech recogni-
tion tasks.

This thesis demonstrates that neural networks can indeed form the basis for a general pur-
pose speech recognition system, and that neural networks offer some clear advantages over
conventional techniques.

1.1.  Speech Recognition
What is the current state of the art in speech recognition?  This is a complex question,

because a system’s accuracy depends on the conditions under which it is evaluated: under
sufficiently narrow conditions almost any system can attain human-like accuracy, but it’s
much harder to achieve good accuracy under general conditions.  The conditions of evalua-
tion — and hence the accuracy of any system — can vary along the following dimensions:

• Vocabulary size and confusability. As a general rule, it is easy to discriminate
among a small set of words, but error rates naturally increase as the vocabulary
size grows.  For example, the 10 digits “zero” to “nine” can be recognized essen-
tially perfectly (Doddington 1989), but vocabulary sizes of 200, 5000, or 100000
may have error rates of 3%, 7%, or 45% (Itakura 1975, Miyatake 1990, Kimura
1990).  On the other hand, even a small vocabulary can be hard to recognize if it
contains confusable words. For example, the 26 letters of the English alphabet
(treated as 26 “words”) are very difficult to discriminate because they contain so
many confusable words (most notoriously, the E-set: “B, C, D, E, G, P, T, V, Z”);
an 8% error rate is considered good for this vocabulary (Hild & Waibel 1993).

• Speaker dependence vs. independence.  By definition, a speaker dependent sys-
tem is intended for use by a single speaker, but a speaker independent system is
intended for use by any speaker.  Speaker independence is difficult to achieve
because a system’s parameters become tuned to the speaker(s) that it was trained
on, and these parameters tend to be highly speaker-specific.  Error rates are typi-
cally 3 to 5 times higher for speaker independent systems than for speaker depen-
dent ones (Lee 1988).  Intermediate between speaker dependent and independent
systems, there are also multi-speaker systems intended for use by a small group of
people, and speaker-adaptive systems which tune themselves to any speaker given
a small amount of their speech as enrollment data.

• Isolated, discontinuous, or continuous speech. Isolated speech means single
words; discontinuous speech means full sentences in which words are artificially
separated by silence; and continuous speech means naturally spoken sentences.
Isolated and discontinuous speech recognition is relatively easy because word
boundaries are detectable and the words tend to be cleanly pronounced.  Continu-



1.1. Speech Recognition 3

ous speech is more difficult, however, because word boundaries are unclear and
their pronunciations are more corrupted by coarticulation, or the slurring of speech
sounds, which for example causes a phrase like “could you” to sound like “could
jou”.  In a typical evaluation, the word error rates for isolated and continuous
speech were 3% and 9%, respectively (Bahl et al 1981).

• Task and language constraints.  Even with a fixed vocabulary, performance will
vary with the nature of constraints on the word sequences that are allowed during
recognition.  Some constraints may be task-dependent (for example, an airline-
querying application may dismiss the hypothesis “The apple is red”); other con-
straints may be semantic (rejecting “The apple is angry”), or syntactic (rejecting
“Red is apple the”).  Constraints are often represented by a grammar, which ide-
ally filters out unreasonable sentences so that the speech recognizer evaluates only
plausible sentences.  Grammars are usually rated by their perplexity, a number that
indicates the grammar’s average branching factor (i.e., the number of words that
can follow any given word). The difficulty of a task is more reliably measured by
its perplexity than by its vocabulary size.

• Read vs. spontaneous speech.  Systems can be evaluated on speech that is either
read from prepared scripts, or speech that is uttered spontaneously.  Spontaneous
speech is vastly more difficult, because it tends to be peppered with disfluencies
like “uh” and “um”, false starts, incomplete sentences, stuttering, coughing, and
laughter; and moreover, the vocabulary is essentially unlimited, so the system must
be able to deal intelligently with unknown words (e.g., detecting and flagging their
presence, and adding them to the vocabulary, which may require some interaction
with the user).

• Adverse conditions.  A system’s performance can also be degraded by a range of
adverse conditions (Furui 1993).  These include environmental noise (e.g., noise in
a car or a factory); acoustical distortions (e.g, echoes, room acoustics); different
microphones (e.g., close-speaking, omnidirectional, or telephone); limited fre-
quency bandwidth (in telephone transmission); and altered speaking manner
(shouting, whining, speaking quickly, etc.).

In order to evaluate and compare different systems under well-defined conditions, a
number of standardized databases have been created with particular characteristics.  For
example, one database that has been widely used is the DARPA Resource Management
database — a large vocabulary (1000 words), speaker-independent, continuous speech data-
base, consisting of 4000 training sentences in the domain of naval resource management,
read from a script and recorded under benign environmental conditions; testing is usually
performed using a grammar with a perplexity of 60.  Under these controlled conditions,
state-of-the-art performance is about 97% word recognition accuracy (or less for simpler
systems).  We used this database, as well as two smaller ones, in our own research (see
Chapter 5).

The central issue in speech recognition is dealing with variability.  Currently, speech rec-
ognition systems distinguish between two kinds of variability: acoustic and temporal.
Acoustic variability covers different accents, pronunciations, pitches, volumes, and so on,



1. Introduction4

while temporal variability covers different speaking rates.  These two dimensions are not
completely independent — when a person speaks quickly, his acoustical patterns become
distorted as well — but it’s a useful simplification to treat them independently.

Of these two dimensions, temporal variability is easier to handle.  An early approach to
temporal variability was to linearly stretch or shrink (“warp”) an unknown utterance to the
duration of a known template.  Linear warping proved inadequate, however, because utter-
ances can accelerate or decelerate at any time; instead, nonlinear warping was obviously
required. Soon an efficient algorithm known as Dynamic Time Warping was proposed as a
solution to this problem. This algorithm (in some form) is now used in virtually every
speech recognition system, and the problem of temporal variability is considered to be
largely solved1.

Acoustic variability is more difficult to model, partly because it is so heterogeneous in
nature.  Consequently, research in speech recognition has largely focused on efforts to
model acoustic variability. Past approaches to speech recognition have fallen into three
main categories:

1. Template-based approaches, in which unknown speech is compared against a set
of prerecorded words (templates), in order to find the best match.  This has the
advantage of using perfectly accurate word models; but it also has the disadvan-
tage that the prerecorded templates are fixed, so variations in speech can only be
modeled by using many templates per word, which eventually becomes impracti-
cal.

2. Knowledge-based approaches, in which “expert” knowledge about variations in
speech is hand-coded into a system.  This has the advantage of explicitly modeling
variations in speech; but unfortunately such expert knowledge is difficult to obtain
and use successfully, so this approach was judged to be impractical, and automatic
learning procedures were sought instead.

3. Statistical-based approaches, in which variations in speech are modeled statisti-
cally (e.g., by Hidden Markov Models, or HMMs), using automatic learning proce-
dures. This approach represents the current state of the art. The main disadvantage
of statistical models is that they must make a priori modeling assumptions, which
are liable to be inaccurate, handicapping the system’s performance.  We will see
that neural networks help to avoid this problem.

1.2.  Neural Networks
Connectionism, or the study of artificial neural networks, was initially inspired by neuro-

biology, but it has since become a very interdisciplinary field, spanning computer science,
electrical engineering, mathematics, physics, psychology, and linguistics as well.  Some
researchers are still studying the neurophysiology of the human brain, but much attention is

1. Although there remain unresolved secondary issues of duration constraints, speaker-dependent speaking rates, etc.



1.2. Neural Networks 5

now being focused on the general properties of neural computation, using simplified neural
models.  These properties include:

• Trainability.  Networks can be taught to form associations between any input and
output patterns.  This can be used, for example, to teach the network to classify
speech patterns into phoneme categories.

• Generalization.  Networks don’t just memorize the training data; rather, they
learn the underlying patterns, so they can generalize from the training data to new
examples.  This is essential in speech recognition, because acoustical patterns are
never exactly the same.

• Nonlinearity.  Networks can compute nonlinear, nonparametric functions of their
input, enabling them to perform arbitrarily complex transformations of data.  This
is useful since speech is a highly nonlinear process.

• Robustness.  Networks are tolerant of both physical damage and noisy data; in
fact noisy data can help the networks to form better generalizations.  This is a valu-
able feature, because speech patterns are notoriously noisy.

• Uniformity.  Networks offer a uniform computational paradigm which can easily
integrate constraints from different types of inputs.  This makes it easy to use both
basic and differential speech inputs, for example, or to combine acoustic and
visual cues in a multimodal system.

• Parallelism.  Networks are highly parallel in nature, so they are well-suited to
implementations on massively parallel computers.  This will ultimately permit
very fast processing of speech or other data.

There are many types of connectionist models, with different architectures, training proce-
dures, and applications, but they are all based on some common principles.  An artificial
neural network consists of a potentially large number of simple processing elements (called
units, nodes, or neurons), which influence each other’s behavior via a network of excitatory
or inhibitory weights.  Each unit simply computes a nonlinear weighted sum of its inputs,
and broadcasts the result over its outgoing connections to other units.  A training set consists
of patterns of values that are assigned to designated input and/or output units.  As patterns
are presented from the training set, a learning rule modifies the strengths of the weights so
that the network gradually learns the training set.  This basic paradigm1 can be fleshed out in
many different ways, so that different types of networks can learn to compute implicit func-
tions from input to output vectors, or automatically cluster input data, or generate compact
representations of data, or provide content-addressable memory and perform pattern com-
pletion.

1. Many biological details are ignored in these simplified models. For example, biological neurons produce a sequence of
pulses rather than a stable activation value; there exist several different types of biological neurons; their physical geometry
can affect their computational behavior; they operate asynchronously, and have different cycle times; and their behavior is
affected by hormones and other chemicals. Such details may ultimately prove necessary for modeling the brain’s behavior, but
for now even the simplified model has enough computational power to support very interesting research.



1. Introduction6

Neural networks are usually used to perform static pattern recognition, that is, to statically
map complex inputs to simple outputs, such as an N-ary classification of the input patterns.
Moreover, the most common way to train a neural network for this task is via a procedure
called backpropagation (Rumelhart et al, 1986), whereby the network’s weights are modi-
fied in proportion to their contribution to the observed error in the output unit activations
(relative to desired outputs).  To date, there have been many successful applications of neu-
ral networks trained by backpropagation. For instance:

• NETtalk (Sejnowski and Rosenberg, 1987) is a neural network that learns how to
pronounce English text.  Its input is a window of 7 characters (orthographic text
symbols), scanning a larger text buffer, and its output is a phoneme code (relayed
to a speech synthesizer) that tells how to pronounce the middle character in that
context. During successive cycles of training on 1024 words and their pronuncia-
tions, NETtalk steadily improved is performance like a child learning how to talk,
and it eventually produced quite intelligible speech, even on words that it had
never seen before.

• Neurogammon (Tesauro 1989) is a neural network that learns a winning strategy
for Backgammon.  Its input describes the current position, the dice values, and a
possible move, and its output represents the merit of that move, according to a
training set of 3000 examples hand-scored by an expert player.  After sufficient
training, the network generalized well enough to win the gold medal at the com-
puter olympiad in London, 1989, defeating five commercial and two non-commer-
cial programs, although it lost to a human expert.

• ALVINN (Pomerleau 1993) is a neural network that learns how to drive a car. Its
input is a coarse visual image of the road ahead (provided by a video camera and
an imaging laser rangefinder), and its output is a continuous vector that indicates
which way to turn the steering wheel. The system learns how to drive by observing
how a person drives. ALVINN has successfully driven at speeds of up to 70 miles
per hour for more than 90 miles, under a variety of different road conditions.

• Handwriting recognition (Le Cun et al, 1990) based on neural networks has been
used to read ZIP codes on US mail envelopes. Size-normalized images of isolated
digits, found by conventional algorithms, are fed to a highly constrained neural
network, which transforms each visual image to one of 10 class outputs. This sys-
tem has achieved 92% digit recognition accuracy on actual mail provided by the
US Postal Service. A more elaborate system by Bodenhausen and Manke (1993)
has achieved up to 99.5% digit recognition accuracy on another database.

Speech recognition, of course, has been another proving ground for neural networks.
Researchers quickly achieved excellent results in such basic tasks as voiced/unvoiced dis-
crimination (Watrous 1988), phoneme recognition (Waibel et al, 1989), and spoken digit
recognition (Franzini et al, 1989).  However, in 1990, when this thesis was proposed, it still
remained to be seen whether neural networks could support a large vocabulary, speaker
independent, continuous speech recognition system.

In this thesis we take an incremental approach to this problem.  Of the two types of varia-
bility in speech — acoustic and temporal — the former is more naturally posed as a static



1.3. Thesis Outline 7

pattern matching problem that is amenable to neural networks; therefore we use neural net-
works for acoustic modeling, while we rely on conventional Hidden Markov Models for
temporal modeling. Our research thus represents an exploration of the space of NN-HMM
hybrids.  We explore two different ways to use neural networks for acoustic modeling,
namely prediction and classification of the speech patterns.  Prediction is shown to be a
weak approach because it lacks discrimination, while classification is shown to be a much
stronger approach.  We present an extensive series of experiments that we performed to
optimize our networks for word recognition accuracy, and show that a properly optimized
NN-HMM hybrid system based on classification networks can outperform other systems
under similar conditions.  Finally, we argue that hybrid NN-HMM systems offer several
advantages over pure HMM systems, including better acoustic modeling accuracy, better
context sensitivity, more natural discrimination, and a more economical use of parameters.

1.3.  Thesis Outline
The first few chapters of this thesis provide some essential background and a summary of

related work in speech recognition and neural networks:

• Chapter 2 reviews the field of speech recognition.

• Chapter 3 reviews the field of neural networks.

• Chapter 4 reviews the intersection of these two fields, summarizing both past and
present approaches to speech recognition using neural networks.

The remainder of the thesis describes our own research, evaluating both predictive net-
works and classification networks as acoustic models in NN-HMM hybrid systems:

• Chapter 5 introduces the databases we used in our experiments.

• Chapter 6 presents our research with predictive networks, and explains why this
approach yielded poor results.

• Chapter 7 presents our research with classification networks, and shows how we
achieved excellent results through an extensive series of optimizations.

• Chapter 8 compares the performance of our optimized systems against many other
systems on the same databases, demonstrating the value of NN-HMM hybrids.

• Chapter 9 presents the conclusions of this thesis.



1. Introduction8



9

2.  Review of Speech Recognition

In this chapter we will present a brief review of the field of speech recognition. After
reviewing some fundamental concepts, we will explain the standard Dynamic Time Warp-
ing algorithm, and then discuss Hidden Markov Models in some detail, offering a summary
of the algorithms, variations, and limitations that are associated with this dominant technol-
ogy.

2.1.  Fundamentals of Speech Recognition
Speech recognition is a multileveled pattern recognition task, in which acoustical signals

are examined and structured into a hierarchy of subword units (e.g., phonemes), words,
phrases, and sentences.  Each level may provide additional temporal constraints, e.g., known
word pronunciations or legal word sequences, which can compensate for errors or uncer-
tainties at lower levels. This hierarchy of constraints can best be exploited by combining
decisions probabilistically at all lower levels, and making discrete decisions only at the
highest level.

The structure of a standard speech recognition system is illustrated in Figure 2.1. The ele-
ments are as follows:

• Raw speech. Speech is typically sampled at a high frequency, e.g., 16 KHz over a
microphone or 8 KHz over a telephone.  This yields a sequence of amplitude val-
ues over time.

• Signal analysis. Raw speech should be initially transformed and compressed, in
order to simplify subsequent processing. Many signal analysis techniques are
available which can extract useful features and compress the data by a factor of ten
without losing any important information. Among the most popular:

• Fourier analysis (FFT) yields discrete frequencies over time, which can
be interpreted visually. Frequencies are often distributed using a Mel
scale, which is linear in the low range but logarithmic in the high range,
corresponding to physiological characteristics of the human ear.

• Perceptual Linear Prediction (PLP) is also physiologically motivated, but
yields coefficients that cannot be interpreted visually.



2. Review of Speech Recognition10

• Linear Predictive Coding (LPC) yields coefficients of a linear equation
that approximate the recent history of the raw speech values.

• Cepstral analysis calculates the inverse Fourier transform of the loga-
rithm of the power spectrum of the signal.

In practice, it makes little difference which technique is used1. Afterwards, proce-
dures such as Linear Discriminant Analysis (LDA) may optionally be applied to
further reduce the dimensionality of any representation, and to decorrelate the
coefficients.

1. Assuming benign conditions. Of course, each technique has its own advocates.

Figure 2.1: Structure of a standard speech recognition system.

Figure 2.2: Signal analysis converts raw speech to speech frames.

raw
speech

signal
analysis

speech
frames

acoustic
models

frame
scores

sequential
constraints

word
sequence

segmentation

time
alignment

acoustic
analysis

train

train

test

train

raw speech
16000 values/sec.

speech frames
16 coefficients x
100 frames/sec.

signal
analysis



2.1. Fundamentals of Speech Recognition 11

• Speech frames. The result of signal analysis is a sequence of speech frames, typi-
cally at 10 msec intervals, with about 16 coefficients per frame. These frames may
be augmented by their own first and/or second derivatives, providing explicit
information about speech dynamics; this typically leads to improved performance.
The speech frames are used for acoustic analysis.

• Acoustic models. In order to analyze the speech frames for their acoustic content,
we need a set of acoustic models.  There are many kinds of acoustic models, vary-
ing in their representation, granularity, context dependence, and other properties.

Figure 2.3 shows two popular representations for acoustic models. The simplest is
a template, which is just a stored sample of the unit of speech to be modeled, e.g.,
a recording of a word.  An unknown word can be recognized by simply comparing
it against all known templates, and finding the closest match. Templates have two
major drawbacks: (1) they cannot model acoustic variabilities, except in a coarse
way by assigning multiple templates to each word; and (2) in practice they are lim-
ited to whole-word models, because it’s hard to record or segment a sample shorter
than a word — so templates are useful only in small systems which can afford the
luxury of using whole-word models. A more flexible representation, used in larger
systems, is based on trained acoustic models, or states. In this approach, every
word is modeled by a sequence of trainable states, and each state indicates the
sounds that are likely to be heard in that segment of the word, using a probability
distribution over the acoustic space.  Probability distributions can be modeled
parametrically, by assuming that they have a simple shape (e.g., a Gaussian distri-
bution) and then trying to find the parameters that describe it; or non-parametri-
cally, by representing the distribution directly (e.g., with a histogram over a
quantization of the acoustic space, or, as we shall see, with a neural network).

Figure 2.3: Acoustic models: template and state representations for the word “cat”.

C A T

template:

state:

parametric:

non-parametric:

(speech frames)

(state sequence)

C A T

(likelihoods in
acoustic space)

(likelihoods in
acoustic space).

.
.

.....
...... .

... ....
.. ..
.. .. .. .

.
.

.. ..
. ...

.
. ....... .

... ....
.. .
.
.
. ..

.. .. ..
. .. ..
..

.... .... . . . .. ..
... ..
.

. .. ..
...

.
.. .



2. Review of Speech Recognition12

Acoustic models also vary widely in their granularity and context sensitivity.  Fig-
ure 2.4 shows a chart of some common types of acoustic models, and where they
lie along these dimensions.  As can be seen, models with larger granularity (such
as word or syllable models) tend to have greater context sensitivity.  Moreover,
models with the greatest context sensitivity give the best word recognition accu-
racy —if those models are well trained.  Unfortunately, the larger the granularity
of a model, the poorer it will be trained, because fewer samples will be available
for training it. For this reason, word and syllable models are rarely used in high-
performance systems; much more common are triphone or generalized triphone
models. Many systems also use monophone models (sometimes simply called pho-
neme models), because of their relative simplicity.

During training, the acoustic models are incrementally modified in order to opti-
mize the overall performance of the system. During testing, the acoustic models
are left unchanged.

• Acoustic analysis and frame scores. Acoustic analysis is performed by applying
each acoustic model over each frame of speech, yielding a matrix of frame scores,
as shown in Figure 2.5. Scores are computed according to the type of acoustic
model that is being used. For template-based acoustic models, a score is typically
the Euclidean distance between a template’s frame and an unknown frame. For
state-based acoustic models, a score represents an emission probability, i.e., the
likelihood of the current state generating the current frame, as determined by the
state’s parametric or non-parametric function.

• Time alignment. Frame scores are converted to a word sequence by identifying a
sequence of acoustic models, representing a valid word sequence, which gives the

Figure 2.4: Acoustic models: granularity vs. context sensitivity, illustrated for the word “market”.

granularity

# 
m

od
el

s =
 c

on
te

xt
 se

ns
iti

vi
ty

monophone (50)

diphone (2000)

triphone (10000)

demisyllable (2000)

syllable (10000)

word (unlimited)

subphone (200)

M,A,R,K,E,T

$M,MA,AR,RK,KE,ET

$MA,MAR,ARK,RKE,KET,ET$ MAR,KET

MA,AR,KE,ET

1087,486,2502,986,3814,2715
generalized triphone (4000)

MARKET

M1,M2,M3;
A1,A2,A3;
....

M = 3843,2257,1056;
A = 1894,1247,3852;
...

senone (4000)



2.1. Fundamentals of Speech Recognition 13

best total score along an alignment path through the matrix1, as illustrated in Fig-
ure 2.5. The process of searching for the best alignment path is called time align-
ment.

An alignment path must obey certain sequential constraints which reflect the fact
that speech always goes forward, never backwards.  These constraints are mani-
fested both within and between words.  Within a word, sequential constraints are
implied by the sequence of frames (for template-based models), or by the sequence
of states (for state-based models) that comprise the word, as dictated by the pho-
netic pronunciations in a dictionary, for example.  Between words, sequential con-
straints are given by a grammar, indicating what words may follow what other
words.

Time alignment can be performed efficiently by dynamic programming, a general
algorithm which uses only local path constraints, and which has linear time and
space requirements. (This general algorithm has two main variants, known as
Dynamic Time Warping (DTW) and Viterbi search, which differ slightly in their
local computations and in their optimality criteria.)

In a state-based system, the optimal alignment path induces a segmentation on the
word sequence, as it indicates which frames are associated with each state.  This

1. Actually, it is often better to evaluate a state sequence not by its single best alignment path, but by the composite score of all
of its possible alignment paths; but we will ignore that issue for now.

Figure 2.5: The alignment path with the best total score identifies the word sequence and segmentation.

W
I

L
B

O
Y

Z
B

E

Input speech: “Boys will be boys”

Ac
ou

st
ic 

m
od

el
s

Matrix of frame scores
Total score

Segmentation

ZOYB.....

an Alignment path



2. Review of Speech Recognition14

segmentation can be used to generate labels for recursively training the acoustic
models on corresponding frames.

• Word sequence. The end result of time alignment is a word sequence — the sen-
tence hypothesis for the utterance. Actually it is common to return several such
sequences, namely the ones with the highest scores, using a variation of time align-
ment called N-best search (Schwartz and Chow, 1990). This allows a recognition
system to make two passes through the unknown utterance: the first pass can use
simplified models in order to quickly generate an N-best list, and the second pass
can use more complex models in order to carefully rescore each of the N hypothe-
ses, and return the single best hypothesis.

2.2.  Dynamic Time Warping
In this section we motivate and explain the Dynamic Time Warping algorithm, one of the

oldest and most important algorithms in speech recognition (Vintsyuk 1971, Itakura 1975,
Sakoe and Chiba 1978).

The simplest way to recognize an isolated word sample is to compare it against a number
of stored word templates and determine which is the “best match”.  This goal is complicated
by a number of factors.  First, different samples of a given word will have somewhat differ-
ent durations.  This problem can be eliminated by simply normalizing the templates and the
unknown speech so that they all have an equal duration.  However, another problem is that
the rate of speech may not be constant throughout the word; in other words, the optimal
alignment between a template and the speech sample may be nonlinear.  Dynamic Time
Warping (DTW) is an efficient method for finding this optimal nonlinear alignment.

DTW is an instance of the general class of algorithms known as dynamic programming.
Its time and space complexity is merely linear in the duration of the speech sample and the
vocabulary size.  The algorithm makes a single pass through a matrix of frame scores while
computing locally optimized segments of the global alignment path. (See Figure 2.6.)  If
D(x,y) is the Euclidean distance between frame x of the speech sample and frame y of the
reference template, and if C(x,y) is the cumulative score along an optimal alignment path
that leads to (x,y), then

(1)

The resulting alignment path may be visualized as a low valley of Euclidean distance
scores, meandering through the hilly landscape of the matrix, beginning at (0, 0) and ending
at the final point (X, Y). By keeping track of backpointers, the full alignment path can be
recovered by tracing backwards from (X, Y). An optimal alignment path is computed for
each reference word template, and the one with the lowest cumulative score is considered to
be the best match for the unknown speech sample.

There are many variations on the DTW algorithm.  For example, it is common to vary the
local path constraints, e.g., by introducing transitions with slope 1/2 or 2, or weighting the

C x y,( ) MIN C x 1 y,–( ) C x 1 y 1–,–( ) C x y 1–,( ), ,( ) D x y,( )+=



2.3. Hidden Markov Models 15

transitions in various ways, or applying other kinds of slope constraints (Sakoe and Chiba
1978).  While the reference word models are usually templates, they may be state-based
models (as shown previously in Figure 2.5).  When using states, vertical transitions are often
disallowed (since there are fewer states than frames), and often the goal is to maximize the
cumulative score, rather than to minimize it.

A particularly important variation of DTW is an extension from isolated to continuous
speech. This extension is called the One Stage DTW algorithm (Ney 1984). Here the goal is
to find the optimal alignment between the speech sample and the best sequence of reference
words (see Figure 2.5).  The complexity of the extended algorithm is still linear in the length
of the sample and the vocabulary size.  The only modification to the basic DTW algorithm is
that at the beginning of each reference word model (i.e., its first frame or state), the diagonal
path is allowed to point back to the end of all reference word models in the preceding frame.
Local backpointers must specify the reference word model of the preceding point, so that
the optimal word sequence can be recovered by tracing backwards from the final point

 of the word W with the best final score.  Grammars can be imposed on continu-
ous speech recognition by restricting the allowed transitions at word boundaries.

2.3.  Hidden Markov Models
The most flexible and successful approach to speech recognition so far has been Hidden

Markov Models (HMMs).  In this section we will present the basic concepts of HMMs,
describe the algorithms for training and using them, discuss some common variations, and
review the problems associated with HMMs.

Figure 2.6: Dynamic Time Warping. (a) alignment path.  (b) local path constraints.

x

y

Speech: unknown word

Align
men

t p
ath

Optim
al

Re
fe

re
nc

e 
wo

rd
 te

m
pl

at
e

(a)

(b)

Cumulative
word score

W X Y, ,( )



2. Review of Speech Recognition16

2.3.1. Basic Concepts

A Hidden Markov Model is a collection of states connected by transitions, as illustrated in
Figure 2.7. It begins in a designated initial state. In each discrete time step, a transition is
taken into a new state, and then one output symbol is generated in that state. The choice of
transition and output symbol are both random, governed by probability distributions. The
HMM can be thought of as a black box, where the sequence of output symbols generated
over time is observable, but the sequence of states visited over time is hidden from view.
This is why it’s called a Hidden Markov Model.

HMMs have a variety of applications. When an HMM is applied to speech recognition,
the states are interpreted as acoustic models, indicating what sounds are likely to be heard
during their corresponding segments of speech; while the transitions provide temporal con-
straints, indicating how the states may follow each other in sequence. Because speech
always goes forward in time, transitions in a speech application always go forward (or make
a self-loop, allowing a state to have arbitrary duration). Figure 2.8 illustrates how states and
transitions in an HMM can be structured hierarchically, in order to represent phonemes,
words, and sentences.

Figure 2.7: A simple Hidden Markov Model, with two states and two output symbols, A and B.

Figure 2.8: A hierarchically structured HMM.

A: 0.2
B: 0.8

A: 0.7
B: 0.3

0.6 1.0

0.4

[begin] [middle] [end]

Sentence
level

Word
level

Phoneme
level

Latitude

Longitude

Location

Sterett’s

Kirk’s

Willamette’s
What’s the

Display

/w/ /ah/ /ts/



2.3. Hidden Markov Models 17

Formally, an HMM consists of the following elements:

{s} = A set of states.

{aij} = A set of transition probabilities, where aij is the probability of taking the
transition from state i to state j.

{bi(u)} = A set of emission probabilities, where bi is the probability distribution
over the acoustic space describing the likelihood of emitting1 each possible sound
u while in state i.

Since a and b are both probabilities, they must satisfy the following properties:

(2)

(3)

(4)

In using this notation we implicitly confine our attention to First-Order HMMs, in which a
and b depend only on the current state, independent of the previous history of the state
sequence.  This assumption, almost universally observed, limits the number of trainable
parameters and makes the training and testing algorithms very efficient, rendering HMMs
useful for speech recognition.

2.3.2. Algorithms

There are three basic algorithms associated with Hidden Markov Models:

• the forward algorithm, useful for isolated word recognition;

• the Viterbi algorithm, useful for continuous speech recognition; and

• the forward-backward algorithm, useful for training an HMM.

In this section we will review each of these algorithms.

2.3.2.1. The Forward Algorithm

In order to perform isolated word recognition, we must be able to evaluate the probability
that a given HMM word model produced a given observation sequence, so that we can com-
pare the scores for each word model and choose the one with the highest score. More for-
mally: given an HMM model M, consisting of {s}, {aij}, and {bi(u)}, we must compute the
probability that it generated the output sequence  = (y1, y2, y3, ..., yT).  Because every state
i can generate each output symbol u with probability bi(u), every state sequence of length T

1. It is traditional to refer to bi(u) as an “emission” probability rather than an “observation” probability, because an HMM is
traditionally a generative model, even though we are using it for speech recognition. The difference is moot.

aij 0 bi u( ) 0 i j u,,�,*,*

aij
j
- 1 i�,=

bi u( )
u
- 1 i�,=

y1
T



2. Review of Speech Recognition18

contributes something to the total probability.  A brute force algorithm would simply list all
possible state sequences of length T, and accumulate their probabilities of generating ;
but this is clearly an exponential algorithm, and is not practical.

A much more efficient solution is the Forward Algorithm, which is an instance of the class
of algorithms known as dynamic programming, requiring computation and storage that are
only linear in T. First, we define _j(t) as the probability of generating the partial sequence

, ending up in state j at time t. _j(t=0) is initialized to 1.0 in the initial state, and 0.0 in all
other states.  If we have already computed _i(t-1) for all i in the previous time frame t-1,
then _j(t) can be computed recursively in terms of the incremental probability of entering
state j from each i while generating the output symbol yt (see Figure 2.9):

(5)

If F is the final state, then by induction we see that _F(T) is the probability that the HMM
generated the complete output sequence .

Figure 2.10 shows an example of this algorithm in operation, computing the probability
that the output sequence  =(A,A,B) could have been generated by the simple HMM
presented earlier. Each cell at (t,j) shows the value of _j(t), using the given values of a and b.
The computation proceeds from the first state to the last state within a time frame, before
proceeding to the next time frame.  In the final cell, we see that the probability that this par-
ticular HMM generates the sequence (A,A,B) is .096.

Figure 2.9: The forward pass recursion.

Figure 2.10: An illustration of the forward algorithm, showing the value of _j(t) in each cell.

y1
T

y1
t

_j t( ) _i t 1–( ) aijbj yt( )
i
-=

_j(t)

t-1 t

_i(t-1)
.
.
.
.

aij bj(yt)
i

j

y1
T

y1
3

A: 0.2
B: 0.8

A: 0.7
B: 0.3

0.4

0.6

1.0

1.0 .1764j=0

j=1

t=0

.42 .032

0.0 .08 .0496 .096

t=1 t=2 t=3

0.6 0.6 0.6

0.7 0.7 0.3

0.2 0.2 0.8
1.0 1.0 1.0

0.4 0.4 0.4

Aoutput = Aoutput = Boutput =



2.3. Hidden Markov Models 19

2.3.2.2. The Viterbi Algorithm

While the Forward Algorithm is useful for isolated word recognition, it cannot be applied
to continuous speech recognition, because it is impractical to have a separate HMM for each
possible sentence. In order to perform continuous speech recognition, we should instead
infer the actual sequence of states that generated the given observation sequence; from the
state sequence we can easily recover the word sequence.  Unfortunately the actual state
sequence is hidden (by definition), and cannot be uniquely identified; after all, any path
could have produced this output sequence, with some small probability.  The best we can do
is to find the one state sequence that was most likely to have generated the observation
sequence.  As before, we could do this by evaluating all possible state sequences and report-
ing the one with the highest probability, but this would be an exponential and hence infeasi-
ble algorithm.

A much more efficient solution is the Viterbi Algorithm, which is again based on dynamic
programming.  It is very similar to the Forward Algorithm, the main difference being that
instead of evaluating a summation at each cell, we evaluate the maximum:

(6)

This implicitly identifies the single best predecessor state for each cell in the matrix.  If we
explicitly identify that best predecessor state, saving a single backpointer in each cell in the
matrix, then by the time we have evaluated vF(T) at the final state at the final time frame, we
can retrace those backpointers from the final cell to reconstruct the whole state sequence.
Figure 2.11 illustrates this process.  Once we have the state sequence (i.e., an alignment
path), we can trivially recover the word sequence.

Figure 2.11: An example of backtracing.

vj t( ) MAXi vi t 1–( ) aijbj yt( )=

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .
vF T( )

A
B

A B

vi (t-1)

vj (t)



2. Review of Speech Recognition20

2.3.2.3. The Forward-Backward Algorithm

In order to train an HMM, we must optimize a and b with respect to the HMM’s likelihood
of generating all of the output sequences in the training set, because this will maximize the
HMM’s chances of also correctly recognizing new data.  Unfortunately this is a difficult
problem; it has no closed form solution. The best that can be done is to start with some ini-
tial values for a and b, and then to iteratively modify a and b by reestimating and improving
them, until some stopping criterion is reached. This general method is called Estimation-
Maximization (EM). A popular instance of this general method is the Forward-Backward
Algorithm (also known as the Baum-Welch Algorithm), which we now describe.

Previously we defined _j(t) as the probability of generating the partial sequence  and
ending up in state j at time t.  Now we define its mirror image, `j(t), as the probability of
generating the remainder of the sequence , starting from state j at time t. _j(t) is called
the forward term, while `j(t) is called the backward term.  Like _j(t), `j(t) can be computed
recursively, but this time in a backward direction (see Figure 2.12):

(7)

This recursion is initialized at time T by setting `k(T) to 1.0 for the final state, and 0.0 for
all other states.

Now we define aij(t) as the probability of transitioning from state i to state j at time t, given
that the whole output sequence  has been generated by the current HMM:

(8)

The numerator in the final equality can be understood by consulting Figure 2.13.  The
denominator reflects the fact that the probability of generating  equals the probability of
generating  while ending up in any of k final states.

Now let us define  as the expected number of times that the transition from state
i to state j is taken, from time 1 to T:

Figure 2.12: The backward pass recursion.

y1
t

yt 1+
T

`j t( ) ajkbk yt 1+( ) `k t 1+( )
k
-=

t+1

`k(t+1)

`j(t)

t

.

.

.

.

ajk

bk(yt+1)
k

j

y1
T

aij t( ) P it jA y1
T( )

P it j y1
T,A( )

P y1
T( )

---------------------------------
_i t( ) aijbj yt 1+( ) `j t 1+( )

_k T( )
k
-

--------------------------------------------------------------------= = =

y1
T

y1
T

N i jA( )



2.3. Hidden Markov Models 21

(9)

Summing this over all destination states j, we obtain , or , which repre-
sents the expected number of times that state i is visited, from time 1 to T:

(10)

Selecting only those occasions when state i emits the symbol u, we obtain :

(11)

Finally, we can reestimate the HMM parameters a and b, yielding a and b, by taking sim-
ple ratios between these terms:

(12)

(13)

It can be proven that substituting {a, b} for {a, b} will always cause  to increase,
up to a local maximum.  Thus, by repeating this procedure for a number of iterations, the
HMM parameters will be optimized for the training data, and will hopefully generalize well
to testing data.

Figure 2.13: Deriving aij(t) in the Forward-Backward Algorithm.

t+1t-1 t t+2

aij bj(yt+1)

_i(t) `j(t+1)
i j

N i jA( ) aij t( )
t
-=

N i *A( ) N i( )

N i( ) N i *A( ) aij t( )
t
-

j
-= =

N i u,( )

N i u,( ) aij t( )
j
-

t: yt=u( )
-=

aij P i jA( ) N i jA( )
N i *A( )
------------------------

aij t( )
t
-

aij t( )
t
-

j
-
----------------------------= = =

bi u( ) P i u,( ) N i u,( )
N i( )

------------------

aij t( )
j
-

t: yt=u( )
-

aij t( )
j
-

t
-

----------------------------------------= = =

P y1
T( )



2. Review of Speech Recognition22

2.3.3. Variations

There are many variations on the standard HMM model. In this section we discuss some
of the more important variations.

2.3.3.1. Density Models

The states of an HMM need some way to model probability distributions in acoustic
space.  There are three popular ways to do this, as illustrated in Figure 2.14:

• Discrete density model (Lee 1988). In this approach, the entire acoustic space is
divided into a moderate number (e.g., 256) of regions, by a clustering procedure
known as Vector Quantization (VQ).  The centroid of each cluster is represented
by a scalar codeword, which is an index into a codebook that identifies the corre-
sponding acoustic vectors.  Each input frame is converted to a codeword by find-
ing the nearest vector in the codebook.  The HMM output symbols are also
codewords.  Thus, the probability distribution over acoustic space is represented
by a simple histogram over the codebook entries.  The drawback of this nonpara-
metric approach is that it suffers from quantization errors if the codebook is too
small, while increasing the codebook size would leave less training data for each
codeword, likewise degrading performance.

• Continuous density model (Woodland et al, 1994).  Quantization errors can be
eliminated by using a continuous density model, instead of VQ codebooks. In this
approach, the probability distribution over acoustic space is modeled directly, by
assuming that it has a certain parametric form, and then trying to find those param-

Figure 2.14: Density models, describing the probability density in acoustic space.

Discrete:

Continuous:

Semi-Continuous:



2.3. Hidden Markov Models 23

eters.  Typically this parametric form is taken to be a mixture of K Gaussians, i.e.,

(14)

where  is the weighting factor for each Gaussian G with mean  and covari-
ance matrix , such that . During training, the reestimation of b
then involves the reestimation of , , and , using an additional set of for-
mulas.  The drawback of this approach is that parameters are not shared between
states, so if there are many states in the whole system, then a large value of K may
yield too many total parameters to be trained adequately, while decreasing the
value of K may invalidate the assumption that the distribution can be well-modeled
by a mixture of Gaussians.

• Semi-Continuous density model (Huang 1992), also called the Tied-Mixture
model (Bellagarda and Nahamoo 1988). This is a compromise between the above
two approaches.  In a Semi-Continuous density model, as in the discrete model,
there is a codebook describing acoustic clusters, shared by all states.  But rather
than representing the clusters as discrete centroids to which nearby vectors are col-
lapsed, they are represented as continuous density functions (typically Gaussians)
over the neighboring space, thus avoiding quantization errors.  That is,

(15)

where L is the number of codebook entries, and  is the weighting factor for
each Gaussian G with mean  and covariance matrix .  As in the continuous
case, the Gaussians are reestimated during training, hence the codebook is opti-
mized jointly with the HMM parameters, in contrast to the discrete model in which
the codebook remains fixed. This joint optimization can further improve the sys-
tem’s performance.

All three density models are widely used, although continuous densities seem to give the
best results on large databases (while running up to 300 times slower, however).

2.3.3.2. Multiple Data Streams

So far we have discussed HMMs that assume a single data stream, i.e., input acoustic vec-
tors.  HMMs can be modified to use multiple streams, such that

(16)

where ui are the observation vectors of N independent data streams, which are modeled with
separate codebooks or Gaussian mixtures. HMM based speech recognizers commonly1 use
up to four data streams, for example representing spectral coefficients, delta spectral coeffi-

bj y( ) cjkG y µjk Ujk, ,( )
k 1=

K

-=

cjk µjk
Ujk

cjkk- 1=
cjk µjk Ujk

bj y( ) cjkG y µk Uk, ,( )
k 1=

L

-=

cjk
µk Uk

bj u( ) bj ui( )

i 1=

N

.=



2. Review of Speech Recognition24

cients, power, and delta power.  While it is possible to concatenate each of these into one
long vector, and to vector-quantize that single data stream, it is generally better to treat these
separate data streams independently, so that each stream is more coherent and their union
can be modeled with a minimum of parameters.

2.3.3.3. Duration modeling

If the self-transition probability aii = p, then the probability of remaining in state i for d
frames is pd, indicating that state duration in an HMM is modeled by exponential decay.
Unfortunately this is a poor model of duration, as state durations actually have a roughly
Poisson distribution. There are several ways to improve duration modeling in HMMs.

We can define pi(d) as the probability of remaining in state i for a duration of d frames, and
create a histogram of pi(d) from the training data.  To ensure that state duration is governed
by pi(d), we must eliminate all self-loops (by setting aii=0), and modify the equations for
and  as well as all the reestimation formulas, to include summations over d (up to a maxi-
mum duration D) of terms with multiplicative factors that represent all possible durational
contingencies.  Unfortunately this increases memory requirements by a factor of D, and
computational requirements by a factor of .  If D=25 frames (which is quite reasona-
ble), this causes the application to run about 300 times slower.  Another problem with this
approach is that it may require more training parameters (adding about 25 per state) than can
be adequately trained.

The latter problem can be mitigated by replacing the above nonparametric approach with a
parametric approach, in which a Poisson, Gaussian, or Gamma distribution is assumed as a
duration model, so that relatively few parameters are needed.  However, this improvement
causes the system to run even slower.

A third possibility is to ignore the precise shape of the distribution, and simply impose
hard minimum and maximum duration constraints. One way to impose these constraints is
by duplicating the states and modifying the state transitions appropriately. This approach
has only moderate overhead, and gives fairly good results, so it tends to be the most favored
approach to duration modeling.

2.3.3.4. Optimization criteria

The training procedure described earlier (the Forward-Backward Algorithm) implicitly
uses an optimization criterion known as Maximum Likelihood (ML), which maximizes the
likelihood that a given observation sequence Y is generated by the correct model Mc, without
considering other models Mi.  (For instance, if Mi represent word models, then only the cor-
rect word model will be updated with respect to Y, while all the competing word models are
ignored.)  Mathematically, ML training solves for the HMM parameters R = {a, b}, and spe-
cifically the subset Rc that corresponds to the correct model Mc, such that

(17)

1. Although this is still common among semi-continuous HMMs, there is now a trend towards using a single data stream with
LDA coefficients derived from these separate streams; this latter approach is now common among continuous HMMs.

_
`

D2 2⁄

RML
argmax

R
P Y Rc( )=



2.3. Hidden Markov Models 25

If the HMM’s modeling assumptions were accurate — e.g., if the probability density in
acoustic space could be precisely modeled by a mixture of Gaussians, and if enough training
data were available for perfectly estimating the distributions — then ML training would the-
oretically yield optimal recognition accuracy.  But the modeling assumptions are always in-
accurate, because acoustic space has a complex terrain, training data is limited, and the scar-
city of training data limits the size and power of the models, so that they cannot perfectly fit
the distributions. This unfortunate condition is called model mismatch.  An important conse-
quence is that ML is not guaranteed to be the optimal criterion for training an HMM.

An alternative criterion is Maximum Mutual Information (MMI), which enhances discrim-
ination between competing models, in an attempt to squeeze as much useful information as
possible out of the limited training data.  In this approach, the correct model Mc is trained
positively while all other models Mi are trained negatively on the observation sequence Y,
helping to separate the models and improve their ability to discriminate during testing.
Mutual information between an observation sequence Y and the correct model Mc is defined
as follows:

(18)

where the first term represents positive training on the correct model Mc (just as in ML),
while the second term represents negative training on all other models Mi.  Training with the
MMI criterion then involves solving for the model parameters  that maximize the mutual
information:

(19)

Unfortunately, this equation cannot be solved by either direct analysis or reestimation; the
only known way to solve it is by gradient descent, and the proper implementation is com-
plex (Brown 1987, Rabiner 1989).

We note in passing that MMI is equivalent to using a Maximum A Posteriori (MAP) crite-
rion, in which the expression to be maximized is P(Mc|Y), rather than P(Y|Mc).  To see this,
note that according to Bayes Rule,

(20)

Maximizing this expression is equivalent to maximizing , because the distin-
guishing logarithm is monotonic and hence transparent, and the MAP’s extra factor of

is transparent because it’s only an additive constant (after taking logarithms), whose
value is fixed by the HMM’s topology and language model.

IR Y Mc,( )
P Y Mc,( )

P Y( ) P Mc( )
--------------------------------log

P Y Mc( )

P Y( )
------------------------log P Y Mc( )log P Y( )log–= = =

P Y Mc( )log P Y Mi( ) P Mi( )
i
-log–=

R

RMMI
argmax

R
IR Y Mc,( )=

P Mc Y( )
P Y Mc( ) P Mc( )

P Y( )
------------------------------------------=

IR Y Mc,( )

P Mc( )



2. Review of Speech Recognition26

2.3.4. Limitations of HMMs

Despite their state-of-the-art performance, HMMs are handicapped by several well-known
weaknesses, namely:

• The First-Order Assumption — which says that all probabilities depend solely on
the current state — is false for speech applications. One consequence is that
HMMs have difficulty modeling coarticulation, because acoustic distributions are
in fact strongly affected by recent state history. Another consequence is that dura-
tions are modeled inaccurately by an exponentially decaying distribution, rather
than by a more accurate Poisson or other bell-shaped distribution.

• The Independence Assumption — which says that there is no correlation between
adjacent input frames — is also false for speech applications. In accordance with
this assumption, HMMs examine only one frame of speech at a time. In order to
benefit from the context of neighboring frames, HMMs must absorb those frames
into the current frame (e.g., by introducing multiple streams of data in order to
exploit delta coefficients, or using LDA to transform these streams into a single
stream).

• The HMM probability density models (discrete, continuous, and semi-continuous)
have suboptimal modeling accuracy. Specifically, discrete density HMMs suffer
from quantization errors, while continuous or semi-continuous density HMMs suf-
fer from model mismatch, i.e., a poor match between their a priori choice of statis-
tical model (e.g., a mixture of K Gaussians) and the true density of acoustic space.

• The Maximum Likelihood training criterion leads to poor discrimination between
the acoustic models (given limited training data and correspondingly limited mod-
els). Discrimination can be improved using the Maximum Mutual Information
training criterion, but this is more complex and difficult to implement properly.

Because HMMs suffer from all these weaknesses, they can obtain good performance only
by relying on context dependent phone models, which have so many parameters that they
must be extensively shared — and this, in turn, calls for elaborate mechanisms such as
senones and decision trees (Hwang et al, 1993b).

We will argue that neural networks mitigate each of the above weaknesses (except the
First Order Assumption), while they require relatively few parameters, so that a neural net-
work based speech recognition system can get equivalent or better performance with less
complexity.



27

3.  Review of Neural Networks

In this chapter we present a brief review of neural networks.  After giving some historical
background, we will review some fundamental concepts, describe different types of neural
networks and training procedures (with special emphasis on backpropagation), and discuss
the relationship between neural networks and conventional statistical techniques.

3.1.  Historical Development
The modern study of neural networks actually began in the 19th century, when neurobiol-

ogists first began extensive studies of the human nervous system.  Cajal (1892) determined
that the nervous system is comprised of discrete neurons, which communicate with each
other by sending electrical signals down their long axons, which ultimately branch out and
touch the dendrites (receptive areas) of thousands of other neurons, transmitting the electri-
cal signals through synapses (points of contact, with variable resistance). This basic picture
was elaborated on in the following decades, as different kinds of neurons were identified,
their electrical responses were analyzed, and their patterns of connectivity and the brain’s
gross functional areas were mapped out.  While neurobiologists found it relatively easy to
study the functionality of individual neurons (and to map out the brain’s gross functional
areas), it was extremely difficult to determine how neurons worked together to achieve high-
level functionality, such as perception and cognition.  With the advent of high-speed com-
puters, however, it finally became possible to build working models of neural systems,
allowing researchers to freely experiment with such systems and better understand their
properties.

McCulloch and Pitts (1943) proposed the first computational model of a neuron, namely
the binary threshold unit, whose output was either 0 or 1 depending on whether its net input
exceeded a given threshold.  This model caused a great deal of excitement, for it was shown
that a system of such neurons, assembled into a finite state automaton, could compute any
arbitrary function, given suitable values of weights between the neurons (see Minsky 1967).
Researchers soon began searching for learning procedures that would automatically find the
values of weights enabling such a network to compute any specific function.  Rosenblatt
(1962) discovered an iterative learning procedure for a particular type of network, the sin-
gle-layer perceptron, and he proved that this learning procedure always converged to a set
of weights that produced the desired function, as long as the desired function was potentially
computable by the network.  This discovery caused another great wave of excitement, as
many AI researchers imagined that the goal of machine intelligence was within reach.



3. Review of Neural Networks28

However, in a rigorous analysis, Minsky and Papert (1969) showed that the set of functions
potentially computable by a single-layer perceptron is actually quite limited, and they
expressed pessimism about the potential of multi-layer perceptrons as well; as a direct
result, funding for connectionist research suddenly dried up, and the field lay dormant for 15
years.

Interest in neural networks was gradually revived when Hopfield (1982) suggested that a
network can be analyzed in terms of an energy function, triggering the development of the
Boltzmann Machine (Ackley, Hinton, & Sejnowski 1985) — a stochastic network that could
be trained to produce any kind of desired behavior, from arbitrary pattern mapping to pattern
completion.  Soon thereafter, Rumelhart et al (1986) popularized a much faster learning pro-
cedure called backpropagation, which could train a multi-layer perceptron to compute any
desired function, showing that Minsky and Papert’s earlier pessimism was unfounded. With
the advent of backpropagation, neural networks have enjoyed a third wave of popularity,
and have now found many useful applications.

3.2.  Fundamentals of Neural Networks
In this section we will briefly review the fundamentals of neural networks.  There are

many different types of neural networks, but they all have four basic attributes:

• A set of processing units;
• A set of connections;
• A computing procedure;
• A training procedure.

Let us now discuss each of these attributes.

3.2.1. Processing Units

A neural network contains a potentially huge number of very simple processing units,
roughly analogous to neurons in the brain.  All these units operate simultaneously, support-
ing massive parallelism.  All computation in the system is performed by these units; there is
no other processor that oversees or coordinates their activity1.  At each moment in time,
each unit simply computes a scalar function of its local inputs, and broadcasts the result
(called the activation value) to its neighboring units.

The units in a network are typically divided into input units, which receive data from the
environment (such as raw sensory information); hidden units, which may internally trans-
form the data representation; and/or output units, which represent decisions or control sig-
nals (which may control motor responses, for example).

1. Except, of course, to the extent that the neural network may be simulated on a conventional computer, rather than imple-
mented directly in hardware.



3.2. Fundamentals of Neural Networks 29

In drawings of neural networks, units are usually represented by circles.  Also, by conven-
tion, input units are usually shown at the bottom, while the outputs are shown at the top, so
that processing is seen to be “bottom-up”.

The state of the network at each moment is represented by the set of activation values over
all the units; the network’s state typically varies from moment to moment, as the inputs are
changed, and/or feedback in the system causes the network to follow a dynamic trajectory
through state space.

3.2.2. Connections

The units in a network are organized into a given topology by a set of connections, or
weights, shown as lines in a diagram.  Each weight has a real value, typically ranging from

 to + , although sometimes the range is limited.  The value (or strength) of a weight
describes how much influence a unit has on its neighbor; a positive weight causes one unit
to excite another, while a negative weight causes one unit to inhibit another. Weights are
usually one-directional (from input units towards output units), but they may be two-direc-
tional (especially when there is no distinction between input and output units).

The values of all the weights predetermine the network’s computational reaction to any
arbitrary input pattern; thus the weights encode the long-term memory, or the knowledge, of
the network.  Weights can change as a result of training, but they tend to change slowly,
because accumulated knowledge changes slowly.  This is in contrast to activation patterns,
which are transient functions of the current input, and so are a kind of short-term memory.

A network can be connected with any kind of topology.  Common topologies include
unstructured, layered, recurrent, and modular networks, as shown in Figure 3.1.  Each kind
of topology is best suited to a particular type of application.  For example:

• unstructured networks are most useful for pattern completion (i.e., retrieving
stored patterns by supplying any part of the pattern);

• layered networks are useful for pattern association (i.e., mapping input vectors to
output vectors);

• recurrent networks are useful for pattern sequencing (i.e., following sequences of

Figure 3.1: Neural network topologies: (a) unstructured, (b) layered, (c) recurrent, (d) modular.

'– '

(a) (b) (c) (d)



3. Review of Neural Networks30

network activation over time); and

• modular networks are useful for building complex systems from simpler compo-
nents.

Note that unstructured networks may contain cycles, and hence are actually recurrent; lay-
ered networks may or may not be recurrent; and modular networks may integrate different
kinds of topologies.  In general, unstructured networks use 2-way connections, while other
networks use 1-way connections.

Connectivity between two groups of units, such as two layers, is often complete (connect-
ing all to all), but it may also be random (connecting only some to some), or local (connect-
ing one neighborhood to another).  A completely connected network has the most degrees of
freedom, so it can theoretically learn more functions than more constrained networks; how-
ever, this is not always desirable.  If a network has too many degrees of freedom, it may
simply memorize the training set without learning the underlying structure of the problem,
and consequently it may generalize poorly to new data.  Limiting the connectivity may help
constrain the network to find economical solutions, and so to generalize better.  Local con-
nectivity, in particular, can be very helpful when it reflects topological constraints inherent
in a problem, such as the geometric constraints that are present between layers in a visual
processing system.

3.2.3. Computation

Computation always begins by presenting an input pattern to the network, or clamping a
pattern of activation on the input units.  Then the activations of all of the remaining units are
computed, either synchronously (all at once in a parallel system) or asynchronously (one at a
time, in either randomized or natural order), as the case may be.  In unstructured networks,
this process is called spreading activation; in layered networks, it is called forward propa-
gation, as it progresses from the input layer to the output layer.  In feedforward networks
(i.e., networks without feedback), the activations will stabilize as soon as the computations
reach the output layer; but in recurrent networks (i.e., networks with feedback), the activa-
tions may never stabilize, but may instead follow a dynamic trajectory through state space,
as units are continuously updated.

A given unit is typically updated in two stages: first we compute the unit’s net input (or
internal activation), and then we compute its output activation as a function of the net input.
In the standard case, as shown in Figure 3.2(a), the net input xj for unit j is just the weighted
sum of its inputs:

(21)

where yi is the output activation of an incoming unit, and wji is the weight from unit i to unit
j.  Certain networks, however, will support so-called sigma-pi connections, as shown in Fig-
ure 3.2(b), where activations are multiplied together (allowing them to gate each other)
before being weighted.  In this case, the net input is given by:

xj yiwji
i
-=



3.2. Fundamentals of Neural Networks 31

(22)

from which the name “sigma-pi” is transparently derived.

In general, the net input is offset by a variable bias term, e, so that for example Equation
(21) is actually:

(23)

However, in practice, this bias is usually treated as another weight wj0 connected to an invis-
ible unit with activation y0 = 1, so that the bias is automatically included in Equation (21) if
the summation’s range includes this invisible unit.

Once we have computed the unit’s net input xj, we compute the output activation yj as a
function of xj.  This activation function (also called a transfer function) can be either deter-
ministic or stochastic, and either local or nonlocal.

Deterministic local activation functions usually take one of three forms — linear, thresh-
old, or sigmoidal — as shown in Figure 3.3.  In the linear case, we have simply y = x.  This
is not used very often because it’s not very powerful: multiple layers of linear units can be
collapsed into a single layer with the same functionality. In order to construct nonlinear
functions, a network requires nonlinear units. The simplest form of nonlinearity is provided
by the threshold activation function, illustrated in panel (b):

(24)

This is much more powerful than a linear function, as a multilayered network of threshold
units can theoretically compute any boolean function.  However, it is difficult to train such a
network because the discontinuities in the function imply that finding the desired set of
weights may require an exponential search; a practical learning rule exists only for single-

Figure 3.2: Computing unit activations: x=net input, y=activation. (a) standard unit; (b) sigma-pi unit.

y1

y2

y3

yjxj

wj1

wj2

wj3

xj yj

wj1

wj2

y1

y2

y3

y4

(a) (b)

*

*

xj wji yk
k k i( )D
.

i
-=

xj yiwji
i
- ej+=

y 0 if x 0)
1 if x 0>ª

©
¨

=



3. Review of Neural Networks32

layered networks of such units, which have limited functionality. Moreover, there are many
applications where continuous outputs are preferable to binary outputs.  Consequently, the
most common function is now the sigmoidal function, illustrated in panel (c):

(25)

Sigmoidal functions have the advantages of nonlinearity, continuousness, and differentia-
bility, enabling a multilayered network to compute any arbitrary real-valued function, while
also supporting a practical training algorithm, backpropagation, based on gradient descent.

Nonlocal activation functions can be useful for imposing global constraints on the net-
work.  For example, sometimes it is useful to force all of the network’s output activations to
sum to 1, like probabilities.  This can be performed by linearly normalizing the outputs, but
a more popular approach is to use the softmax function:

(26)

which operates on the net inputs directly.  Nonlocal functions require more overhead and/or
hardware, and so are biologically implausible, but they can be useful when global con-
straints are desired.

Nondeterministic activation functions, in contrast to deterministic ones, are probabilistic
in nature.  They typically produce binary activation values (0 or 1), where the probability of
outputing a 1 is given by:

(27)

Here T is a variable called the temperature, which commonly varies with time.  Figure 3.4
shows how this probability function varies with the temperature: at infinite temperature we
have a uniform probability function; at finite temperatures we have sigmoidal probability
functions; and at zero temperature we have a binary threshold probability function. If the
temperature is steadily decreased during training, in a process called simulated annealing, a

Figure 3.3: Deterministic local activation functions: (a) linear; (b) threshold; (c) sigmoidal.

(a) (b) (c)

x

y

x x

y y

y 1
1 x–( )exp+-------------------------------= or similarly y x( )tanh=

yj
xj( )exp

xi( )exp
i
-
---------------------------=

P y 1=( ) 1
1 x T⁄–( )exp+---------------------------------------=



3.2. Fundamentals of Neural Networks 33

network may be able to escape local minima (which can trap deterministic gradient descent
procedures like backpropagation), and find global minima instead.

Up to this point we have discussed units whose activation functions have the general form

(28)

This is the most common form of activation function.  However, some types of networks —
such as Learned Vector Quantization (LVQ) networks, and Radial Basis Function (RBF)
networks — include units that are based on another type of activation function, with the
general form:

(29)

The difference between these two types of units has an intuitive geometric interpretation,
illustrated in Figure 3.5.  In the first case, xj is the dot product between an input vector y and
a weight vector w, so xj is the length of the projection of y onto w, as shown in panel (a).
This projection may point either in the same or the opposite direction as w, i.e., it may lie
either on one side or the other of a hyperplane that is perpendicular to w.   Inputs that lie on
the same side will have xj > 0, while inputs that lie on the opposite side will have xj < 0.
Thus, if  is a threshold function, as in Equation (24), then the unit will classify
each input in terms of which side of the hyperplane it lies on.  (This classification will be
fuzzy if a sigmoidal function is used instead of a threshold function.)

By contrast, in the second case, xj is the Euclidean distance between an input vector y and
a weight vector w.  Thus, the weight represents the center of a spherical distribution in input
space, as shown in panel (b).  The distance function can be inverted by a function like yj =
f(xj) = exp(-xj), so that an input at the center of the cluster has an activation yj = 1, while an
input at an infinite distance has an activation yj = 0.

In either case, such decision regions — defined by hyperplanes or hyperspheres, with
either discontinuous or continuous boundaries — can be positioned anywhere in the input
space, and used to “carve up” the input space in arbitrary ways.  Moreover, a set of such

Figure 3.4: Nondeterministic activation functions: Probability of outputing 1 at various temperatures.

x

P(y=1)
P = 1.0

P = 0.5

P = 0.0

T='

T=0

T=1

yj f xj( )= where xj yiwji
i
-=

yj f xj( )= where xj yi wji–( ) 2

i
-=

yj f xj( )=



3. Review of Neural Networks34

Figure 3.5: Computation of net input. (a) Dot product � hyperplane; (b) Difference � hypersphere.

Figure 3.6: Construction of complex functions from (a) hyperplanes, or (b) hyperspheres.

w

xj
y1

y2

w

xj

y1

y2

(a) (b) xj yi wji–( ) 2

i
-=xj yiwji

i
-=

y1

y2

yjxj

w

y y

y1

y2

y1

y2

w3
w4

w5

w3

w4

w5

y1

y2

y4x4

y3x3

y5x5

ykxk

w3

w4

w5

wk

(a) (b) xj yi wji–( ) 2

i
-=xj yiwji

i
-=

xj yj

xk yjwkj
j
-=



3.2. Fundamentals of Neural Networks 35

decision regions can be overlapped and combined, to construct any arbitrarily complex
function, by including at least one additional layer of threshold (or sigmoidal) units, as illus-
trated in Figure 3.6.  It is the task of a training procedure to adjust the hyperplanes and/or
hyperspheres to form a more accurate model of the desired function.

3.2.4. Training

Training a network, in the most general sense, means adapting its connections so that the
network exhibits the desired computational behavior for all input patterns. The process usu-
ally involves modifying the weights (moving the hyperplanes/hyperspheres); but sometimes
it also involves modifying the actual topology of the network, i.e., adding or deleting con-
nections from the network (adding or deleting hyperplanes/hyperspheres).  In a sense,
weight modification is more general than topology modification, since a network with abun-
dant connections can learn to set any of its weights to zero, which has the same effect as
deleting such weights.  However, topological changes can improve both generalization and
the speed of learning, by constraining the class of functions that the network is capable of
learning.  Topological changes will be discussed further in Section 3.3.5; in this section we
will focus on weight modification.

Finding a set of weights that will enable a given network to compute a given function is
usually a nontrivial procedure. An analytical solution exists only in the simplest case of pat-
tern association, i.e., when the network is linear and the goal is to map a set of orthogonal
input vectors to output vectors.  In this case, the weights are given by

(30)

where y is the input vector, t is the target vector, and p is the pattern index.

In general, networks are nonlinear and multilayered, and their weights can be trained only
by an iterative procedure, such as gradient descent on a global performance measure (Hin-
ton 1989).  This requires multiple passes of training on the entire training set (rather like a
person learning a new skill); each pass is called an iteration or an epoch.  Moreover, since
the accumulated knowledge is distributed over all of the weights, the weights must be mod-
ified very gently so as not to destroy all the previous learning.  A small constant called the
learning rate (¡) is thus used to control the magnitude of weight modifications.  Finding a
good value for the learning rate is very important — if the value is too small, learning takes
forever; but if the value is too large, learning disrupts all the previous knowledge.  Unfortu-
nately, there is no analytical method for finding the optimal learning rate; it is usually
optimized empirically, by just trying different values.

Most training procedures, including Equation (30),  are essentially variations of the Hebb
Rule (Hebb 1949), which reinforces the connection between two units if their output activa-
tions are correlated:

(31)

wji
yi

ptj
p

y p 2-------------
p
-=

wji6 ¡yiyj=



3. Review of Neural Networks36

By reinforcing the correlation between active pairs of units during training, the network is
prepared to activate the second unit if only the first one is known during testing.

One important variation of the above rule is the Delta Rule (or the Widrow-Hoff Rule),
which applies when there is a target value for one of the two units.  This rule reinforces the
connection between two units if there is a correlation between the first unit’s activation yi
and the second unit’s error (or potential for error reduction) relative to its target tj:

(32)

This rule decreases the relative error if yi contributed to it, so that the network is prepared to
compute an output yj closer to tj if only the first unit’s activation yi is known during testing.
In the context of binary threshold units with a single layer of weights, the Delta Rule is
known as the Perceptron Learning Rule, and it is guaranteed to find a set of weights repre-
senting a perfect solution, if such a solution exists (Rosenblatt 1962).  In the context of mul-
tilayered networks, the Delta Rule is the basis for the backpropagation training procedure,
which will be discussed in greater detail in Section 3.4.

Yet another variation of the Hebb Rule applies to the case of spherical functions, as in
LVQ and RBF networks:

(33)

This rule moves the spherical center wji closer to the input pattern yi if the output class yj is
active.

3.3.  A Taxonomy of Neural Networks
Now that we have presented the basic elements of neural networks, we will give an over-

view of some different types of networks.  This overview will be organized in terms of the
learning procedures used by the networks.  There are three main classes of learning proce-
dures:

• supervised learning, in which a “teacher” provides output targets for each input
pattern, and corrects the network’s errors explicitly;

• semi-supervised (or reinforcement) learning, in which a teacher merely indi-
cates whether the network’s response to a training pattern is “good” or “bad”; and

• unsupervised learning, in which there is no teacher, and the network must find
regularities in the training data by itself.

Most networks fall squarely into one of these categories, but there are also various anoma-
lous networks, such as hybrid networks which straddle these categories, and dynamic net-
works whose architectures can grow or shrink over time.

wji6 ¡yi tj yj–( )=

wji6 ¡ yi wji–( ) yj=



3.3. A Taxonomy of Neural Networks 37

3.3.1. Supervised Learning

Supervised learning means that a “teacher” provides output targets for each input pattern,
and corrects the network’s errors explicitly.  This paradigm can be applied to many types of
networks, both feedforward and recurrent in nature. We will discuss these two cases sepa-
rately.

3.3.1.1. Feedforward Networks

Perceptrons (Rosenblatt 1962) are the simplest type of feedforward networks that use
supervised learning. A perceptron is comprised of binary threshold units arranged into lay-
ers, as shown in Figure 3.7. It is trained by the Delta Rule given in Equation (32), or varia-
tions thereof.

In the case of a single layer perceptron, as shown in Figure 3.7(a), the Delta Rule can be
applied directly. Because a perceptron’s activations are binary, this general learning rule
reduces to the Perceptron Learning Rule, which says that if an input is active (yi = 1) and the
output yj is wrong, then wji should be either increased or decreased by a small amount ¡,
depending if the desired output is 1 or 0, respectively. This procedure is guaranteed to find a
set of weights to correctly classify the patterns in any training set if the patterns are linearly
separable, i.e., if they can be separated into two classes by a straight line, as illustrated in
Figure 3.5(a).  Most training sets, however, are not linearly separable (consider the simple
XOR function, for example); in these cases we require multiple layers.

Multi-layer perceptrons (MLPs), as shown in Figure 3.7(b), can theoretically learn any
function, but they are more complex to train.  The Delta Rule cannot be applied directly to
MLPs because there are no targets in the hidden layer(s).  However, if an MLP uses contin-
uous rather than discrete activation functions (i.e., sigmoids rather than threshold functions),
then it becomes possible to use partial derivatives and the chain rule to derive the influence
of any weight on any output activation, which in turn indicates how to modify that weight in
order to reduce the network’s error.  This generalization of the Delta Rule is known as back-
propagation; it will be discussed further in Section 3.4.

Figure 3.7: Perceptrons. (a) Single layer perceptron; (b) multi-layer perceptron.

inputs

hidden

outputs

inputs

outputs

(a) (b)



3. Review of Neural Networks38

MLPs may have any number of hidden layers, although a single hidden layer is sufficient
for many applications, and additional hidden layers tend to make training slower, as the ter-
rain in weight space becomes more complicated.  MLPs can also be architecturally con-
strained in various ways, for instance by limiting their connectivity to geometrically local
areas, or by limiting the values of the weights, or tying different weights together.

One type of constrained MLP which is especially relevant to this thesis is the Time Delay
Neural Network (TDNN), shown in Figure 3.8.  This architecture was initially developed for
phoneme recognition (Lang 1989, Waibel et al 1989), but it has also been applied to hand-
writing recognition (Idan et al, 1992, Bodenhausen and Manke 1993), lipreading (Bregler et
al, 1993), and other tasks. The TDNN operates on two-dimensional input fields, where the
horizontal dimension is time1.  Connections are “time delayed” to the extent that their con-
nected units are temporally nonaligned.  The TDNN has three special architectural features:

1. Its time delays are hierarchically structured, so that higher level units can integrate
more temporal context and perform higher level feature detection.

2. Weights are tied along the time axis, i.e., corresponding weights at different tem-
poral positions share the same value, so the network has relatively few free param-
eters, and it can generalize well.

3. The output units temporally integrate the results of local feature detectors distrib-
uted over time, so the network is shift invariant, i.e., it can recognize patterns no
matter where they occur in time.

1. Assuming the task is speech recognition, or some other task in the temporal domain.

Figure 3.8: Time Delay Neural Network.

Integration

Speech
input

Phoneme
output

B
D
G

B
D
G

tied weights

tied weights

time

inputs

time delayed
connections

hidden



3.3. A Taxonomy of Neural Networks 39

The TDNN is trained using standard backpropagation.  The only unusual aspect of train-
ing a TDNN is that the tied weights are modified according to their averaged error signal,
rather than independently.

Another network that can classify input patterns is a Learned Vector Quantization (LVQ)
network (Kohonen 1989).  An LVQ network is a single-layered network in which the out-
puts represent classes, and their weights from the inputs represent the centers of hyper-
spheres, as shown in Figure 3.5(b).  Training involves moving the hyperspheres to cover the
classes more accurately.  Specifically1, for each training pattern x, if the best output y1 is
incorrect, while the second best output y2 is correct, and if x is near the midpoint between
the hyperspheres w1 and w2, then we move w1 toward x, and w2 away from x:

(34)

3.3.1.2. Recurrent Networks

Hopfield (1982) studied neural networks that implement a kind of content-addressable
associative memory.  He worked with unstructured networks of binary threshold units with
symmetric connections (wji = wij), in which activations are updated asynchronously; this
type of recurrent network is now called a Hopfield network. Hopfield showed that if the
weights in such a network were modified according to the Hebb Rule, then the training pat-
terns would become attractors in state space.  In other words, if the network were later pre-
sented with a corrupted version of one of the patterns, and the network’s activations were
updated in a random, asynchronous manner (using the previously trained weights), then the
network would gradually reconstruct the whole activation pattern of the closest pattern in
state space, and stabilize on that pattern.  Hopfield’s key insight was to analyze the net-
work’s dynamics in terms of a global energy function:

(35)

which necessarily decreases (or remains the same) when any unit’s activation is updated,
and which reaches a minimum value for activation patterns corresponding to the stored
memories.  This implies that the network always settles to a stable state (although it may
reach a local minimum corresponding to a spurious memory arising from interference
between the stored memories).

A Boltzmann Machine (Ackley et al 1985) is a Hopfield network with hidden units, sto-
chastic activations, and simulated annealing in its learning procedure.  Each of these fea-
tures contributes to its exceptional power. The hidden units allow a Boltzmann Machine to
find higher order correlations in the data than a Hopfield network can find, so it can learn
arbitrarily complex patterns.  The stochastic (temperature-based) activations, as shown in
Figure 3.4, allow a Boltzmann Machine to escape local minima during state evolution.  Sim-
ulated annealing (i.e., the use of steadily decreasing temperatures during training) helps the

1. The training algorithm described here is known as LVQ2, an improvement over the original LVQ training algorithm.

w16 +¡ x w1–( )=

w26 ¡ x w2–( )–=

E 1
2--- wjiyiyj

j i&
-

i
-–=



3. Review of Neural Networks40

network learn more efficiently than if it always used a low temperature, by vigorously
“shaking” the network into viable neighborhoods of weight space during early training, and
more gently jiggling the network into globally optimal positions during later training.
Training a Boltzmann Machine involves modifying the weights so as to reduce the differ-
ence between two observed probability distributions:

(36)

where T is the temperature,  is the probability (averaged over all environmental inputs
and measured at equilibrium) that the ith and jth units are both active when all of the visible
units (inputs and/or outputs) have clamped values, and  is the corresponding probability
when the system is “free running”, i.e., when nothing is clamped.  Learning tends to be
extremely slow in Boltzmann Machines, not only because it uses gradient descent, but also
because at each temperature in the annealing schedule we must wait for the network to come
to equilibrium, and then collect lots of statistics about its clamped and unclamped behavior.
Nevertheless, Boltzmann Machines are theoretically very powerful, and they have been suc-
cessfully applied to many problems.

Other types of recurrent networks have a layered structure with connections that feed back
to earlier layers.  Figure 3.9 shows two examples, known as the Jordan network (Jordan
1986) and the Elman network (Elman 1990).  These networks feature a set of context units,
whose activations are copied from either the outputs or the hidden units, respectively, and
which are then fed forward into the hidden layer, supplementing the inputs.  The context
units give the networks a kind of decaying memory, which has proven sufficient for learning
temporal structure over short distances, but not generally over long distances (Servan-
Schreiber et al 1991).  These networks can be trained with standard backpropagation, since
all of the trainable weights are feedforward weights.

3.3.2. Semi-Supervised Learning

In semi-supervised learning (also called reinforcement learning), an external teacher does
not provide explicit targets for the network’s outputs, but only evaluates the network’s
behavior as “good” or “bad”.  Different types of semi-supervised networks are distinguished

Figure 3.9: Layered recurrent networks. (a) Jordan network; (b) Elman network.

wji6
¡
T
--- pij

+ pij
-–¤ ¦

£ ¥=

pij
+

pij
-

copy

inputs
context

hidden

outputs

copy

inputs
context

hidden

outputs

(a) (b)



3.3. A Taxonomy of Neural Networks 41

not so much by their topologies (which are fairly arbitrary), but by the nature of their envi-
ronment and their learning procedures.  The environment may be either static or dynamic,
i.e., the definition of “good” behavior may be fixed or it may change over time; likewise,
evaluations may either be deterministic or probabilistic.

In the case of static environments (with either deterministic or stochastic evaluations), net-
works can be trained by the associative reward-penalty algorithm (Barto and Anandan
1985).  This algorithm assumes stochastic output units (as in Figure 3.4) which enable the
network to try out various behaviors.  The problem of semi-supervised learning is reduced
to the problem of supervised learning, by setting the training targets to be either the actual
outputs or their negations, depending on whether the network’s behavior was judged “good”
or “bad”; the network is then trained using the Delta Rule, where the targets are compared
against the network’s mean outputs, and error is backpropagated through the network if nec-
essary.

Another approach, which can be applied to either static or dynamic environments, is to
introduce an auxiliary network which tries to model the environment (Munro 1987).  This
auxiliary network maps environmental data (consisting of both the input and output of the
first network) to a reinforcement signal.  Thus, the problem of semi-supervised learning is
reduced to two stages of supervised learning with known targets — first the auxiliary net-
work is trained to properly model the environment, and then backpropagation can be applied
through both networks, so that each output of the original network has a distinct error signal
coming from the auxiliary network.

A similar approach, which applies only to dynamic environments, is to enhance the auxil-
iary network so that it becomes a critic (Sutton 1984), which maps environmental data plus
the reinforcement signal to a prediction of the future reinforcement signal.  By comparing
the expected and actual reinforcement signal, we can determine whether the original net-
work’s performance exceeds or falls short of expectation, and we can then reward or punish
it accordingly.

3.3.3. Unsupervised Learning

In unsupervised learning, there is no teacher, and a network must detect regularities in the
input data by itself.  Such self-organizing networks can be used for compressing, clustering,
quantizing, classifying, or mapping input data.

One way to perform unsupervised training is to recast it into the paradigm of supervised
training, by designating an artificial target for each input pattern, and applying backpropaga-
tion.  In particular, we can train a network to reconstruct the input patterns on the output
layer, while passing the data through a bottleneck of hidden units.  Such a network learns to
preserve as much information as possible in the hidden layer; hence the hidden layer
becomes a compressed representation of the input data. This type of network is often called
an encoder, especially when the inputs/outputs are binary vectors. We also say that this net-
work performs dimensionality reduction.

Other types of unsupervised networks (usually without hidden units) are trained with Heb-
bian learning, as in Equation (31).  Hebbian learning can be used, for example, to train a sin-



3. Review of Neural Networks42

gle linear unit to recognize the familiarity of an input pattern, or by extension to train a set of
M linear output units to project an input pattern onto the M principal components of the dis-
tribution, thus forming a compressed representation of the inputs on the output layer.  With
linear units, however, the standard Hebb Rule would cause the weights to grow without
bounds, hence this rule must be modified to prevent the weights from growing too large.
One of several viable modifications is Sanger’s Rule (Sanger 1989):

(37)

This can be viewed as a form of weight decay (Krogh and Hertz, 1992).  This rule uses non-
local information, but it has the nice property that the M weight vectors wj converge to the
first M principal component directions, in order, normalized to unit length.

Linsker (1986) showed that a modified Hebbian learning rule, when applied to a multilay-
ered network in which each layer is planar and has geometrically local connections to the
next layer (as in the human visual system), can automatically develop useful feature detec-
tors, such as center-surround cells and orientation-selective cells, very similar to those found
in the human visual system.

Still other unsupervised networks are based on competitive learning, in which one output
unit is considered the “winner”; these are known as winner-take-all networks.  The winning
unit may be found by lateral inhibitory connections on the output units (which drive down
the losing activations to zero), or simply by comparative inspection of the output activa-
tions.  Competitive learning is useful for clustering the data, in order to classify or quantize
input patterns.  Note that if the weights  to each output unit i are normalized, such that

 for all i, then maximizing the net input  is equivalent to minimizing the dif-
ference ; hence the goal of training can be seen as moving the weight vectors to the
centers of hyperspherical input clusters, so as to minimize this distance.  The standard com-
petitive learning rule is thus the one given in Equation (33); when outputs are truly winner-
take-all, this learning rule simplifies to

(38)

which is applied only to the winning output .  Unfortunately, with this learning procedure,
some units may be so far away from the inputs that they never win, and therefore never
learn.  Such dead units can be avoided by initializing the weights to match actual input sam-
ples, or else by relaxing the winner-take-all constraint so that losers learn as well as winners,
or by using any of a number of other mechanisms (Hertz, Krogh, & Palmer 1991).

Carpenter and Grossberg (1988) developed networks called ART1 and ART2 (Adaptive
Resonance Theory networks for binary and continuous inputs, respectively), which support
competitive learning in such a way that a new cluster is formed whenever an input pattern is
sufficiently different from any existing cluster, according to a vigilance parameter.  Clusters
are represented by individual output units, as usual; but in an ART network the output units
are reserved until they are needed.  Their network uses a search procedure, which can be
implemented in hardware.

wji6 ¡ yj yi ykwki
k 1=

j

-–
¤ ¦
² ´
£ ¥

u u=

wi
wi 1= wi yu

wi y–

wjvi6 ¡ yi wjvi–( )u=

jv



3.3. A Taxonomy of Neural Networks 43

Kohonen (1989) developed a competitive learning algorithm which performs feature map-
ping, i.e., mapping patterns from an input space to an output space while preserving topo-
logical relations.  The learning rule is

(39)

which augments the standard competitive learning rule by a neighborhood function
, measuring the topological proximity between unit  and the winning unit , so

that units near  are strongly affected, while distant units are less affected.  This can be
used, for example, to map two input coefficients onto a 2-dimensional set of output units, or
to map a 2-dimensional set of inputs to a different 2-dimensional representation, as occurs in
different layers of visual or somatic processing in the brain.

3.3.4. Hybrid Networks

Some networks combine supervised and unsupervised training in different layers.  Most
commonly, unsupervised training is applied at the lowest layer in order to cluster the data,
and then backpropagation is applied at the higher layer(s) to associate these clusters with the
desired output patterns.  For example, in a Radial Basis Function network (Moody and
Darken 1989), the hidden layer contains units that describe hyperspheres (trained with a
standard competitive learning algorithm), while the output layer computes normalized linear
combinations of these receptive field functions (trained with the Delta Rule).  The attraction
of such hybrid networks is that they reduce the multilayer backpropagation algorithm to the
single-layer Delta Rule, considerably reducing training time.  On the other hand, since such
networks are trained in terms of independent modules rather than as an integrated whole,
they have somewhat less accuracy than networks trained entirely with backpropagation.

3.3.5. Dynamic Networks

All of the networks discussed so far have a static architecture.  But there are also dynamic
networks, whose architecture can change over time, in order to attain optimal performance.
Changing an architecture involves either deleting or adding elements (weights and/or units)
in the network; these opposite approaches are called pruning and construction, respectively.
Of these two approaches, pruning tends to be simpler, as it involves merely ignoring
selected elements; but constructive algorithms tend to be faster, since the networks are small
for much of their lives.

Pruning of course requires a way to identify the least useful elements in the network.  One
straightforward technique is to delete the weights with the smallest magnitude; this can
improve generalization, but sometimes it also eliminates the wrong weights (Hassibi and
Stork 1993).  A more complex but more reliable approach, called Optimal Brain Damage
(Le Cun et al, 1990b), identifies the weights whose removal will cause the least increase in
the network’s output error function; this requires the calculation of second-derivative infor-
mation.

wji6 ¡ R j jv,( ) yi wji–( )u u=

R j jv,( ) j jv
jv



3. Review of Neural Networks44

Among constructive algorithms, the Cascade Correlation algorithm (Fahlman and Leb-
iere 1990) is one of the most popular and effective.  This algorithm starts with no hidden
units, but gradually adds them (in depth-first fashion) as long as they help to cut down any
remaining output error.  At each stage of training, all previously trained weights in the net-
work are frozen, and a pool of new candidate units are connected to all existing non-output
units; each candidate unit is trained to maximize the correlation between the unit’s output
and the network’s residual error, and then the most effective unit is fully integrated into the
network (while the other candidates are discarded), and its weights to the output layer are
fine-tuned.  This process is repeated until the network has acceptable performance.  The
Cascade Correlation algorithm can quickly construct compact, powerful networks that
exhibit excellent performance.

Bodenhausen (1994) has developed a constructive algorithm called Automatic Structure
Optimization, designed for spacio-temporal tasks such as speech recognition and online
handwriting recognition, especially given limited training data.  The ASO algorithm starts
with a small network, and adds more resources (including connections, time delays, hidden
units, and state units) in a class-dependent way, under the guidance of confusion matrices
obtained by cross-validation during training, in order to minimize the overall classification
error.  The ASO algorithm automatically optimized the architecture of MS-TDNNs, achiev-
ing results that were competitive with state-of-the-art systems that had been optimized by
hand.

3.4.  Backpropagation
Backpropagation, also known as Error Backpropagation or the Generalized Delta Rule, is

the most widely used supervised training algorithm for neural networks.  Because of its
importance, we will discuss it in some detail in this section. We begin with a full derivation
of the learning rule.

Figure 3.10: A feedforward neural network, highlighting the connection from unit i to unit j.

input

hidden

output

j

i

wji



3.4. Backpropagation 45

Suppose we have a multilayered feedforward network of nonlinear (typically sigmoidal)
units, as shown in Figure 3.10.  We want to find values for the weights that will enable the
network to compute a desired function from input vectors to output vectors.  Because the
units compute nonlinear functions, we cannot solve for the weights analytically; so we will
instead use a gradient descent procedure on some global error function E.

Let us define i, j, and k as arbitrary unit indices, O as the set of output units, p as training
pattern indices (where each training pattern contains an input vector and output target vec-
tor),  as the net input to unit j for pattern p,  as the output activation of unit j for pattern
p,  as the weight from unit i to unit j,  as the target activation for unit j in pattern p (for

),  as the global output error for training pattern p, and E as the global error for the
entire training set.  Assuming the most common type of network, we have

(40)

(41)

It is essential that this activation function  be differentiable, as opposed to non-
differentiable as in a simple threshold function, because we will be computing its gradient in
a moment.

The choice of error function is somewhat arbitrary1; let us assume the Sum Squared Error
function

(42)

and

(43)

We want to modify each weight  in proportion to its influence on the error E, in the
direction that will reduce E:

(44)

where  is a small constant, called the learning rate.

1. Popular choices for the global error function include Sum Squared Error: ; Cross Entropy:

; McClelland Error: ; and the Classification Figure of

Merit:  where  = the difference between the best incorrect output and the correct output, for example

.

xj
p yj

p

wji tj
p

j OD Ep

xj
p wjiyi

p

i
-=

yj
p

m xj
p

( ) 1
1 e xj

p–+
-------------------= =

yj
p m xj

p
( )=

E 1
2---= yj tj–( ) 2

j
-

E tj yjlog( ) 1 tj–( ) 1 yj–( )log+
j
-–= E 1 tj yj–( ) 2–( )log

j
-–=

E f d( )= d yc yc–=

E d 1+( ) 2=

Ep 1
2--- yj

p tj
p–( ) 2

j
-= where j OD

E Ep

p
-=

wji

6
pwji ¡

,Ep

,wji
----------u–=

¡



3. Review of Neural Networks46

By the Chain Rule, and from Equations (41) and (40), we can expand this as follows:

(45)

The first of these three terms, which introduces the shorthand definition ,
remains to be expanded. Exactly how it is expanded depends on whether j is an output unit
or not.  If j is an output unit, then from Equation (42) we have

(46)

But if j is not an output unit, then it directly affects a set of units , as illustrated in
Figure 3.11, and by the Chain Rule we obtain

(47)

The recursion in this equation, in which  refers to , says that the a’s (and hence 6w’s)
in each layer can be derived directly from the a’s in the next layer.  Thus, we can derive all
the a’s in a multilayer network by starting at the output layer (using Equation 46) and work-
ing our way backwards towards the input layer, one layer at a time (using Equation 47).
This learning procedure is called “backpropagation” because the error terms (a’s) are propa-
gated through the network in this backwards direction.

Figure 3.11: If unit j is not an output unit, then it directly affects some units k in the next layer.

,Ep

,wji
----------

,Ep

,yj
p---------

,yj
p

,xj
p--------

,xj
p

,wji

----------u u=

aj
p

mv xj
p

( ) yi
p

u u=

def.

aj
p

,Ep
,yj

p
⁄=

j O aj
p ,Ep

,yj
p---------=�D yj

p tj
p–=

k out j( )D

j O aj
p ,Ep

,yj
p---------=��

,Ep

,yk
p---------

,yk
p

,xk
p--------

,xk
p

,yj
p--------u u

k out j( )D
-=

ak
p

mv xk
p

( ) wkju u
k out j( )D
-=

aj
p

ak
p

wkj

j

k out j( )D



3.4. Backpropagation 47

To summarize the learning rule, we have

(48)

where

(49)

Or, equivalently, if we wish to define

(50)

then we have

(51)

where

(52)

Backpropagation is a much faster learning procedure than the Boltzmann Machine train-
ing algorithm, but it can still take a long time for it to converge to an optimal set of weights.
Learning may be accelerated by increasing the learning rate ¡, but only up to a certain point,
because when the learning rate becomes too large, weights become excessive, units become
saturated, and learning becomes impossible.  Thus, a number of other heuristics have been
developed to accelerate learning. These techniques are generally motivated by an intuitive
image of backpropagation as a gradient descent procedure.  That is, if we envision a hilly
landscape representing the error function E over weight space, then backpropagation tries to
find a local minimum value of E by taking incremental steps  down the current hillside,
i.e., in the direction . This image helps us see, for example, that if we take too
large of a step, we run the risk of moving so far down the current hillside that we find our-
selves shooting up some other nearby hillside, with possibly a higher error than before.

Bearing this image in mind, one common heuristic for accelerating the learning process is
known as momentum (Rumelhart et al 1986), which tends to push the weights further along
in the most recently useful direction:

6
pwji ¡ aj

p
mv xj

p
( ) yi

p
u u u–=

aj
p ,Ep

,yj
p---------

yj
p tj

p–( ) if j OD

ak
p

mv xk
p

( ) wkju u
k out j( )D
- if j O�

ª
«
©
«
¨

= =

bj
p ,Ep

,xj
p----------= aj

p
mv xj

p
( )u=

6
pwji ¡ bj

p yi
p

u u–=

bj
p ,Ep

,xj
p---------

yj
p tj

p–( ) mv xj
p

( )u if j OD

bk
p wkju( ) mv xj

p
( )u

k out j( )D
- if j O�

ª
«
©
«
¨

= =

6wji
,Ep

,wji⁄–



3. Review of Neural Networks48

(53)

where _ is the momentum constant, usually between 0.50 and 0.95. This heuristic causes the
step size to steadily increase as long as we keep moving down a long gentle valley, and also
to recover from this behavior when the error surface forces us to change direction. A more
elaborate and more powerful heuristic is to use second-derivative information to estimate
how far down the hillside to travel; this is used in techniques such as conjugate gradient
(Barnard 1992) and quickprop (Fahlman 1988).

Ordinarily the weights are updated after each training pattern (this is called online train-
ing. But sometimes it is more effective to update the weights only after accumulating the
gradients over a whole batch of training patterns (this is called batch training), because by
superimposing the error landscapes for many training patterns, we can find a direction to
move which is best for the whole group of patterns, and then confidently take a larger step in
that direction. Batch training is especially helpful when the training patterns are uncorre-
lated (for then it eliminates the waste of Brownian motion), and when used in conjunction
with aggressive heuristics like quickprop which require accurate estimates of the land-
scape’s surface.

Because backpropagation is a simple gradient descent procedure, it is unfortunately sus-
ceptible to the problem of local minima, i.e., it may converge upon a set of weights that are
locally optimal but globally suboptimal.  Experience has shown that local minima tend to
cause more problems for artificial domains (as in boolean logic) than for real domains (as in
perceptual processing), reflecting a difference in terrain in weight space.  In any case, it is
possible to deal with the problem of local minima by adding noise to the weight modifica-
tions.

3.5.  Relation to Statistics
Neural networks have a close relationship to many standard statistical techniques.  In this

section we discuss some of these commonalities.

One of the most important tasks in statistics is the classification of data.  Suppose we want
to classify an input vector x into one of two classes, c1 and c2.  Obviously our decision
should correspond to the class with the highest probability of being correct, i.e., we should
decide on class c1 if P(c1|x) > P(c2|x).  Normally these posterior probabilities are not known,
but the “inverse” information, namely the probability distributions P(x|c1) and P(x|c2), may
be known.  We can convert between posterior probabilities and distributions using Bayes
Rule:

(54)

wji t( )6 ¡
,Ep

,wji
----------u–

¤ ¦
² ´
£ ¥

_ wji t 1–( )6u
¤ ¦
² ´
£ ¥

+=

P ci x( )
P x ci( ) P ci( )u

P x( )
---------------------------------------= where P x( ) P x ci( ) P ci( )

i
-=



3.5. Relation to Statistics 49

It follows directly that we should choose class c1 if

(55)

This criterion is known as the Bayes Decision Rule.  Given perfect knowledge of the dis-
tributions P(x|ci) and priors P(ci), this decision rule is guaranteed to minimize the classifica-
tion error rate.

Typically, however, the distributions, priors, and posteriors are all unknown, and all we
have is a collection of sample data points.  In this case, we must analyze and model the data
in order to classify new data accurately.  If the existing data is labeled, then we can try to
estimate either the posterior probabilities P(c|x), or the distributions P(x|c) and priors P(c),
so that we can use Bayes Decision Rule; alternatively, we can try to find boundaries that
separate the classes, without trying to model their probabilities explicitly. If the data is unla-
beled, we can first try to cluster it, in order to identify meaningful classes.  Each of the above
tasks can be performed either by a statistical procedure or by a neural network.

For example, if we have labeled data, and we wish to perform Bayesian classification,
there are many statistical techniques available for modeling the data (Duda and Hart 1973).
These include both parametric and nonparametric approaches. In the parametric approach,
we assume that a distribution P(x|c) has a given parametric form (e.g., a gaussian density),
and then try to estimate its parameters; this is commonly done by a procedure called Maxi-
mum Likelihood estimation, which finds the parameters that maximize the likelihood of hav-
ing generated the observed data. In the non-parametric approach, we may use a volumetric
technique called Parzen windows to estimate the local density of samples at any point x; the
robustness of this technique is often improved by scaling the local volume around x so that it
always contains k samples, in a variation called k-nearest neighbor estimation.  (Meanwhile,
the priors P(c) can be estimated simply by counting.) Alternatively, the posterior probability
P(c|x) can also be estimated using nonparametric techniques, such as the k-nearest neighbor
rule, which classifies x in agreement with the majority of its k nearest neighbors.

A neural network also supports Bayesian classification by forming a model of the training
data. More specifically, when a multilayer perceptron is asymptotically trained as a 1-of-N
classifier using the mean squared error (MSE) or similar error function, its output activa-
tions learn to approximate the posterior probability P(c|x), with an accuracy that improves
with the size of the training set.  A proof of this important fact can be found in Appendix B.

Another way to use labeled training data is to find boundaries that separate the classes.  In
statistics, this can be accomplished by a general technique called discriminant analysis.  An
important instance of this is Fisher’s linear discriminant, which finds a line that gives the
best discrimination between classes when data points are projected onto this line.  This line
is equivalent to the weight vector of a single layer perceptron with a single output that has
been trained to discriminate between the classes, using the Delta Rule.  In either case, the
classes will be optimally separated by a hyperplane drawn perpendicular to the line or the
weight vector, as shown in Figure 3.5(a).

Unlabeled data can be clustered using statistical techniques — such as nearest-neighbor
clustering, minimum squared error clustering, or k-means clustering (Krishnaiah and Kanal

P x c1( ) P c1( ) P x c2( ) P c2( )>



3. Review of Neural Networks50

1982) — or alternatively by neural networks that are trained with competitive learning.  In
fact, k-means clustering is exactly equivalent to the standard competitive learning rule, as
given in Equation (38), when using batch updating (Hertz et al 1991).

When analyzing high-dimensional data, it is often desirable to reduce its dimensionality,
i.e., to project it into a lower-dimensional space while preserving as much information as
possible.  Dimensionality reduction can be performed by a statistical technique called Prin-
cipal Components Analysis (PCA), which finds a set of M orthogonal vectors that account
for the greatest variance in the data (Jolliffe 1986).  Dimensionality reduction can also be
performed by many types of neural networks.  For example, a single layer perceptron,
trained by an unsupervised competitive learning rule called Sanger’s Rule (Equation 37),
yields weights that equal the principal components of the training data, so that the network’s
outputs form a compressed representation of any input vector.  Similarly, an encoder net-
work — i.e., a multilayer perceptron trained by backpropagation to reproduce its input vec-
tors on its output layer — forms a compressed representation of the data in its hidden units.

It is sometimes claimed that neural networks are simply a new formulation of old statisti-
cal techniques.  While there is considerable overlap between these two fields, neural net-
works are attractive in their own right because they offer a general, uniform, and intuitive
framework which can be applied equally well in statistical and non-statistical contexts.



51

4.  Related Research

4.1.  Early Neural Network Approaches
Because speech recognition is basically a pattern recognition problem, and because neural

networks are good at pattern recognition, many early researchers naturally tried applying
neural networks to speech recognition.  The earliest attempts involved highly simplified
tasks, e.g., classifying speech segments as voiced/unvoiced, or nasal/fricative/plosive.  Suc-
cess in these experiments encouraged researchers to move on to phoneme classification; this
task became a proving ground for neural networks as they quickly achieved world-class
results.  The same techniques also achieved some success at the level of word recognition,
although it became clear that there were scaling problems, which will be discussed later.

There are two basic approaches to speech classification using neural networks: static and
dynamic, as illustrated in Figure 4.1.  In static classification, the neural network sees all of
the input speech at once, and makes a single decision.  By contrast, in dynamic classifica-
tion, the neural network sees only a small window of the speech, and this window slides
over the input speech while the network makes a series of local decisions, which have to be
integrated into a global decision at a later time. Static classification works well for phoneme
recognition, but it scales poorly to the level of words or sentences; dynamic classification
scales better.  Either approach may make use of recurrent connections, although recurrence
is more often found in the dynamic approach.

Figure 4.1: Static and dynamic approaches to classification.

Static classification Dynamic classification

Input speech
pattern

outputs



4. Related Research52

In the following sections we will briefly review some representative experiments in pho-
neme and word classification, using both static and dynamic approaches.

4.1.1. Phoneme Classification

Phoneme classification can be performed with high accuracy by using either static or
dynamic approaches. Here we review some typical experiments using each approach.

4.1.1.1. Static Approaches

A simple but elegant experiment was performed by Huang & Lippmann (1988), demon-
strating that neural networks can form complex decision surfaces from speech data.  They
applied a multilayer perceptron with only 2 inputs, 50 hidden units, and 10 outputs, to Peter-
son & Barney’s collection of vowels produced by men, women, & children, using the first
two formants of the vowels as the input speech representation.  After 50,000 iterations of
training, the network produced the decision regions shown in Figure 4.2. These decision
regions are nearly optimal, resembling the decision regions that would be drawn by hand,
and they yield classification accuracy comparable to that of more conventional algorithms,
such as k-nearest neighbor and Gaussian classification.

In a more complex experiment, Elman and Zipser (1987) trained a network to classify the
vowels /a,i,u/ and the consonants /b,d,g/ as they occur in the utterances ba,bi,bu; da,di,du;
and ga,gi,gu.  Their network input consisted of 16 spectral coefficients over 20 frames (cov-
ering an entire 64 msec utterance, centered by hand over the consonant’s voicing onset); this
was fed into a hidden layer with between 2 and 6 units, leading to 3 outputs for either vowel
or consonant classification.  This network achieved error rates of roughly 0.5% for vowels
and 5.0% for consonants.  An analysis of the hidden units showed that they tend to be fea-

Figure 4.2: Decision regions formed by a 2-layer perceptron using backpropagation training and vowel
formant data. (From Huang & Lippmann, 1988.)



4.1. Early Neural Network Approaches 53

ture detectors, discriminating between important classes of sounds, such as consonants ver-
sus vowels.

Among the most difficult of classification tasks is the so-called E-set, i.e., discriminating
between the rhyming English letters “B, C, D, E, G, P, T, V, Z”.  Burr (1988) applied a static
network to this task, with very good results.  His network used an input window of 20 spec-
tral frames, automatically extracted from the whole utterance using energy information.
These inputs led directly to 9 outputs representing the E-set letters.  The network was
trained and tested using 180 tokens from a single speaker.  When the early portion of the
utterance was oversampled, effectively highlighting the disambiguating features, recogni-
tion accuracy was nearly perfect.

4.1.1.2. Dynamic Approaches

In a seminal paper, Waibel et al (1987=1989) demonstrated excellent results for phoneme
classification using a Time Delay Neural Network (TDNN), shown in Figure 4.3.  This
architecture has only 3 and 5 delays in the input and hidden layer, respectively, and the final
output is computed by integrating over 9 frames of phoneme activations in the second hid-
den layer.  The TDNN’s design is attractive for several reasons: its compact structure econo-
mizes on weights and forces the network to develop general feature detectors; its hierarchy
of delays optimizes these feature detectors by increasing their scope at each layer; and its
temporal integration at the output layer makes the network shift invariant (i.e., insensitive to
the exact positioning of the speech). The TDNN was trained and tested on 2000 samples of /
b,d,g/ phonemes manually excised from a database of 5260 Japanese words.  The TDNN
achieved an error rate of 1.5%, compared to 6.5% achieved by a simple HMM-based recog-
nizer.

Figure 4.3: Time Delay Neural Network.

Integration

Speech
input

Phoneme
output

B
D
G

B
D
G



4. Related Research54

In later work (Waibel 1989a), the TDNN was scaled up to recognize all 18 Japanese con-
sonants, using a modular approach which significantly reduced training time while giving
slightly better results than a simple TDNN with 18 outputs.  The modular approach con-
sisted of training separate TDNNs on small subsets of the phonemes, and then combining
these networks into a larger network, supplemented by some “glue” connections which
received a little extra training while the primary modules remained fixed.  The integrated
network achieved an error rate of 4.1% on the 18 phonemes, compared to 7.3% achieved by
a relatively advanced HMM-based recognizer.

McDermott & Katagiri (1989) performed an interesting comparison between Waibel’s
TDNN and Kohonen’s LVQ2 algorithm, using the same /b,d,g/ database and similar condi-
tions.  The LVQ2 system was trained to quantize a 7-frame window of 16 spectral coeffi-
cients into a codebook of 150 entries, and during testing the distance between each input
window and the nearest codebook vector was integrated over 9 frames, as in the TDNN, to
produce a shift-invariant phoneme hypothesis.  The LVQ2 system achieved virtually the
same error rate as the TDNN (1.7% vs. 1.5%), but LVQ2 was much faster during training,
slower during testing, and more memory-intensive than the TDNN.

In contrast to the feedforward networks described above, recurrent networks are generally
trickier to work with and slower to train; but they are also theoretically more powerful, hav-
ing the ability to represent temporal sequences of unbounded depth, without the need for
artificial time delays.  Because speech is a temporal phenomenon, many researchers con-
sider recurrent networks to be more appropriate than feedforward networks, and some
researchers have actually begun applying recurrent networks to speech.

Prager, Harrison, & Fallside (1986) made an early attempt to apply Boltzmann machines
to an 11-vowel recognition task.  In a typical experiment, they represented spectral inputs
with 2048 binary inputs, and vowel classes with 8 binary outputs; their network also had 40
hidden units, and 7320 weights.  After applying simulated annealing for many hours in
order to train on 264 tokens from 6 speakers, the Boltzmann machine attained a multi-
speaker error rate of 15%.  This and later experiments suggested that while Boltzmann
machines can give good accuracy, they are impractically slow to train.

Watrous (1988) applied recurrent networks to a set of basic discrimination tasks.  In his
system, framewise decisions were temporally integrated via recurrent connections on the
output units, rather than by explicit time delays as in a TDNN; and his training targets were
Gaussian-shaped pulses, rather than constant values, to match the ramping behavior of his
recurrent outputs.  Watrous obtained good results on a variety of discrimination tasks, after
optimizing the non-output delays and sizes of his networks separately for each task.  For
example, the classification error rate was 0.8% for the consonants /b,d,g/, 0.0% for the vow-
els /a,i,u/, and 0.8% for the word pair “rapid/rabid”.

Robinson and Fallside (1988) applied another kind of recurrent network, first proposed by
Jordan (1986), to phoneme classification.  In this network, output activations are copied to a
“context” layer, which is then fed back like additional inputs to the hidden layer (as shown
in Figure 3.9).  The network was trained using “back propagation through time”, an algo-
rithm first suggested by Rumelhart et al (1986), which unfolds or replicates the network at
each moment of time.  Their recurrent network outperformed a feedforward network with



4.1. Early Neural Network Approaches 55

comparable delays, achieving 22.7% versus 26.0% error for speaker-dependent recognition,
and 30.8% versus 40.8% error for multi-speaker recognition.  Training time was reduced to
a reasonable level by using a 64-processor array of transputers.

4.1.2. Word Classification

Word classification can also be performed with either static or dynamic approaches,
although dynamic approaches are better able to deal with temporal variability over the dura-
tion of a word. In this section we review some experiments with each approach.

4.1.2.1. Static Approaches

Peeling and Moore (1987) applied MLPs to digit recognition with excellent results.  They
used a static input buffer of 60 frames (1.2 seconds) of spectral coefficients, long enough for
the longest spoken word; briefer words were padded with zeros and positioned randomly in
the 60-frame buffer.  Evaluating a variety of MLP topologies, they obtained the best per-
formance with  a single hidden layer with 50 units.  This network achieved accuracy near
that of an advanced HMM system: error rates were 0.25% versus 0.2% in speaker-depend-
ent experiments, or 1.9% versus 0.6% for multi-speaker experiments, using a 40-speaker
database of digits from RSRE.  In addition, the MLP was typically five times faster than the
HMM system.

Kammerer and Kupper (1988) applied a variety of networks to the TI 20-word database,
finding that a single-layer perceptron outperformed both multi-layer perceptrons and a DTW
template-based recognizer in many cases.  They used a static input buffer of 16 frames, into
which each word was linearly normalized, with 16 2-bit coefficients per frame; performance
improved slightly when the training data was augmented by temporally distorted tokens.
Error rates for the SLP versus DTW were 0.4% versus 0.7% in speaker-dependent experi-
ments, or 2.7% versus 2.5% for speaker-independent experiments.

Lippmann (1989) points out that while the above results seem impressive, they are miti-
gated by evidence that these small-vocabulary tasks are not really very difficult.  Burton et
al (1985) demonstrated that a simple recognizer based on whole-word vector quantization,
without time alignment, can achieve speaker-dependent error rates as low as 0.8% for the TI
20-word database, or 0.3 for digits.  Thus it is not surprising that simple networks can
achieve good results on these tasks, in which temporal information is not very important.

Burr (1988) applied MLPs to the more difficult task of alphabet recognition.  He used a
static input buffer of 20 frames, into which each spoken letter was linearly normalized, with
8 spectral coefficients per frame.  Training on three sets of the 26 spoken letters and testing
on a fourth set, an MLP achieved an error rate of 15% in speaker-dependent experiments,
matching the accuracy of a DTW template-based approach.

4.1.2.2. Dynamic Approaches

Lang et al (1990) applied TDNNs to word recognition, with good results.  Their vocabu-
lary consisting of the highly confusable spoken letters “B, D, E, V”.  In early experiments,



4. Related Research56

training and testing were simplified by representing each word by a 144 msec segment cen-
tered on its vowel segment, where the words differed the most from each other.  Using such
pre-segmented data, the TDNN achieved a multispeaker error rate of 8.5%.  In later experi-
ments, the need for pre-segmentation was avoided by classifying a word according to the
output that received the highest activation at any position of the input window relative to the
whole utterance; and training used 216 msec segments roughly centered on vowel onsets
according to an automatic energy-based segmentation technique.  In this mode, the TDNN
achieved an error rate of 9.5%.  The error rate fell to 7.8% when the network received addi-
tional negative training on counter examples randomly selected from the background “E”
sounds.  This system compared favorably to an HMM which achieved about 11% error on
the same task (Bahl et al 1988).

Tank & Hopfield (1987) proposed a “Time Concentration” network, which represents
words by a weighted sum of evidence that is delayed, with proportional dispersion, until the
end of the word, so that activation is concentrated in the correct word’s output at the end of
the utterance.  This system was inspired by research on the auditory processing of bats, and
a working prototype was actually implemented in parallel analog hardware.  Unnikrishnan
et al (1988) reported good results for this network on simple digit strings, although Gold
(1988) obtained results no better than a standard HMM when he applied a hierarchical ver-
sion of the network to a large speech database.

Among the early studies using recurrent networks, Prager, Harrison, & Fallside (1986)
configured a Boltzmann machine to copy the output units into “state” units which were fed
back into the hidden layer, as in a so-called Jordan network, thereby representing a kind of
first-order Markov model.  After several days of training, the network was able to correctly
identify each of the words in its two training sentences.  Other researchers have likewise
obtained good results with Boltzmann machines, but only after an exorbitant amount of
training.

Franzini, Witbrock, & Lee (1989) compared the performance of a recurrent network and a
feedforward network on a digit recognition task.  The feedforward network was an MLP
with a 500 msec input window, while the recurrent network had a shorter 70 msec input
window but a 500 msec state buffer.  They found no significant difference in the recognition
accuracy of these systems, suggesting that it’s important only that a network have some
form of memory, regardless of whether it’s represented as a feedforward input buffer or a
recurrent state layer.

4.2.  The Problem of Temporal Structure
We have seen that phoneme recognition can easily be performed using either static or

dynamic approaches.  We have also seen that word recognition can likewise be performed
with either approach, although dynamic approaches now become preferable because the
wider temporal variability in a word implies that invariances are localized, and that local
features should be temporally integrated. Temporal integration itself can easily be per-
formed by a network (e.g., in the output layer of a TDNN), as long as the operation can be



4.3. NN-HMM Hybrids 57

described statically (to match the network’s fixed resources); but as we consider larger
chunks of speech, with greater temporal variability, it becomes harder to map that variability
into a static framework.  As we continue scaling up the task from word recognition to sen-
tence recognition, temporal variability not only becomes more severe, but it also acquires a
whole new dimension — that of compositional structure, as governed by a grammar.

The ability to compose structures from simpler elements — implying the usage of some
sort of variables, binding, modularity, and rules — is clearly required in any system that
claims to support natural language processing (Pinker and Prince 1988), not to mention gen-
eral cognition (Fodor and Pylyshyn 1988).  Unfortunately, it has proven very difficult to
model compositionality within the pure connectionist framework, although a number of
researchers have achieved some early, limited success along these lines. Touretzky and Hin-
ton (1988) designed a distributed connectionist production system, which dynamically
retrieves elements from working memory and uses their components to contruct new states.
Smolensky (1990) proposed a mechanism for performing variable binding, based on tensor
products. Servan-Schreiber, Cleeremans, and McClelland (1991) found that an Elman net-
work was capable of learning some aspects of grammatical structure.  And Jain (1992)
designed a modular, highly structured connectionist natural language parser that compared
favorably to a standard LR parser.

But each of these systems is exploratory in nature, and their techniques are not yet gener-
ally applicable. It is clear that connectionist research in temporal and compositional model-
ing is still in its infancy, and it is premature to rely on neural networks for temporal
modeling in a speech recognition system.

4.3.  NN-HMM Hybrids
We have seen that neural networks are excellent at acoustic modeling and parallel imple-

mentations, but weak at temporal and compositional modeling.  We have also seen that Hid-
den Markov Models are good models overall, but they have some weaknesses too.  In this
section we will review ways in which researchers have tried to combine these two
approaches into various hybrid systems, capitalizing on the strengths of each approach.
Much of the research in this section was conducted at the same time that this thesis was
being written.

4.3.1. NN Implementations of HMMs

Perhaps the simplest way to integrate neural networks and Hidden Markov Models is to
simply implement various pieces of HMM systems using neural networks. Although this
does not improve the accuracy of an HMM, it does permit it to be parallelized in a natural
way, and incidentally showcases the flexibility of neural networks.

Lippmann and Gold (1987) introduced the Viterbi Net, illustrated in Figure 4.4, which is a
neural network that implements the Viterbi algorithm.  The input is a temporal sequence of
speech frames, presented one at a time, and the final output (after T time frames) is the



4. Related Research58

cumulative score along the Viterbi alignment path, permitting isolated word recognition via
subsequent comparison of the outputs of several Viterbi Nets running in parallel.  (The
Viterbi Net cannot be used for continuous speech recognition, however, because it yields no
backtrace information from which the alignment path could be recovered.)  The weights in
the lower part of the Viterbi Net are preassigned in such a way that each node si computes
the local score for state i in the current time frame, implementing a Gaussian classifier.  The
knotlike upper networks compute the maximum of their two inputs.  The triangular nodes
are threshold logic units that simply sum their two inputs (or output zero if the sum is nega-
tive), and delay the output by one time frame, for synchronization purposes.  Thus, the
whole network implements a left-to-right HMM with self-transitions, and the final output
yF(T) represents the cumulative score in state F at time T along the optimal alignment path.
It was tested on 4000 word tokens from the 9-speaker 35-word Lincoln Stress-Style speech
database, and obtained results essentially identical with a standard HMM (0.56% error).

In a similar spirit, Bridle (1990) introduced the AlphaNet, which is a neural network that
computes _j(t), i.e., the forward probability of an HMM producing the partial sequence
and ending up in state j, so that isolated words can be recognized by comparing their final
scores _F(T). Figure 4.5 motivates the construction of an AlphaNet. The first panel illus-
trates the basic recurrence, . The second panel shows how this
recurrence may be implemented using a recurrent network. The third panel shows how the
additional term bj(yt) can be factored into the equation, using sigma-pi units, so that the
AlphaNet properly computes .

4.3.2. Frame Level Training

Rather than simply reimplementing an HMM using neural networks, most researchers
have been exploring ways to enhance  HMMs by designing hybrid systems that capitalize
on the respective strengths of each technology: temporal modeling in the HMM and acous-

Figure 4.4: Viterbi Net: a neural network that implements the Viterbi algorithm.

s1(t) s2(t)s0(t)

x0(t) xN(t)

y1(t) y2(t)y0(t)
OUTPUT

INPUTS

y1
t

_j t( ) _i t 1–( ) aiji-=

_j t( ) _i t 1–( ) aijbj yt( )
i
-=



4.3. NN-HMM Hybrids 59

tic modeling in neural networks.  In particular, neural networks are often trained to compute
emission probabilities for HMMs.  Neural networks are well suited to this mapping task,
and they also have a theoretical advantage over HMMs, because unlike discrete density
HMMs, they can accept continuous-valued inputs and hence don’t suffer from quantization
errors; and unlike continuous density HMMs, they don’t make any dubious assumptions
about the parametric shape of the density function.  There are many ways to design and train
a neural network for this purpose.  The simplest is to map frame inputs directly to emission
symbol outputs, and to train such a network on a frame-by-frame basis.  This approach is
called Frame Level Training.

Frame level training has been extensively studied by researchers at Philips, ICSI, and SRI.
Initial work by Bourlard and Wellekens (1988=1990) focused on the theoretical links
between Hidden Markov Models and neural networks, establishing that neural networks
estimate posterior probabilities which should be divided by priors in order to yield likeli-
hoods for use in an HMM.  Subsequent work at ICSI and SRI (Morgan & Bourlard 1990,
Renals et al 1992, Bourlard & Morgan 1994) confirmed this insight in a series of experi-
ments leading to excellent results on the Resource Management database.  The simple
MLPs in these experiments typically used an input window of 9 speech frames, 69 phoneme
output units, and hundreds or even thousands of hidden units (taking advantage of the fact
that more hidden units always gave better results); a parallel computer was used to train mil-
lions of weights in a reasonable amount of time.  Good results depended on careful use of
the neural networks, with techniques that included online training, random sampling of the
training data, cross-validation, step size adaptation, heuristic bias initialization, and division
by priors during recognition.  A baseline system achieved 12.8% word error on the RM
database using speaker-independent phoneme models; this improved to 8.3% by adding
multiple pronunciations and cross-word modeling, and further improved to 7.9% by interpo-
lating the likelihoods obtained from the MLP with those from SRI’s DECIPHER system
(which obtained 14.0% by itself under similar conditions).  Finally, it was demonstrated that
when using the same number of parameters, an MLP can outperform an HMM (e.g., achiev-
ing 8.3% vs 11.0% word error with 150,000 parameters), because an MLP makes fewer
questionable assumptions about the parameter space.

Figure 4.5: Construction of an AlphaNet (final panel).

_j

_i

aij

ajj

t-1 t

j

i

j

i

aij

t

ajj
_j

_i

aij

ajj
Y

Y

Y W

W

W

bj(yt)

bi(yt)

t

_F

_j(t-1)

_i(t-1)

_j(t)

bF(yt)



4. Related Research60

Franzini, Lee, & Waibel (1990) have also studied frame level training.  They started with
an HMM, whose emission probabilities were represented by a histogram over a VQ code-
book, and replaced this mechanism by a neural network that served the same purpose; the
targets for this network were continuous probabilities, rather than binary classes as used by
Bourlard and his colleagues. The network’s input was a window containing seven frames of
speech (70 msec), and there was an output unit for each probability distribution to be mod-
eled1. Their network also had two hidden layers, the first of which was recurrent, via a
buffer of the past 10 copies of the hidden layer which was fed back into that same hidden
layer, in a variation of the Elman Network architecture.  (This buffer actually represented
500 msec of history, because the input window was advanced 5 frames, or 50 msec, at a
time.)  The system was evaluated on the TI/NBS Speaker-Independent Continuous Digits
Database, and achieved 98.5% word recognition accuracy, close to the best known result of
99.5%.

4.3.3. Segment Level Training

An alternative to frame-level training is segment-level training, in which a neural network
receives input from an entire segment of speech (e.g., the whole duration of a phoneme),
rather than from a single frame or a fixed window of frames.  This allows the network to
take better advantage of the correlation that exists among all the frames of the segment, and
also makes it easier to incorporate segmental information, such as duration.  The drawback
of this approach is that the speech must first be segmented before the neural network can
evaluate the segments.

The TDNN (Waibel et al 1989) represented an early attempt at segment-level training, as
its output units were designed to integrate partial evidence from the whole duration of a
phoneme, so that the network was purportedly trained at the phoneme level rather than at the
frame level.  However, the TDNN’s input window assumed a constant width of 15 frames
for all phonemes, so it did not truly operate at the segment level; and this architecture was
only applied to phoneme recognition, not word recognition.

Austin et al (1992) at BBN explored true segment-level training for large vocabulary con-
tinuous speech recognition.  A Segmental Neural Network (SNN) was trained to classify
phonemes from variable-duration segments of speech; the variable-duration segments were
linearly downsampled to a uniform width of five frames for the SNN.  All phonemic seg-
mentations were provided by a state-of-the-art HMM system.  During training, the SNN was
taught to correctly classify each segment of each utterance.   During testing, the SNN was
given the segmentations of the N-best sentence hypotheses from the HMM; the SNN pro-
duced a composite score for each sentence (the product of the scores and the duration prob-
abilities2 of all segments), and these SNN scores and HMM scores were combined to
identify the single best sentence.  This system achieved 11.6% word error on the RM data-
base.  Later, performance improved to 9.0% error when the SNN was also trained negatively

1. In this HMM, output symbols were emitted during transitions rather than in states, so there was actually one output unit per
transition rather than per state.
2. Duration probabilities were provided by a smoothed histogram over all durations obtained from the training data.



4.3. NN-HMM Hybrids 61

on incorrect segments from N-best sentence hypotheses, thus preparing the system for the
kinds of confusions that it was likely to encounter in N-best lists during testing.

4.3.4. Word Level Training

A natural extension to segment-level training is word-level training, in which a neural net-
work receives input from an entire word, and is directly trained to optimize word classifica-
tion accuracy.  Word level training is appealing because it brings the training criterion still
closer to the ultimate testing criterion of sentence recognition accuracy.  Unfortunately the
extension is nontrivial, because in contrast to a simple phoneme, a word cannot be ade-
quately modeled by a single state, but requires a sequence of states; and the activations of
these states cannot be simply summed over time as in a TDNN, but must first be segmented
by a dynamic time warping procedure (DTW), identifying which states apply to which
frames.  Thus, word-level training requires that DTW be embedded into a neural network.

This was first achieved by Sakoe et al (1989), in an architecture called the Dynamic pro-
gramming Neural Network (DNN).  The DNN is a network in which the hidden units repre-
sent states, and the output units represent words.  For each word unit, an alignment path
between its states and the inputs is established by DTW, and the output unit integrates the
activations of the hidden units (states) along the alignment path.  The network is trained to
output 1 for the correct word unit, and 0 for all incorrect word units.  The DTW alignment
path may be static (established before training begins) or dynamic (reestablished during
each iteration of training); static alignment is obviously more efficient, but dynamic align-
ment was shown to give better results.  The DNN was applied to a Japanese database of iso-
lated digits, and achieved 99.3% word accuracy, outperforming pure DTW (98.9%).

Haffner (1991) similarly incorporated DTW into the high-performance TDNN architec-
ture, yielding the Multi-State Time Delay Neural Network (MS-TDNN), as illustrated in
Figure 4.6.  In contrast to Sakoe’s system, the MS-TDNN has an extra hidden layer and a
hierarchy of time delays, so that it may form more powerful feature detectors; and its DTW
path accumulates one score per frame rather than one score per state, so it is more easily
extended to continuous speech recognition (Ney 1984).  The MS-TDNN was applied to a
database of spoken letters, and achieved an average of 93.6% word accuracy, compared to
90.0% for Sphinx1. The MS-TDNN benefitted from some novel techniques, including “tran-
sition states” between adjacent phonemic states (e.g., B-IY between the B and IY states, set
to a linear combination of the activations of B and IY), and specially trained “boundary
detection units” (BDU), which allowed word transitions only when the BDU activation
exceeded a threshold value.

Hild and Waibel (1993) improved on Haffner’s MS-TDNN, achieving 94.8% word accu-
racy on the same database of spoken letters, or 92.0% on the Resource Management spell
mode database.  Their improvements included (a) free alignment across word boundaries,
i.e., using DTW on a segment of speech wider than the word to identify the word’s bounda-
ries dynamically during training; (b) word duration modeling, i.e., penalizing words by add-

1. In this comparison, Sphinx also had the advantage of using context-dependent phoneme models, while the MS-TDNN used
context-independent models.



4. Related Research62

ing the logarithm of their duration probabilities, derived from a histogram and scaled by a
factor that balances insertions and deletions; and (c) sentence level training, i.e., training
positively on the correct alignment path and training negatively on incorrect parts of an
alignment path that is obtained by testing.

Tebelskis (1993) applied the MS-TDNN to large vocabulary continuous speech recogni-
tion.  This work is detailed later in this thesis.

4.3.5. Global Optimization

The trend in NN-HMM hybrids has been towards global optimization of system parame-
ters, i.e., relaxing the rigidities in a system so its performance is less handicapped by false
assumptions.  Segment-level training and word-level training are two important steps
towards global optimization, as they bypass the rigid assumption that frame accuracy is cor-
related with word accuracy, making the training criterion more consistent with the testing
criterion.

Another step towards global optimization, pursued by Bengio et al (1992), is the joint
optimization of the input representation with the rest of the system.  Bengio proposed a NN-
HMM hybrid in which the speech frames are produced by a combination of signal analysis

Figure 4.6: MS-TDNN recognizing the word “B”. Only the activations for the words “SIL”, “A”, “B”,
and “C” are shown. (From Hild & Waibel, 1993).

(mstdnn-hild .ps)



4.3. NN-HMM Hybrids 63

and neural networks; the speech frames then serve as inputs for an ordinary HMM.  The
neural networks are trained to produce increasingly useful speech frames, by backpropagat-
ing an error gradient that derives from the HMM’s own optimization criterion, so that the
neural networks and the HMM are optimized simultaneously.  This technique was evaluated
on the task of speaker independent plosive recognition, i.e., distinguishing between the pho-
nemes /b,d,g,p,t,k,dx,other/.  When the HMM was trained separately from the neural net-
works, recognition accuracy was only 75%; but when it was trained with global
optimization, recognition accuracy jumped to 86%.

4.3.6. Context Dependence

It is well known that the accuracy of an HMM improves with the context sensitivity of its
acoustic models.  In particular, context dependent models (such as triphones) perform better
than context independent models (such as phonemes).  This has led researchers to try to
improve the accuracy of hybrid NN-HMM systems by likewise making them more context
sensitive.   Four ways to achieve this are illustrated in Figure 4.7.

Figure 4.7: Four approaches to context dependent modeling.

speech

hidden

classes classes classes

classes

hidden

speech

classes

hidden

speech

context

(a) window of input frames (b) context dependent outputs

(c) context as input

classes

speech classes

contextx

hiddenhidden

(d) factorization



4. Related Research64

The first technique is simply to provide a window of speech frames, rather than a single
frame, as input to the network.  The arbitrary width of the input window is constrained only
by computational requirements and the diminishing relevance of distant frames.  This tech-
nique is so trivial and useful for a neural network that it is used in virtually all NN-HMM
hybrids; it can also be used in combination with the remaining techniques in this section.
By contrast, in a standard HMM, the Independence Assumption prevents the system from
taking advantage of neighboring frames directly. The only way an HMM can exploit the
correlation between neighboring frames is by artificially absorbing them into the current
frame (e.g., by defining multiple simultaneous streams of data to impart the frames and/or
their deltas, or by using LDA to transform these streams into a single stream).

A window of input frames provides context sensitivity, but not context dependence.  Con-
text dependence implies that there is a separate model for each context, e.g., a model for /A/
when embedded in the context “kab”, a separate model for /A/ when embedded in the con-
text “tap”, etc.  The following techniques support true context dependent modeling in NN-
HMM hybrids.

In technique (b), the most naive approach, there is a separate output unit for each context-
dependent model. For example, if there are 50 phonemes, then it will require 50x50 = 2500
outputs in order to model diphones (phonemes in the context of their immediate neighbor),
or 50x50x50 = 125000 outputs to model triphones (phonemes in the context of both their
left and right neighbor). An obvious problem with this approach, shared by analogous
HMMs, is that there is unlikely to be enough training data to adequately train all of the
parameters of the system. Consequently, this approach has rarely been used in practice.

A more economical approach (c) is to use a single network that accepts a description of
the context as part of its input, as suggested by Petek et al (1991).  Left-phoneme context
dependence, for example, could be implemented by a boolean localist representation of the
left phoneme; or, more compactly, by a binary encoding of its linguistic features, or by its
principal components discovered automatically by an encoder network.  Note that in order
to model triphones instead of diphones, we only need to double the number of context units,
rather than using 50 times as many models.  Training is efficient because the full context is
available in the training sentences; however, testing may require many forward passes with
different contextual inputs, because the context is not always known.  Petek showed that

Figure 4.8: Contextual inputs. Left: standard implementation. Right: efficient implementation.

outputs

hidden

speech context

outputs

speech context

hid1 hid2



4.3. NN-HMM Hybrids 65

these forward passes can be made more efficient by heuristically splitting the hidden layer as
shown in Figure 4.8, such that the speech and the context feed into independent parts, and
each context effectively contributes a different bias to the output units; after training is com-
plete, these contextual output biases can be precomputed, reducing the family of forward
passes to a family of output sigmoid computations.  Contextual inputs helped to increase the
absolute word accuracy of Petek’s system from 60% to 72%.

Bourlard et al (1992) proposed a fourth approach to context dependence, based on factori-
zation (d).  When a neural network is trained as a phoneme classifier, it estimates P(q|x),
where q is the phoneme class and x is the speech input.  To introduce context dependence,
we would like to estimate P(q,c|x), where c is the phonetic context.  This can be decom-
posed as follows:

(56)

This says that the context dependent probability is equal to the product of two terms:
P(q|x) which is the output activation of a standard network, and P(c|q,x) which is the output
activation of an auxiliary network whose inputs are speech as well as the current phoneme
class, and whose outputs range over the contextual phoneme classes, as illustrated in Figure
4.7(d).  The resulting context dependent posterior can then be converted to a likelihood by
Bayes Rule:

(57)

where P(x) can be ignored during recognition because it’s a constant in each frame, and the
prior P(q,c) can be evaluated directly from the training set.

This factorization approach can easily be extended to triphone modeling.  For triphones,
we want to estimate P(q,cl,cr|x), where cl is the left phonetic context and cr is right phonetic
context.  This can be decomposed as follows:

(58)

Similarly,

(59)

These six terms can be estimated by neural networks whose inputs and outputs correspond
to each i and o in P(o|i); in fact some of the terms in Equation (59) are so simple that they
can be evaluated directly from the training data.  The posterior in Equation (58) can be con-
verted to a likelihood by Bayes Rule:

(60)

P q c x,( ) P q x( ) P c q x,( )u=

P x q c,( )
P q c x,( ) P x( )u

P q c,( )
------------------------------------------=

P q cl cr, , x( ) P q x( ) P cl q x,( ) P cr cl q x,,( )u u=

P q cl cr,,( ) P q( ) P cl q( ) P cr cl q,( )u u=

P x q cl cr,,( )
P q cl cr,, x( ) P x( )u

P q cl cr,,( )
---------------------------------------------------=



4. Related Research66

(61)

where P(x) can again be ignored during recognition, and the other six terms can be taken
from the outputs of the six neural networks.  This likelihood can be used for Viterbi align-
ment.

As in approach (c), a family of forward passes during recognition can be reduced to a fam-
ily of output sigmoid computations, by splitting the hidden layer and caching the effective
output biases from the contextual inputs.  Preliminary experiments showed that splitting the
hidden layer in this way did not degrade the accuracy of a network, and triphone models
were rendered only 2-3 times slower than monophone models.

4.3.7. Speaker Independence

Experience with HMMs has shown that speaker independent systems typically make 2-3
times as many errors as speaker dependent systems (Lee 1988), simply because there is
greater variability between speakers than within a single speaker.  HMMs typically deal
with this problem by merely increasing the number of context-dependent models, in the
hope of better covering the variabilities between speakers.

NN-HMM hybrids suffer from a similar gap in performance between speaker dependence
and speaker independence.  For example, Schmidbauer and Tebelskis (1992), using an
LVQ-based hybrid, obtained an average of 14% error on speaker-dependent data, versus
32% error when the same network was applied to speaker-independent data.  Several tech-
niques aimed at closing this gap have been developed for NN-HMM hybrids.  Figure 4.9
illustrates the baseline approach of training a standard network on the data from all speakers
(panel a), followed by three improvements upon this (b,c,d).

The first improvement, shown as technique (b), is a mixture of speaker-dependent mod-
els, resembling the Mixture of Experts paradigm promoted by Jacobs et al (1991). In this
approach, several networks are trained independently on data from different speakers, while
a “speaker ID” network is trained to identify the corresponding speaker; during recognition,
speech is presented to all networks in parallel, and the outputs of the speaker ID network
specify a linear combination of the speaker-dependent networks, to yield an overall result.
This approach makes it easier to classify phones correctly, because it separates and hence
reduces the overlap of distributions that come from different speakers.  It also yields multi-
speaker accuracy1 close to speaker-dependent accuracy, the only source of degradation
being imperfect speaker identification.  Among the researchers who have studied this
approach:

• Hampshire and Waibel (1990) first used this approach in their Meta-Pi network,
which consisted of six speaker-dependent TDNNs plus a speaker ID network con-
taining one unit per TDNN, all trained by backpropagation.  This network obtained
98.4% phoneme accuracy in multi-speaker mode, significantly outperforming a

1. “Multi-speaker” evaluation means testing on speakers who were in the training set.

P q x( ) P cl q x,( ) P cr cl q x,,( )u u

P q( ) P cl q( ) P cr cl q,( )u u
------------------------------------------------------------------------------------ P x( )u=



4.3. NN-HMM Hybrids 67

baseline TDNN which obtained only 95.9% accuracy.   Remarkably, one of the
speakers (MHT) obtained 99.8% phoneme accuracy, even though the speaker ID
network failed to recognize him and thus ignored the outputs of MHT’s own
TDNN network, because the system had formed a robust linear combination of
other speakers whom he resembled.

• Kubala and Schwartz (1991) adapted this approach to a standard HMM system,
mixing their speaker-dependent HMMs with fixed weights instead of a speaker ID
network.  They found that only 12 speaker-dependent HMMs were needed in order
to attain the same word recognition accuracy as a baseline system trained on 109
speakers (using a comparable amount of total data in each case).  Because of this,
and because it’s cheaper to collect a large amount of data from a few speakers than

Figure 4.9: Four approaches to speaker independent modeling.

speech

hiddenhidden hidden

classes classes classes

classes

hidden

speech

classes

hidden

speech

cluster

(a) baseline: (b) mixture of speaker-dependent models

(c) biased by speaker cluster

speech’

speech

hidden

(d) speaker normalization

speaker ID

classes
multiplicative weights

one simple
network,
trained on
all speakers

speaker-
dependent
speech
recognizer



4. Related Research68

to collect a small amount of data from many speakers, Kubala and Schwartz con-
cluded that this technique is also valuable for reducing the cost of data collection.

• Schmidbauer and Tebelskis (1992) incorporated this approach into an LVQ-HMM
hybrid for continuous speech recognition.  Four speaker-biased phoneme models
(for pooled males, pooled females, and two individuals) were mixed using a corre-
spondingly generalized speaker ID network, whose activations for the 40 separate
phonemes were established using five “rapid adaptation” sentences.  The rapid
adaptation bought only a small improvement over speaker-independent results
(59% vs. 55% word accuracy), perhaps because there were so few speaker-biased
models in the system.  Long-term adaptation, in which all system parameters
received additional training on correctly recognized test sentences, resulted in a
greater improvement (to 73%), although still falling short of speaker-dependent
accuracy (82%).

• Hild and Waibel (1993) performed a battery of experiments with MS-TDNNs on
spelled letter recognition, to determine the best level of speaker and parameter
specificity for their networks, as well as the best way to mix the networks together.
They found that segregating the speakers is always better than pooling everyone
together, although some degree of parameter sharing between the segregated net-
works is often helpful (given limited training data).  In particular, it was often best
to mix only their lower layers, and to use shared structure at higher layers.  They
also found that mixing the networks according to the results of a brief adaptation
phase (as in Schmidbauer and Tebelskis) is generally more effective than using an
instantaneous speaker ID network, although the latter technique gives comparable
results in multi-speaker testing.  Applying their best techniques to the speaker-
independent Resource Management spell mode database, they obtained 92.0%
word accuracy, outperforming Sphinx (90.4%).

Another way to improve speaker-independent accuracy is to bias the network using extra
inputs that characterize the speaker, as shown in Figure 4.9(c).  The extra inputs are deter-
mined automatically from the input speech, hence they represent some sort of cluster to
which the speaker belongs.  Like the Mixture of Experts approach, this technique improves
phoneme classification accuracy by separating the distributions of different speakers, reduc-
ing their overlap and hence their confusability.  It has the additional advantage of adapting
very quickly to a new speaker’s voice, typically requiring only a few words rather than sev-
eral whole sentences.  Among the researchers who have studied this approach:

• Witbrock and Haffner (1992) developed the Speaker Voice Code network (SVC-
net), a system that learns to quickly identify where a speaker’s voice lies in a space
of possible voices.  An SVC is a 2 unit code, derived as the bottleneck of an
encoder network that is trained to reproduce a speaker’s complete set of phoneme
pronunciation codes (PPCs), each of which is a 3-unit code that was likewise
derived as the bottleneck of an encoder network that was trained to reproduce the
acoustic patterns associated with that particular phoneme.  The SVC code varied
considerably between speakers, yet proved remarkably stable for any given
speaker, regardless of the phonemes that were available for its estimation in only a
few words of speech.  When the SVC code was provided as an extra input to an



4.3. NN-HMM Hybrids 69

MS-TDNN, the word accuracy on a digit recognition task improved from 1.10%
error to 0.99% error.

• Konig and Morgan (1993) experimented with the Speaker Cluster Neural Network
(SCNN), a continuous speech recognizer in which an MLP’s inputs were supple-
mented by a small number of binary units describing the speaker cluster.  When
two such inputs were used, representing the speaker’s gender (as determined with
98.3% accuracy by a neural network that had received supervised training), perfor-
mance on the Resource Management database improved from 10.6% error to
10.2% error.  Alternatively, when speakers were clustered in an unsupervised fash-
ion, by applying k-means clustering to the acoustic centroids of each speaker (for k
= 2 through 5 clusters), performance improved to an intermediate level of 10.4%
error.

A final way to improve speaker-independent accuracy is through speaker normalization,
as shown in Figure 4.9(d).  In this approach, one speaker is designated as the reference
speaker, and a speaker-dependent system is trained to high accuracy on his voice; then, in
order to recognize speech from a new speaker (say, a female), her acoustic frames are
mapped by a neural network into corresponding frames in the reference speaker’s voice,
which can then be fed into the speaker-dependent system.

• Huang (1992a) explored speaker normalization, using a conventional HMM for
speaker-dependent recognition (achieving 1.4% word error on the reference
speaker), and a simple MLP for nonlinear frame normalization.  This normaliza-
tion network was trained on 40 adaptation sentences for each new speaker, using
DTW to establish the correspondence between input frames (from the new
speaker) and output frames (for the reference speaker).  The system was evaluated
on the speaker-dependent portion of the Resource Management database; impres-
sively, speaker normalization reduced the cross-speaker error rate from 41.9%
error to 6.8% error.  The error rate was further reduced to 5.0% by using eight
codeword-dependent neural networks instead of a single monolithic network, as
the task of each network was considerably simplified.  This final error rate is com-
parable to the error rate of speaker-independent systems on this database; hence
Huang concluded that speaker normalization can be useful in situations where
large amounts of training data are available only for one speaker and you want to
recognize other people’s speech.

4.3.8. Word Spotting

Continuous speech recognition normally assumes that every spoken word should be cor-
rectly recognized.  However, there are some applications where in fact only very few vocab-
ulary words (called keywords) carry any significance, and the rest of an utterance can be
ignored.  For example, a system might prompt the user with a question, and then only listen
for the words “yes” or “no”, which may be embedded within a long response.  For such
applications, a word spotter, which listens for and flags only these keywords, may be more
useful than a full-blown continuous speech recognition system.  Several researchers have



4. Related Research70

recently designed word spotting systems that incorporate both neural networks and HMMs.
Among these systems, there have been two basic strategies for deploying a neural network:

1. A neural network may serve as a secondary system that reevaluates the putative
hits identified by a primary HMM system.  In this case, the network’s architecture
can be rather simple, because an already-detected keyword candidate can easily be
normalized to a fixed duration for the network’s input.

2. A neural network may serve as the primary word spotter.  In this case, the net-
work’s architecture must be more complex, because it must automatically warp the
utterance while it scans for keywords.

David Morgan et al (1991) explored the first strategy, using a primary word spotter that
was based on DTW rather than HMMs.  When this system detected a keyword candidate, its
speech frames were converted to a fixed-length representation (using either a Fourier trans-
form, a linear compression of the speech frames, a network-generated compression, or a
combination of these); and then this fixed-length representation was reevaluated by an
appropriately trained neural network (either an RCE network1, a probabilistic RCE network,
or a modularized hierarchy of these), so that the network could decide whether to reject the
candidate as a “false alarm”.  This system was evaluated on the “Stonehenge X” database.
One rather arcane combination of the above techniques eliminated 72% of the false alarms
generated by the primary system, while only rejecting 2% of the true keywords (i.e., word
spotting accuracy declined from 80% to 78%).

Zeppenfeld and Waibel (1992,1993) explored the second strategy, using an MS-TDNN as
a primary word spotter.  This system represented keywords with unlabeled state models
rather than shared phoneme models, due to the coarseness of the database.  The MS-TDNN
produced a score for each keyword in every frame, derived from the keyword’s best DTW
score in a range of frames beginning in the current frame.  The system was first bootstrapped
with state-level training on a forced linear alignment within each keyword, and then trained
with backpropagation from the word level; positive and negative training were carefully bal-
anced in both phases.  It achieved a Figure of Merit2 of 82.5% on the Road Rally database.
Subsequent improvements — which included adding noise to improve generalization, sub-
tracting spectral averages to normalize different databases, using duration constraints,
grouping and balancing the keywords by their frequency of occurrence, extending short
keywords into their nearby context, and modeling variant suffixes — contributed to a Figure
of Merit of 72.2% on the official Stonehenge database, or 50.9% on the official Switchboard
database.

Lippmann and Singer (1993) explored both of the above strategies.  First, they used a
high-performance tied-mixture HMM as a primary word spotter, and a simple MLP as a sec-
ondary tester.  Candidate keywords from the primary system were linearly normalized to a
fixed width for the neural network.  The network reduced the false alarm rate by 16.4% on
the Stonehenge database.  This network apparently suffered from a poverty of training data;

1. Restricted Coloumb Energy network. RCE is a trademark of Nestor, Inc.
2. Figure of Merit summarizes a tradeoff between detection rate and false alarm rate. It is computed as the average detection
rate for system configurations that achieve between 0 and 10 false alarms per keyword per hour.



4.4. Summary 71

attempts were made to augment the training set with false alarms obtained from an inde-
pendent database, but this failed to improve the system’s performance because the databases
were too different, and hence too easily discriminable.  The second strategy was then
explored, using a primary network closely resembling Zeppenfeld’s MS-TDNN, except that
the hidden layer used radial basis functions instead of sigmoidal units.  This enabled new
RBF units to be added dynamically, as their Gaussians could be automatically centered on
false alarms that arose in training, to simplify the goal of avoiding such mistakes in the
future.

4.4.  Summary
The field of speech recognition has seen tremendous activity in recent years.  Hidden

Markov Models still dominate the field, but many researchers have begun to explore ways in
which neural networks can enhance the accuracy of HMM-based systems.  Researchers into
NN-HMM hybrids have explored many techniques (e.g., frame level training, segment level
training, word level training, global optimization), many issues (e.g., temporal modeling,
parameter sharing, context dependence, speaker independence), and many tasks (e.g., iso-
lated word recognition, continuous speech recognition, word spotting).  These explorations
have especially proliferated since 1990, when this thesis was proposed, hence it is not sur-
prising that there is a great deal of overlap between this thesis and concurrent developments
in the field.  The remainder of this thesis will present the results of my own research in the
area of NN-HMM hybrids.



4. Related Research72



73

5.  Databases

We performed our experiments on NN-HMM hybrids using three different databases:
ATR’s database of isolated Japanese words, the CMU Conference Registration database,
and the DARPA Resource Management database.  In this chapter we will briefly describe
each of these databases.

5.1.  Japanese Isolated Words
Our very first experiments were performed using a database of 5240 isolated Japanese

words (Sagisaka et al 1987), provided by ATR Interpreting Telephony Research Laboratory
in Japan, with whom we were collaborating.  This database includes recordings of all 5240
words by several different native Japanese speakers, all of whom are professional announc-
ers; but our experiments used the data from only one male speaker (MAU).  Each isolated
word was recorded in a soundproof booth, and digitized at a 12 kHz sampling rate.  A Ham-
ming window and an FFT were applied to the input data to produce 16 melscale spectral
coefficients every 10 msec.

Because our computational resources were limited at the time, we chose not to use all
5240 words in this database; instead, we extracted two subsets based on a limited number of
phonemes:

• Subset 1 = 299 words (representing 234 unique words, due to the presence of
homophones), comprised of only the 7 phonemes a,i,u,o,k,s,sh (plus an eighth pho-
neme for silence).  From these 299 words, we trained on 229 words, and tested on
the remaining 70 words (of which 50 were homophones of training samples, and
20 were novel words).  Table 5.1 shows this vocabulary.

• Subset 2 =1078 words (representing 924 unique words), comprised of only the 13
phonemes a,i,u,e,o,k,r,s,t,kk,sh,ts,tt (plus a 14th phoneme for silence).  From these
1078 words, we trained on 900 words, and tested on 178 words (of which 118 were
homophones of training samples, and 60 were novel words).

Using homophones in the testing set allowed us to test generalization to new samples of
known words, while the unique words allowed us to test generalization to novel words (i.e.,
vocabulary independence).



5. Databases74

5.2.  Conference Registration
Our first experiments with continuous speech recognition were performed using an early

version of the CMU Conference Registration database (Wood 1992).  The database consists
of 204 English sentences using a vocabulary of 402 words, comprising 12 hypothetical dia-
logs in the domain of conference registration.  A typical dialog is shown in Table 5.2; both
sides of the conversation are read by the same speaker.  Training and testing versions of this
database were recorded with a close-speaking microphone in a quiet office by multiple
speakers for speaker-dependent experiments.  Recordings were digitized at a sampling rate
of 16 kHz; a Hamming window and an FFT were computed, to produce 16 melscale spectral
coefficients every 10 msec.

Since there are 402 words in the vocabulary, this database has a perplexity1 of 402 when
testing without a grammar. Since recognition is very difficult under such conditions, we cre-
ated a word pair grammar (indicating which words can follow which other words) from the
textual corpus. Unfortunately, with a perplexity of only 7, this word pair grammar soon
proved too easy — it’s hard to identify significant improvements above 97% word accuracy.

1. Perplexity is a measure of the branching factor in the grammar, i.e., the number of words that can follow any given word.

aa ikou ooku kakoi ku * koushou sasai shisso shousoku
ai ishi ** oka kakou * kui kousou sasu ** shakai shoku
aiso ishiki okashii kasa kuiki kousoku sasoi shaku shokki
au * isha okasu kasai kuu kokuso sasou shako su *
ao ishou oki kashi kuuki koshi sakka shashou * suisoku
aoi isu oku ** kashikoi kuukou koshou sakkaku shuu suu *
aka * ikka okosu kashu kuusou koosu sakki shuui sukasu
akai ikkou oshii kasu * kuki kosu * sakku shuukai suki *
aki * issai oshoku kasuka kusa kokka sassou shuukaku suku
aku * isshu osu * kakki kusai kokkai sassoku shuuki sukuu *
akushu issho osoi kakko kushi * kokkaku shi ** shuusai sukoshi
asa isshou osou kakkou ko kokki shiai shuushuu sushi
asai isso ka * ki * koi ** kokkou shio * shuushoku susu
ashi issou kai ** kioku koishii sa shikai * shukusha suso
asu ukai kaikaku kikai ** kou * saiku shikaku * shukushou sou **
akka uku kaisai kikaku * koui * saikou shikashi shusai soui
asshuku ushi kaishi kiki kouka kaishuu shiki shushi souko
i usui kaisha kiku ** koukai ** saisho shikisai shushoku sousa *
ii uso kaishaku kikou koukou * saisoku shiku shou * sousaku *
iu o kaishou kisaku koukoku sao shikou * shouka * soushiki
ika oi kau * kishi kousa saka shisaku shoukai soushoku
iasu oishii kao kisha kousai sakai shishuu shouki soko
iki ** ou * kaoku kishou * kousaku * sakasa shishou shouko soshi
ikiiki ooi * kaku *** kisuu koushi * saki shisou shousai soshiki
ikioi oou kakusu kiso * koushiki saku *** shikkaku shoushou soshou
iku ookii kako kisoku koushuu * sakusha shikki shousuu sosokkashii

Table 5.1: Japanese isolated word vocabulary (Subset 1 = 299 samples including homophones; 234 unique words).
The testing set (70 words) consisted of 50 homophones (starred words) and 20 novel words (in bold).



5.3. Resource Management 75

Therefore, we usually evaluated recognition accuracy at a perplexity of 111, by testing only
the first three dialogs (41 sentences) using a reduced vocabulary without a grammar.

The Conference Registration database was developed in conjunction with the Janus
Speech-to-Speech Translation system at CMU (Waibel et al 1991, Osterholtz et al 1992,
Woszczyna et al 1994).  While a full discussion of Janus is beyond the scope of this thesis, it
is worth mentioning here that Janus is designed to automatically translate between two spo-
ken languages (e.g., English and Japanese), so that the above dialog could be carried out
between an American who wants to register for a conference in Tokyo but who speaks no
Japanese, and a Japanese receptionist who speaks no English. Janus performs speech trans-
lation by integrating three modules — speech recognition, text translation, and speech gen-
eration — into a single end-to-end system.  Each of these modules can use any available
technology, and in fact various combinations of connectionist, stochastic, and/or symbolic
approaches have been compared over the years.  The speech recognition module, for exam-
ple, was originally implemented by our LPNN, described in Chapter 6 (Waibel et al 1991,
Osterholtz et al 1992); but it was later replaced by an LVQ-based speech recognizer with
higher accuracy. Most recently, Janus has been expanded to a wide range of source and des-
tination languages (English, Japanese, German, Spanish, Korean, etc.); its task has broad-
ened from simple read speech to arbitrary spontaneous speech; and its domain has changed
from conference registration to appointment scheduling (Woszczyna et al 1994).

5.3.  Resource Management
In order to fairly compare our results against those of researchers outside of CMU, we also

ran experiments on the DARPA speaker-independent Resource Management database (Price
et al 1988).  This is a standard database consisting of 3990 training sentences in the domain
of naval resource management, recorded by 109 speakers contributing roughly 36 sentences
each; this training set has been supplemented by periodic releases of speaker-independent
testing data over the years, for comparative evaluations.  Some typical sentences are listed

A: Hello, is this the office for the conference?
B:  Yes, that’s right.
A: I would like to register for the conference.
B: Do you already have a registration form?
A: No, not yet.
B: I see. Then I’ll send you a registration form.
B: Could you give me your name and address?
A: The address is five thousand Forbes Avenue, Pittsburgh, Pennsylvania, one five two three six.
A: The name is David Johnson.
B: I see. I’ll send you a registration form immediately.
B: If there are any questions, please ask me at any time.
A: Thank you. Goodbye.
B: Goodbye.

Table 5.2: A typical dialog in the Conference Registration database.



5. Databases76

in Table 5.3.  The vocabulary consists of 997 words, many of which are easily confusable,
such as what/what’s/was, four/fourth, any/many, etc., as well as the singular, plural, and pos-
sessive forms of many nouns, and an abundance of function words (a, the, of, on, etc.)
which are unstressed and poorly articulated.  During testing, we normally used a word pair
grammar1, with a perplexity of 60.

From the training set of 3990 sentences, we normally used 3600 for actual training, and
390 (from other speakers) for cross validation.  However, when we performed gender-
dependent training, we further subdivided the database into males, with 2590 training and
240 cross validation sentences, and females, with 1060 training and 100 cross validation
sentences. The cross validation sentences were used during development, in parallel with
the training sentences.  Official evaluations were performed using a reserved set of 600 test
sentences (390 male and 210 female), representing the union of the Feb89 and Oct89
releases of testing data, contributed by 30 independent speakers.

1. Actually a word-class pair grammar, as all sentences in this database were generated by expanding templates based on word
classes.

ARE THERE TWO CARRIERS IN YELLOW SEA WITH TRAINING RATING MORE THAN C1
HOW MANY NUCLEAR SURFACE SHIPS ARE WITHIN FIFTY NINE MILES OF CONIFER
SET UNIT OF MEASURE TO METRIC
DRAW THE TRACK OF MISHAWAKA
WHAT IS COPELAND’S FUEL LEVEL AND FUEL CAPACITY
WHAT WAS ARKANSAS’S READINESS THE TWENTY NINTH OF JUNE
ADD AN AREA
DOES SASSAFRAS HAVE THE LARGEST FUEL CAPACITY OF ALL SIBERIAN SEA SUBMARINES
WAS MONDAY’S LAST HFDF SENSOR LOCATION FOR THE HAWKBILL IN MOZAMBIQUE CHANNEL
DO ANY SHIPS THAT ARE IN BASS STRAIT HAVE MORE FUEL THAN HER
EDIT THE ALERT INVOLVING AJAX
WHAT SHIPS WENT TO C2 ON EQUIPMENT AFTER TWELVE JULY
WILL THE EISENHOWER’S EQUIPMENT PROBLEM BE FIXED BY TWENTY THREE JANUARY
WHEN DID SHERMAN LAST DOWNGRADE FOR ASUW MISSION AREA
REDRAW FIJI IN LOW RESOLUTION
CLEAR ALL DATA SCREENS
HOW MANY LAMPS CRUISERS ARE IN MOZAMBIQUE CHANNEL
CLEAR THE DISPLAY
WHAT WAS PIGEON’S LOCATION AND ASUW AREA MISSION CODE TWENTY FIVE DECEMBER
DIDN’T ENGLAND ARRIVE AT MANCHESTER YESTERDAY

Table 5.3: Typical sentences from the Resource Management database.



77

6.  Predictive Networks

Neural networks can be trained to compute smooth, nonlinear, nonparametric functions
from any input space to any output space. Two very general types of functions are prediction
and classification, as shown in Figure 6.1. In a predictive network, the inputs are several
frames of speech, and the outputs are a prediction of the next frame of speech; by using mul-
tiple predictive networks, one for each phone, their prediction errors can be compared, and
the one with the least prediction error is considered the best match for that segment of
speech. By contrast, in a classification network, the inputs are again several frames of
speech, but the outputs directly classify the speech segment into one of the given classes.

In the course of our research, we have investigated both of these approaches.  Predictive
networks will be treated in this chapter, and classification networks will be treated in the
next chapter.

Figure 6.1: Prediction versus Classification.

Classification of frames 1...tPredictions of frame t (separate networks)

t-11

A E I O U

A E I O U

1 tt

hiddenhiddenhiddenhiddenhiddenhidden

inputinput

frames: frames:



6. Predictive Networks78

6.1.  Motivation... and Hindsight
We initially chose to explore predictive networks for a number of reasons.  The principal

reason was scientific curiosity — all of our colleagues in 1989 were studying classification
networks, and we hoped that our novel approach might yield new insights and improved
results.  On a technical level, we argued that:

1. Classification networks are trained on binary output targets, and therefore they
produce quasi-binary outputs, which are nontrivial to integrate into a speech recog-
nition system because binary phoneme-level errors tend to confound word-level
hypotheses. By contrast, predictive networks provide a simple way to get non-
binary acoustic scores (prediction errors), with straightforward integration into a
speech recognition system.

2. The temporal correlation between adjacent frames of speech is explicitly modeled
by the predictive approach, but not by the classification approach.  Thus, predictive
networks offer a dynamical systems approach to speech recognition (Tishby 1990).

3. Predictive networks are nonlinear models, which can presumably model the
dynamic properties of speech (e.g., curvature) better than linear predictive models.

4. Classification networks yield only one output per class, while predictive networks
yield a whole frame of coefficients per class, representing a more detailed acoustic
model.

5. The predictive approach uses a separate, independent network for each phoneme
class, while the classification approach uses one integrated network.  Therefore:

• With the predictive approach, new phoneme classes can be introduced
and trained at any time without impacting the rest of the system.  By con-
trast, if new classes are added to a classification network, the entire sys-
tem must be retrained.

• The predictive approach offers more potential for parallelism.

As we gained more experience with predictive networks, however, we gradually realized
that each of the above arguments was flawed in some way:

1. The fact that classification networks are trained on binary targets does not imply
that such networks yield binary outputs.  In fact, in recent years it has become clear
that classification networks yield estimates of the posterior probabilities
P(class|input), which can be integrated into an HMM more effectively than predic-
tion distortion measures.

2. The temporal correlation between N adjacent frames of speech and the N+1st pre-
dicted frame is modeled just as well by a classification network that takes N+1
adjacent frames of speech as input.  It does not matter whether temporal dynamics
are modeled explicitly, as in a predictive network, or implicitly, as in a classifica-



6.2. Related Work 79

tion network.

3. Nonlinearity is a feature of neural networks in general, hence this is not an advan-
tage of predictive networks over classification networks.

4. Although predictive networks yield a whole frame of coefficients per class, these
are quickly reduced to a single scalar value (the prediction error) — just as in a
classification network. Furthermore, the modeling power of any network can be
enhanced by simply adding more hidden units.

5. The fact that the predictive approach uses a separate, independent network for each
phoneme class implies that there is no discrimination between classes, hence the
predictive approach is inherently weaker than the classification approach.  More-
over:

• There is little practical value to being able to add new phoneme classes
without retraining, because phoneme classes normally remain stable for
years at a time, and when they are redesigned, the changes tend to be glo-
bal in scope.

• The fact that predictive networks have more potential for parallelism is
irrelevant if they yield poor word recognition accuracy to begin with.

Unaware that our arguments for predictive networks were specious, we experimented with
this approach for two years before concluding that predictive networks are a suboptimal
approach to speech recognition. This chapter summarizes the work we performed.

6.2.  Related Work
Predictive networks are closely related to a special class of HMMs known as an autore-

gressive HMMs (Rabiner 1989).  In an autoregressive HMM, each state is associated not
with an emission probability density function, but with an autoregressive function, which is
assumed to predict the next frame as a function of some preceding frames, with some resid-
ual prediction error (or noise), i.e.:

(62)

where  is the autoregressive function for state k,  are the p frames before time t,
are the trainable parameters of the function , and  is the prediction error of state k at
time t.  It is further assumed that  is an independent and identically distributed (iid) ran-
dom variable with probability density function  with parameters  and zero
mean, typically represented by a gaussian distribution.  It can be shown that

xt Fk Xt p–
t 1– ek,( ) ¡t k,+=

Fk Xt p–
t 1– ek

Fk ¡t k,
¡t k,

p¡ ¡ hk( ) hk



6. Predictive Networks80

(63)

This says that the likelihood of generating the utterance  along state path  is approxi-
mated by the cumulative product of the prediction error probability (rather than the emission
probability) and the transition probability, over all time frames.  It can further be shown that
during recognition, maximizing the joint likelihood  is equivalent to minimiz-
ing the cumulative prediction error, which can be performed simply by applying standard
DTW to the local prediction errors

(64)

Although autoregressive HMMs are theoretically attractive, they have never performed as
well as standard HMMs (de La Noue et al 1989, Wellekens 1987), for reasons that remain
unclear.  Predictive networks might be expected to perform somewhat better than autore-
gressive HMMs, because they use nonlinear rather than linear prediction.  Nevertheless, as
will be shown, the performance of our predictive networks was likewise disappointing.

At the same time that we began our experiments, similar experiments were performed on a
smaller scale by Iso & Watanabe (1990) and Levin (1990).  Each of these researchers
applied predictive networks to the simple task of digit recognition, with encouraging results.
Iso & Watanabe used 10 word models composed of typically 11 states (i.e., predictors) per
word; after training on five samples of each Japanese digit from 107 speakers, their system
achieved 99.8% digit recognition accuracy (or 0.2% error) on testing data.  They also con-
firmed that their nonlinear predictors outperformed linear predictors (0.9% error), as well as
DTW with multiple templates (1.1% error).

Levin (1990) studied a variant of the predictive approach, called a Hidden Control Neural
Network, in which all the states of a word were collapsed into a single predictor, modulated
by an input signal that represented the state. Applying the HCNN to 8-state word models,
she obtained 99.3% digit recognition accuracy on multi-speaker testing.  Note that both
Levin’s experiments and Iso & Watanabe’s experiments used non-shared models, as they
focused on small vocabulary recognition. We also note that digit recognition is a particularly
easy task.

In later work, Iso & Watanabe (1991) improved their system by the use of backward pre-
diction, shared demisyllable models, and covariance matrices, with which they obtained
97.6% word accuracy on a speaker-dependent, isolated word, 5000 Japanese word recogni-
tion task.  Mellouk and Gallinari (1993) addressed the discriminative problems of predictive
networks; their work will be discussed later in this chapter.

P X1
T Q1

T,( ) P Xp 1+
T Qp 1+

T, X1
p Q1

p,( )5

p¡ xt Fkt
Xt p–

t 1– ekt
,( )– hkt

( ) p qt qt 1–( )u
t p 1+=

T
.=

X1
T Q1

T

P X1
T Q1

T,( )

xt Fk Xt p–
t 1– ek,( )– 2



6.3. Linked Predictive Neural Networks 81

6.3.  Linked Predictive Neural Networks
We explored the use of predictive networks as acoustic models in an architecture that we

called Linked Predictive Neural Networks (LPNN), which was designed for large vocabu-
lary recognition of both isolated words and continuous speech.  Since it was designed for
large vocabulary recognition, it was based on shared phoneme models, i.e., phoneme mod-
els (represented by predictive neural networks) that were linked over different contexts —
hence the name.

In this section we will describe the basic operation and training of the LPNN, followed by
the experiments that we performed with isolated word recognition and continuous speech
recognition.

6.3.1. Basic Operation

An LPNN performs phoneme recognition via prediction, as shown in Figure 6.2(a).  A
network, shown as a triangle, takes K contiguous frames of speech (we normally used K=2),
passes these through a hidden layer of units, and attempts to predict the next frame of
speech.  The predicted frame is then compared to the actual frame.  If the error is small, the
network is considered to be a good model for that segment of speech.  If one could teach the
network to make accurate predictions only during segments corresponding to the phoneme
/A/ (for instance) and poor predictions elsewhere, then one would have an effective /A/
phoneme recognizer, by virtue of its contrast with other phoneme models.  The LPNN satis-

Figure 6.2: Basic operation of a predictive network.

Predictor for /A/

(10 hidden
units)

Predicted Speech Frame

Prediction Errors

Good Prediction � /A/

AB B

A

Input Speech Frames



6. Predictive Networks82

fies this condition, by means of its training algorithm, so that we obtain a collection of pho-
neme recognizers, with one model per phoneme.

The LPNN is a NN-HMM hybrid, which means that acoustic modeling is performed by
the predictive networks, while temporal modeling is performed by an HMM.  This implies
that the LPNN is a state-based system, such that each predictive network corresponds to a
state in an (autoregressive) HMM.  As in an HMM, phonemes can be modeled with finer
granularity, using sub-phonetic state models.  We normally used three states (predictive net-
works) per phoneme, as shown in subsequent diagrams.  Also, as in an HMM, states (pre-
dictive networks) are sequenced hierarchically into words and sentences, following the
constraints of a dictionary and a grammar.

6.3.2. Training the LPNN

Training the LPNN on an utterance proceeds in three steps: a forward pass, an alignment
step, and a backward pass.  The first two steps identify an optimal alignment between the
acoustic models and the speech signal (if the utterance has been presegmented at the state
level, then these two steps are unnecessary); this alignment is then used to force specializa-
tion in the acoustic models during the backward pass.  We now describe the training algo-
rithm in detail.

The first step is the forward pass, illustrated in Figure 6.3(a).  For each frame of input
speech at time t, we feed frame(t-1) and frame(t-2) in parallel into all the networks which
are linked into this utterance, for example the networks a1, a2, a3, b1, b2, and b3 for the utter-
ance “aba”. Each network makes a prediction of frame(t), and its Euclidean distance from
the actual frame(t) is computed.  These scalar errors are broadcast and sequenced according
to the known pronunciation of the utterance, and stored in column(t) of a prediction error
matrix.  This is repeated for each frame until the entire matrix has been computed.

The second step is the time alignment step, illustrated in Figure 6.3(b). The standard
Dynamic Time Warping algorithm (DTW) is used to find an optimal alignment between the
speech signal and the phoneme models, identified by a monotonically advancing diagonal
path through the prediction error matrix, such that this path has the lowest possible cumula-
tive error. The constraint of monotonicity ensures the proper sequencing of networks, corre-
sponding to the progression of phonemes in the utterance.

The final step of training is the backward pass, illustrated in Figure 6.3(c).  In this step, we
backpropagate error at each point along the alignment path.  In other words, for each frame
we propagate error backwards into a single network, namely the one which best predicted
that frame according to the alignment path; its backpropagated error is simply the difference
between this network’s prediction and the actual frame.  A series of frames may backpropa-
gate error into the same network, as shown.  Error is accumulated in the networks until the
last frame of the utterance, at which time all the weights are updated.

This completes the training for a single utterance.  The same algorithm is repeated for all
the utterances in the training set.



6.3. Linked Predictive Neural Networks 83

Figure 6.3: The LPNN training algorithm: (a) forward pass, (b) alignment, (c) backward pass.

A B A

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Speech Input
phoneme “a”phoneme “b”
predictorspredictors

a1 a2 a3b1 b2 b3

A

A
B

A B A

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

a1 a2 a3b1 b2 b3

A

A
B

A B A

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

a1 a2 a3b1 b2 b3

A

A
B Alignment path

Backpropagation

Prediction Errors

(a)

(b)

(c)



6. Predictive Networks84

It can be seen that by backpropagating error from different segments of speech into differ-
ent networks, the networks learn to specialize on their associated segments of speech; con-
sequently we obtain a full repertoire of individual phoneme models.  This individuation in
turn improves the accuracy of future alignments, in a self-correcting cycle.  During the first
iteration of training, when the weights have random values, it has proven useful to force an
initial alignment based on average phoneme durations. During subsequent iterations, the
LPNN itself segments the speech on the basis of the increasingly accurate alignments.

Testing is performed by applying standard DTW to the prediction errors for an unknown
utterance.  For isolated word recognition, this involves computing the DTW alignment path
for all words in the vocabulary, and finding the word with the lowest score; if desired, next-
best matches can be determined just by comparing scores.  For continuous speech recogni-
tion, the One-Stage DTW algorithm (Ney 1984) is used to find the sequence of words with
the lowest score; if desired, next-best sentences can be determined by using the N-best
search algorithm (Schwartz and Chow 1990).

6.3.3. Isolated Word Recognition Experiments

We first evaluated the LPNN system on the task of isolated word recognition.  While per-
forming these experiments we explored a number of extensions to the basic LPNN system.
Two simple extensions were quickly found to improve the system’s performance, hence
they were adopted as “standard” extensions, and used in all the experiments reported here.

The first standard extension was the use of duration constraints.  We applied two types of
duration constraints during recognition: 1) hard constraints, where any candidate word
whose average duration differed by more than 20% from the given sample was rejected; and
2) soft constraints, where the optimal alignment score of a candidate word was penalized for
discrepancies between the alignment-determined durations of its constituent phonemes and
the known average duration of those same phonemes.

The second standard extension was a simple heuristic to sharpen word boundaries.  For
convenience, we include a “silence” phoneme in all our phoneme sets; this phoneme is
linked in at the beginning and end of each isolated word, representing the background
silence.  Word boundaries were sharpened by artificially penalizing the prediction error for
this “silence” phoneme whenever the signal exceeded the background noise level.

Our experiments were carried out on two different subsets of a Japanese database of iso-
lated words, as described in Section 5.1. The first group contained almost 300 samples rep-
resenting 234 unique words (limited to 8 particular phonemes), and the second contained
1078 samples representing 924 unique words (limited to 14 particular phonemes).  Each of
these groups was divided into training and testing sets; and the testing sets included both
homophones of training samples (enabling us to test generalization to new samples of
known words), and novel words (enabling us to test vocabulary independent generalization).

Our initial experiments on the 234 word vocabulary used a three-network model for each
of the eight phonemes.  After training for 200 iterations, recognition performance was per-
fect for the 20 novel words, and 45/50 (90%) correct for the homophones in the testing set.
The fact that novel words were recognized better than new samples of familiar words is due



6.3. Linked Predictive Neural Networks 85

to the fact that most homophones are short confusable words (e.g., “kau” vs. “kao”, or
“kooshi” vs. “koshi”).  By way of comparison, the recognition rate was 95% for the training
set.

We then introduced further extensions to the system.  The first of these was to allow a lim-
ited number of “alternate” models for each phoneme.  Since phonemes have different char-
acteristics in different contexts, the LPNN’s phoneme modeling accuracy can be improved
if independent networks are allocated for each type of context to be modeled.  Alternates are
thus analogous to context-dependent models. However, rather than assigning an explicit
context for each alternate model, we let the system itself decide which alternate to use in a
given context, by trying each alternate and linking in whichever one yields the lowest align-
ment score.  When errors are backpropagated, the “winning” alternate is reinforced with
backpropagated error in that context, while competing alternates remain unchanged.

We evaluated networks with as many as three alternate models per phoneme.  As we
expected, the alternates successfully distributed themselves over different contexts.  For
example, the three “k” alternates became specialized for the context of an initial “ki”, other
initial “k”s, and internal “k”s, respectively.  We found that the addition of more alternates
consistently improves performance on training data, as a result of crisper internal represen-
tations, but generalization to the test set eventually deteriorates as the amount of training
data per alternate diminishes.  The use of two alternates was generally found to be the best
compromise between these competing factors.

Significant improvements were also obtained by expanding the set of phoneme models to
explicitly represent consonants that in Japanese are only distinguishable by the duration of
their stop closure (e.g., “k” versus “kk”).  However, allocating new phoneme models to rep-
resent diphthongs (e.g., “au”) did not improve results, presumably due to insufficient train-
ing data.

Table 6.1 shows the recognition performance of our two best LPNNs, for the 234 and 924
word vocabularies, respectively.  Both of these LPNNs used all of the above optimizations.
Their performance is shown for a range of ranks, where a rank of K means a word is consid-
ered correctly recognized if it appears among the best K candidates.

Vocab size Rank Testing set Training set

Homophones Novel words
234 1 47/50 (94%) 19/20 (95%) 228/229 (99%)

2 49/50 (98%) 20/20 (100%) 229/229 (100%)
3 50/50 (100%) 20/20 (100%) 229/229 (100%)

924 1 106/118 (90%) 55/60 (92%) 855/900 (95%)
2 116/118 (98%) 58/60 (97%) 886/900 (98%)
3 117/118 (99%) 60/60 (100%) 891/900 (99%)

Table 6.1: LPNN performance on isolated word recognition.



6. Predictive Networks86

For the 234 word vocabulary, we achieved an overall recognition rate of 94% on test data
using an exact match criterion, or 99% or 100% recognition within the top two or three can-
didates, respectively.  For the 924 word vocabulary, our best results on the test data were
90% using an exact match criterion, or 97.7% or 99.4% recognition within the top two or
three candidates, respectively.  Among all the errors made for the 924 word vocabulary (on
both training and testing sets), approximately 15% were due to duration problems, such as
confusing “sei” and “seii”; another 12% were due to confusing “t” with “k”, as in “tariru”
and “kariru”; and another 11% were due to missing or inserted “r” phonemes, such as
“sureru” versus “sueru”.  The systematicity of these errors leads us to believe that with more
research, recognition could have been further improved by better duration constraints and
other enhancements.

6.3.4. Continuous Speech Recognition Experiments

We next evaluated the LPNN system on the task of continuous speech recognition.  For
these experiments we used the CMU Conference Registration database, consisting of 200
English sentences using a vocabulary of 400 words, comprising 12 dialogs in the domain of
conference registration, as described in Section 5.2.

In these experiments we used 40 context-independent phoneme models (including one for
silence), each of which had the topology shown in Figure 6.4.  In this topology, similar to
the one used in the SPICOS system (Ney & Noll 1988), a phoneme model consists of 6
states, economically implemented by 3 networks covering 2 states each, with self-loops and
a certain amount of state-skipping allowed.  This arrangement of states and transitions pro-
vides a tight temporal framework for stationary and temporally well structured phones, as
well as sufficient flexibility for highly variable phones.  Because the average duration of a
phoneme is about 6 frames, we imposed transition penalties to encourage the alignment path
to go straight through the 6-state model.  Transition penalties were set to the following val-
ues: zero for moving to the next state, s for remaining in a state, and 2s for skipping a state,
where s was the average frame prediction error.  Hence 120 neural networks were evaluated
during each frame of speech. These predictors were given contextual inputs from two past-
frames as well as two future frames.  Each network had 12 hidden units, and used sparse
connectivity, since experiments showed that accuracy was unaffected while computation
could be significantly reduced.  The entire LPNN system had 41,760 free parameters.

Figure 6.4: The LPNN phoneme model for continuous speech.

Net 1 Net 2 Net 3

1 2 3 4 5 6



6.3. Linked Predictive Neural Networks 87

Since our database is not phonetically balanced, we normalized the learning rate for differ-
ent networks by the relative frequency of the phonemes in the training set.  During training
the system was bootstrapped for one iteration using forced phoneme boundaries, and there-
after trained for 30 iterations using only “loose” word boundaries located by dithering the
word boundaries obtained from an automatic labeling procedure (based on Sphinx), in order
to optimize those word boundaries for the LPNN system.

Figure 6.5 shows the result of testing the LPNN system on a typical sentence.  The top
portion is the actual spectrogram for this utterance; the bottom portion shows the frame-by-
frame predictions made by the networks specified by each point along the optimal alignment
path.  The similarity of these two spectrograms indicates that the hypothesis forms a good
acoustic model of the unknown utterance (in fact the hypothesis was correct in this case).

Speaker-dependent experiments were performed under the above conditions on two male
speakers, using various task perplexities (7, 111, and 402).  Results are summarized in Table
6.2.

Figure 6.5: Actual and predicted spectrograms.

Speaker A Speaker B

Perplexity 7 111 402 7 111 402
Substitutions 1% 28% 43% 4% 28% 46%
Deletions 1% 8% 10% 2% 12% 14%
Insertions 1% 4% 6% 0% 4% 3%
Word Accuracy 97% 60% 41% 94% 56% 37%

Table 6.2: LPNN performance on continuous speech.



6. Predictive Networks88

6.3.5. Comparison with HMMs

We compared the performance of our LPNN to several simple HMMs, to evaluate the ben-
efit of the predictive networks. First we studied an HMM with only a single Gaussian den-
sity function per state, which we parameterized in three different ways:

M16V0: Mean has 16 coefficients; variance is ignored (assumed unity).

M16V16: Mean has 16 coefficients; variance has 16 coefficients.

M32V0: Mean has 32 coefficients (including deltas); variance is ignored.

The Gaussian means and variances in each case were derived analytically from the train-
ing data. Table 6.3 shows the results of these experiments. It can be seen that the last config-
uration gave the best results, but the LPNN outperformed all of these simple HMMs.

Next we increased the number of mixture densities, from 1 to 5 to 10, where each of the
Gaussians was parameterized as in M32V0 above, and evaluated each of these HMMs. We
also compared these results against a discriminative LVQ based system developed by Otto
Schmidbauer (1992), in which Learned Vector Quantization is used to automatically cluster
speech frames into a set of acoustic features, which are subsequently fed into a set of neural
network output units which compute the emission probability for HMM states. The results
of this comparison are shown in Table 6.4. We see that an LPNN is easily outperformed by
an HMM with 5 or more mixture densities, and the discriminative LVQ system outperforms
everything.  We attribute the inferior performance of the LPNN primarily to its lack of dis-
crimination; this issue will be discussed in detail at the end of this chapter.

System HMM-1 mixture LPNN

M16V0 M16V16 M32V0

Substitutions 41% 35% 30% 28%
Deletions 12% 16% 13% 8%
Insertions 10% 5% 2% 4%
Word Accuracy 37% 44% 55% 60%

Table 6.3: Performance of HMMs using a single gaussian mixture, vs. LPNN.

perplexity

System 7 111 402
HMM-1 55%
HMM-5 96% 70% 58%
HMM-10 97% 75% 66%
LVQ 98% 80% 74%
LPNN 97% 60% 40%

Table 6.4: Word accuracy of HMM-n with n mixture densities, LVQ, and LPNN.



6.4. Extensions 89

Finally, we measured the frame distortion rate of each of the above systems.  In an LPNN,
frame distortion corresponds to the prediction error.  In an HMM, it corresponds to the dis-
tance between the speech vector and the mean of the closest gaussian in the mixture.  In the
LVQ system, it corresponds to the quantization error, i.e., the distance between the input
vector and the nearest weight vector of any hidden node. Table 6.5 shows that the LPNN has
the least distortion rate of any of these systems, despite its inferior word accuracy.  This sug-
gests that the training criterion, which explicitly minimizes the frame distortion rate, is
inconsistent and poorly correlated with the ultimate goal of word recognition accuracy.  We
will further discuss the issue of consistency in the next chapter (Section 7.4).

6.4.  Extensions
In our attempts to improve the accuracy of our LPNN system, we investigated several

extensions to the basic system. This section describes those architectural extensions, and
presents the results of those experiments.

6.4.1. Hidden Control Neural Network

A common theme in speech recognition systems is to balance the number of free parame-
ters against the amount of training data available, in order to optimize accuracy on the test
set.  If there are too many free parameters, the system may learn to perfectly memorize the
training set, but will generalize poorly to new data.  On the other hand, if there are too few
free parameters, the system will learn only the coarse characteristics of the task, and so will
attain poor accuracy on both the training set and the testing set.  Striking an optimal balance
always involves sharing parameters to some extent.  In a pure HMM system, this can mean
sharing codebooks across all states, sharing distributions across states within a phoneme,
merging triphones into generalized triphones, merging distributions via senones, and so on.
In a NN-HMM hybrid, many of these techniques can still be used; for example, in the last
section we described a 6-state phoneme model that uses only 3 networks, sharing distribu-
tions across states.

Another way to share parameters, which is unique to neural networks, is to collapse multi-
ple networks into a single network, modulated by a “hidden control” input signal that distin-
guishes between the functionality of the separate networks. This idea was initially proposed

System Avg. Frame Distortion
HMM-1 0.15
HMM-5 0.10
HMM-10 0.09
LVQ 0.11
LPNN 0.07

Table 6.5: The LPNN has minimal frame distortion, despite its inferior word accuracy.



6. Predictive Networks90

by Levin (1990), and called a Hidden Control Neural Network (HCNN).  In the context of
speech recognition, this involves collapsing multiple predictive networks into a shared
HCNN network, modulated by a hidden control signal that distinguishes between the states,
as shown in Figure 6.6.  The control signal typically uses a simple thermometer representa-
tion, comprised of one unit for each state, where successive states are represented by turning
on successive units, ensuring a similar representation for adjacent states.  In addition to
reducing the number of parameters (and thus the amount of memory required), the HCNN
can also be computationally more efficient than a set of separate networks, since partial
results of redundant forward passes can be cached (although the total number of forward
passes remains unchanged).

We performed a number of experiments with the HCNN, in collaboration with Bojan
Petek (1991, 1992).  In one set of experiments, we studied the effects of varying degrees of
shared structure, as shown in Figure 6.7.  These experiments used 2-state phoneme models,
rather than 3- or 6-state phoneme models.  The first architecture, labeled (a), was a basic
LPNN (i.e., no hidden control), in which 80 networks are required to represent 40 phonemes
with 2 states each.  In (b), hidden control inputs were introduced such that only 40 networks
are required for the same task, as each phoneme is modeled by a single network modulated
by 2 hidden control input bits which distinguish between the two states. In (c), the hidden
control idea is taken to its limit: one big network is modulated by 40 x 2 = 80 hidden control
inputs which specify both the phoneme and the state.

Table 6.6 shows the results of these experiments, evaluated on speaker B.  Besides testing
continuous speech recognition, we also tested excerpted word recognition, in which word
boundaries within continuous speech are given; this allowed us to compare the acoustic dis-
criminability of the three architectures more directly.  As the table shows, we observed
minor differences in performance between architectures (a) and (b): the LPNN was slightly
more discriminant, but the hidden control architecture generalized better and ran faster.
Meanwhile, architecture (c) did very poorly, presumably because it had too much shared
structure and too few free parameters, overloading the network and causing poor discrimi-

Figure 6.6: A sequence of predictive networks can be replaced by a Hidden Control Neural Network.

Sequence of Predictive Networks Hidden Control
Neural Network

statestate  2 state 3state 1



6.4. Extensions 91

nation.  Hence, we conclude that hidden control may be useful, but care must be taken to
find the optimal amount of parameter sharing for a given task.

Figure 6.7: Architectures used in Hidden Control experiments.

Architecture (a) (b) (c)
# free parameters (weights) 80960 42080 6466
Word accuracy:

Excerpted words (P=402) 70% 67% 39%
Continuous speech (P=7) 91% 91% n/a
Continuous speech (P=402) 14% 20% n/a

Table 6.6: Results of Hidden Control experiments. Parameter sharing must be used sparingly.

a1 a2 b2b1

a b

all
phons

Hidden Control Input

Hidden Control Input

Predictions

Speech
Frames

State

Phoneme
and

State

(a) LPNN:
80 nets

(b) HCNN:
40 nets

(c) HCNN:
1 net



6. Predictive Networks92

6.4.2. Context Dependent Phoneme Models

The accuracy of any speech recognizer can be improved by using context dependent mod-
els.  In a pure HMM system, this normally involves using diphone or triphone models, i.e., a
phoneme model in the context of one or both of its adjacent phonemes.  This increases the
specificity and accuracy of the models, but also increases their absolute number by orders of
magnitude (e.g., from 40 to 1600 to 64000 models), such that it becomes necessary to clus-
ter them (another form of parameter sharing), to ensure that there is still enough training
data per model.

In a NN-HMM hybrid based on predictive networks, context dependent phoneme models
could be implemented by using a separate network for each diphone or triphone.  However,
this would undoubtedly result in a system with too many free parameters, resulting in poor
generalization (and an excessive amount of memory and computation).  What is desired is
again some form of parameter sharing.  One potential solution is to use a shared network in
which the context is a part of the input signal, as in the HCNN.  This approach is appealing
because it requires very few additional parameters (diphones require only c extra inputs, and
triphones require only 2c extra inputs, for some small value of c), and yet it provides a way
to distinguish between all the different contexts of a phoneme.

We studied this idea by augmenting our HCNN network to include contextual inputs, as
shown in Figure 6.8(a).  Our contextual inputs represented only one adjacent phoneme,
making this a right-context dependent diphone model (we felt that our database was too
small to provide adequate coverage of triphones).  We could have represented the 40 possi-
ble values of the adjacent phoneme using 40 contextual inputs, but instead we clustered the
phonemes by their linguistic features, as proposed by (Rumelhart & McClelland 1986:
chapter 18), so that only 10 contextual inputs were necessary.  Each phoneme was coded
along four dimensions.  The first dimension (three bits) was used to divide the phonemes
into interrupted consonants (stops and nasals), continuous consonants (fricatives, liquids,
and semivowels), and vowels.  The second dimension (two bits) was used to subdivide these
classes.  The third dimension (three bits) classified the phonemes by place of articulation

Figure 6.8: Context-dependent HCNN: (a) standard implementation; (b) efficient implementation.

(a)

speech HCI context

outputs

hidden

speech HCI context

outputs

hid1 hid2

(b)



6.4. Extensions 93

(front, middle, back).  Finally, the fourth dimension (two bits) divided the consonants into
voiced and unvoiced, and vowels into long and short.

Conceptually there is only a single hidden layer in the predictive network.  But in reality,
we divided this hidden layer into two halves, as shown in Figure 6.8(b).  This allows the for-
ward pass computations on each half of the network to be cached, so that for a given frame
and state, the forward pass computations over all contexts can be reduced to a series of out-
put sigmoids using different precomputed net inputs.  This saves a considerable amount of
redundant computation.

We evaluated the context-dependent HCNN on the CMU Conference Registration data-
base.  Our best results are shown in Table 6.7 (for speaker A, perplexity 111).  In this evalu-
ation, the predictive network’s inputs included 64 speech inputs (2 frames of speech
represented by 16 melscale coefficients and 16 delta coefficients), 5 state inputs, and 10 con-
textual inputs; the network also included 30 hidden units on the speech side, plus 5 hidden
units on the context side; and of course 16 outputs representing the predicted speech frame.
As in the LPNN, all phonemes used two alternate models, with the best one automatically
linked in.  In contrast to the LPNN, however, which used a 6-state phoneme model imple-
mented by 3 networks, this context-dependent HCNN used the 5-state phoneme model
shown in Figure 6.9 (or a 3-state model for silence), implemented by a single network per
phoneme with state inputs.  The CD-HCNN achieved much better results than the LPNN
(72% vs. 60%), suggesting that the hidden control mechanism provides an effective way to
share parameters, and that context dependence improves the specificity of its phoneme mod-
els.

An error analysis at the phoneme level revealed that there was still a phoneme error rate of
20% after training was complete.  Most of the confusions involved the phonemes AH,AE,
EH,UH,D,K,N.

System LPNN CD-HCNN
Substitutions 28% 20%
Deletions 8% 6%
Insertions 4% 2%
Word accuracy 60% 72%

Table 6.7: Results of LPNN and context-dependent HCNN (speaker A, perplexity 111).

Figure 6.9: 5-state phoneme model used in CD-HCNN experiments.



6. Predictive Networks94

6.4.3. Function Word Models

Lee (1988) showed that function words — short words like “a”, “of”, “that” — are partic-
ularly difficult to recognize, because they have strong coarticulation effects, are very fre-
quent in continuous speech, and are often poorly articulated by the speaker.  Inadequate
modeling of these words can significantly degrade a system’s overall word accuracy.

We improved the accuracy of our system by introducing function word models.  We
selected the three words with the highest error rate in our system (“a”, “the”, “you”), and
created whole-word models for these, with states indexed by a hidden control inputs.  That
is, rather than representing these words by a sequence of standard phoneme models, these
words got independent models, each of which was represented by a single HCNN with from
two to five additional inputs to identify the state of the word (as in Levin 1990).  These func-
tion word models were also context-dependent; the contextual inputs were arbitrarily set to
the initial phoneme of the function word.  Note that because of the mutual independence of
the predictive networks, there was no need to retrain the other phoneme models when these
new function word models were trained.

Evaluating this system under the same conditions as in the previous section, we found that
this system achieved 75% word accuracy, which represents 10% fewer errors than the sys-
tem without function word models.

6.5.  Weaknesses of Predictive Networks
Our experience suggests that predictive networks are not very effective for speech recog-

nition.  On the Conference Registration database at perplexity 111, we obtained only 60%
word accuracy with our basic LPNN, or 75% when the system was enhanced by hidden con-
trol inputs, context dependent modeling, and function word modeling.  By contrast, a primi-
tive HMM also achieves 75% on this task, and a simple LVQ based system achieves 80%
word accuracy.

We have concluded that predictive networks suffer from two weaknesses: (1) a lack of dis-
crimination, and (2) inconsistency between training and testing criteria.  It may be possible
to correct these problems, but our research stopped short of doing so. We discuss these prob-
lems in the following sections.

6.5.1. Lack of Discrimination

Predictive networks are ordinarily trained independently of each other; as a result, there is
no discrimination between the acoustic models.  This means there is no explicit mechanism
to discourage models from resembling each other, which leads to easily confusable phone
models, which in turn degrades word recognition accuracy.  This weakness is shared by
HMMs that are trained with the Maximum Likelihood criterion; but the problem is more
severe for predictive networks, because the quasi-stationary nature of speech causes all of



6.5. Weaknesses of Predictive Networks 95

the predictors to learn to make a quasi-identity mapping, rendering all of the phoneme mod-
els fairly confusable.  For example, Figure 6.10 shows an actual spectrogram and the frame-
by-frame predictions of the /eh/ model and the /z/ model. Disappointingly, both models are
fairly accurate predictors for the entire utterance.

There are many ways to partially compensate for this lack of discrimination.  For example,
we can use more input frames (as long as they are temporally close enough to be relevant to
the predicted frame), thereby making each network behave less like an identity mapper, so
they can be more easily distinguished.  Or we can introduce alternate phone models, or con-
text dependent models, or function word models, or a number of other improvements.  How-
ever, while each of these techniques may improve the performance of the system, they do
not address the lack of discrimination between models, so performance will always remain
suboptimal.

What is really needed is a way to discriminate between models, by applying positive
training to the correct model while somehow applying negative training to all of the incor-
rect models.  However, it is not immediately clear what kind of negative target makes sense
for a predictive network.  In hindsight, we see that there are two general types of target that
could be used during both positive and negative training: (1) a vector, analogous to the pre-
dicted frame; or (2) a scalar, corresponding to some transformation of the predicted frame
(or of all predicted frames).  In our research, we studied the first approach, but we had not
yet thought of the second approach; it now appears that the second approach may have more
promise.  The remainder of this section will describe these two approaches.

Figure 6.10: Actual spectrogram, and corresponding predictions by the /eh/ and /z/ phoneme models.



6. Predictive Networks96

6.5.1.1. Vector targets

If a prediction-based system uses vectors as training targets, then by definition the target
for positive training is the actual frame at time t, but there is no obvious target vector for
negative training.  In our attempts to perform negative training, we studied two possible
strategies, neither of which was successful.

The first strategy was to use the actual frame at time t as a target for both positive and neg-
ative training, but to perform gradient descent for the correct network and gradient ascent
for all incorrect networks.  This rather naive approach failed because the force of discrimi-
nation is proportional to the prediction error of the network, such that negative training is
weakest for the most confusable model, and becomes stronger for all models that have
already been pushed away.  This is an unstable dynamic, which inevitably throws the mod-
els into chaos.

The second strategy returned to using gradient descent for both positive and negative
training, but tried to supply a target vector for negative training that would distinguish each
model from the others.  We observed that each network receives positive training in only a
small region of acoustic space (i.e., those frames corresponding to that phoneme), and con-
sequently for any other input frames it will compute an undefined output, which may over-
lap with the outputs of other predictors.  If the network has learned to approximate an
identity mapping in its defined region, then it will also tend to approximate an identity map-
ping in its undefined region.  To discourage this behavior, we applied negative training
throughout this undefined region, using a target that differed from the actual frame at time t.
We chose the negative target vector to be the average of all the positive frames associated
with that network; this clearly avoids identity mappings, because, for example, the A model
is trained to predict an average A frame whenever the input frames belong to B.  Unfortu-
nately, this technique failed because each network learned to compute an essentially con-
stant output, corresponding to the average frame of its associated phone. This happened,
naturally, because the network was trained to map virtually any input to a constant output,
except for a few positive predictions, which also happened to resemble that constant output.
We tried to sensitize our networks by using a smaller learning rate for negative training (to
emphasize the positive samples) and by increasing the size of our networks (so they could
learn more detailed mappings); but our efforts were not successful.

From our experience we have concluded that discriminative training in a predictive sys-
tem is at best nontrivial and probably infeasible using vector targets.

6.5.1.2. Scalar Targets

An interesting alternative involves redefining the boundaries of a predictive network, so
that the associated prediction error (i.e., the Euclidean distance between the predicted frame
and the actual frame) is computed internally to the network by a special post-processing
layer. With this perspective, the output of the network is a scalar, equal to the Euclidean dis-
tance



6.5. Weaknesses of Predictive Networks 97

(65)

which lies in the range [0..N] if each frame has N coefficients in the range [0..1].  This can
be transformed to a class membership function by inverting and normalizing it, using

(66)

so that a perfect prediction yields , and a poor prediction yields .  Now discrimi-
native training is simply a matter of training the correct network on the target T = 1, and all
of the incorrect networks on the target T = 0.  Of course, error must now be backpropagated
through the equations in the post-processing layer.  If we assume the squared error criterion

(67)

for each network, then at the frame prediction layer we have

(68)

Note that this backpropagation equation involves two types of targets: T at the class mem-
bership layer, and  at the frame prediction layer.  It can be seen that this learning rule
causes the system to discriminate between models because  is negative for the cor-
rect network and positive for all incorrect networks.

A variation of this approach is to first normalize the scalar outputs so that they sum to 1,
like probabilities:

(69)

where superscripts indicate the network index. As before, the correct network is trained on
the target T = 1, and all the incorrect networks are trained on the target T = 0.  This time, if
the error measure is still

(70)

then at the frame prediction layer we have

d yi ti–( ) 2

i

N
-=

z d–( )exp=

z 1= z 05

E 1
2--- z T–( ) 2=

yi,
,E

z,
,E

d,
,z

yi,
,d

u u=

z T–( ) z–( ) 2 yi ti–( )( )u u=

ti
z T–( )

p j z j

zk

k
-
-----------= so p j

j
- 1=

E 1
2--- p j T j–( ) 2

j
-=



6. Predictive Networks98

(71)

Mellouk and Gallinari (1993) used such normalized scalar targets to introduce discrimina-
tion into a predictive system that resembled our basic LPNN.  Although their system was a
continuous speech recognizer, they evaluated its performance on phoneme recognition.  In
their preliminary experiments they found that discriminative training cut their error rate by
30%.  A subsequent test on the TIMIT database showed that their phoneme recognition rate
of 68.6% was comparable to that of other state-of-the-art systems, including Sphinx-II.

Normalized outputs are somewhat more discriminative than non-normalized outputs,
since normalized outputs are mutually constrained so that when the correct one increases, all
of the incorrect ones will decrease. This property might be called implicit discrimination.
By contrast, explicit discrimination involves contrasting positive and negative training, i.e.,
training the correct model to output a 1 while training all incorrect models to output a 0.
Note that these two modes of discrimination operate independently of each other. Explicit
discrimination probably has more impact than implicit discrimination, since it involves
greater contrast. Nevertheless, it may be best to combine both types of discrimination, as
Mellouk and Gallinari have done.

We conclude that a predictive system can become discriminative by transforming the vec-
tor outputs to scalar outputs, so that the network can be trained on targets of 0 and 1.  How-
ever, we did not empirically investigate this approach in our research.

6.5.2. Inconsistency

The second major problem with predictive networks is that their standard training crite-
rion is inconsistent with the testing criterion.  That is, predictive networks are trained to
make accurate predictions of speech frames, but the testing criterion is something com-
pletely different, i.e., word recognition accuracy.  We hope against hope that these two crite-
ria are strongly correlated, but in fact we find that the LPNN’s excellent frame predictions
translate to poor word recognition accuracy. Evidently there is only a weak correlation
between frame prediction and word recognition.

Training and testing could be made more consistent by extending the architecture to sup-
port word level training. This would involve introducing a word level unit for each word in
the vocabulary, connecting it to the prediction error layer along its associated DTW align-
ment path, and backpropagating error down from the word layer using a target of 1 for the

y i
k

,

,E

pj
,

,E

zk
,

,pj

dk
,

,zk

yi
k

,

,dk
u u u

j
-=

pj Tj–
bjk zk

k
- zj–

zk

k
-¤ ¦

£ ¥ 2----------------------------- zk– 2 yi
k ti–¤ ¦

£ ¥u u u
j
-=

pj Tj– pk pj
bjk–¤ ¦

£ ¥ 2 yi
k ti–¤ ¦

£ ¥u u
j
-=



6.5. Weaknesses of Predictive Networks 99

correct word and 0 for incorrect words.  We will discuss the technique of word level training
in greater detail in the next chapter, in the context of classification networks.

In conclusion, predictive networks suffer from two major weaknesses, i.e., a lack of dis-
crimination, and inconsistency between the training and testing criteria. We have discussed
some potential remedies for each of these problems. Rather than actually pursuing these
remedies in our research, however, we chose to move on and study classification networks,
because they support discrimination much more naturally, and they appeared likely to give
superior results. Our research with classification networks is described in the next chapter.



6. Predictive Networks100



101

7.  Classification Networks

Neural networks can be taught to map an input space to any kind of output space.  For
example, in the previous chapter we explored a homomorphic mapping, in which the input
and output space were the same, and the networks were taught to make predictions or inter-
polations in that space.

Another useful type of mapping is classification, in which input vectors are mapped into
one of N classes.  A neural network can represent these classes by N output units, of which
the one corresponding to the input vector’s class has a “1” activation while all other outputs
have a “0” activation.  A typical use of this in speech recognition is mapping speech frames
to phoneme classes.  Classification networks are attractive for several reasons:

• They are simple and intuitive, hence they are commonly used.

• They are naturally discriminative.

• They are modular in design, so they can be easily combined into larger systems.

• They are mathematically well-understood.

• They have a probabilistic interpretation, so they can be easily integrated with sta-
tistical techniques like HMMs.

In this chapter we will give an overview of classification networks, present some theory
about such networks, and then describe an extensive set of experiments in which we opti-
mized our classification networks for speech recognition.

7.1.  Overview
There are many ways to design a classification network for speech recognition. Designs

vary along five primary dimensions: network architecture, input representation, speech
models, training procedure, and testing procedure.  In each of these dimensions, there are
many issues to consider.  For instance:

Network architecture (see Figure 7.1).  How many layers should the network have, and
how many units should be in each layer? How many time delays should the network have,
and how should they be arranged?  What kind of transfer function should be used in each
layer? To what extent should weights be shared?  Should some of the weights be held to
fixed values?  Should output units be integrated over time?  How much speech should the
network see at once?



7. Classification Networks102

Figure 7.1: Types of network architectures for classification.

speech
input

class
output

phonemes phonemes phonemes phonemes phonemes

phonemes

phonemes

words

Time Delay Neural Network Multi-State Time Delay Neural Network

Single Layer Perceptrons Multi-Layer Perceptrons

Y

Y

co
py

time

time
delays

wo
rd

wo
rd

wo
rd



7.2. Theory 103

Input representation.  What type of signal processing should be used?  Should the result-
ing coefficients be augmented by redundant information (deltas, etc.)?  How many input
coefficients should be used?  How should the inputs be normalized?  Should LDA be
applied to enhance the input representation?

Speech models.  What unit of speech should be used (phonemes, triphones, etc.)?  How
many of them should be used?  How should context dependence be implemented?  What is
the optimal phoneme topology (states and transitions)?  To what extent should states be
shared?  What diversity of pronunciations should be allowed for each word?  Should func-
tion words be treated differently than content words?

Training procedure.  At what level (frame, phoneme, word) should the network be
trained?  How much bootstrapping is necessary? What error criterion should be used?  What
is the best learning rate schedule to use?  How useful are heuristics, such as momentum or
derivative offset?  How should the biases be initialized?  Should the training samples be ran-
domized?  Should training continue on samples that have already been learned?  How often
should the weights be updated?  At what granularity should discrimination be applied?
What is the best way to balance positive and negative training?

Testing procedure.  If the Viterbi algorithm is used for testing, what values should it
operate on?  Should it use the network’s output activations directly?  Should logarithms be
applied first?  Should priors be factored out?  If training was performed at the word level,
should word level outputs be used during testing?  How should duration constraints be
implemented?  How should the language model be factored in?

All of these questions must be answered in order to optimize a NN-HMM hybrid system
for speech recognition.  In this chapter we will try to answer many of these questions, based
on both theoretical arguments and experimental results.

7.2.  Theory
7.2.1. The MLP as a Posterior Estimator

It was recently discovered that if a multilayer perceptron is asymptotically trained as a 1-
of-N classifier using mean squared error (MSE) or any similar criterion, then its output acti-
vations will approximate the posterior class probability P(class|input), with an accuracy that
improves with the size of the training set.  This important fact has been proven by Gish
(1990), Bourlard & Wellekens (1990), Hampshire & Pearlmutter (1990), Ney (1991), and
others; see Appendix B for details.

This theoretical result is empirically confirmed in Figure 7.2. A classifier network was
trained on a million frames of speech, using softmax outputs and cross entropy training, and
then its output activations were examined to see how often each particular activation value
was associated with the correct class. That is, if the network’s input is x, and the network’s
kth output activation is yk(x), where k=c represents the correct class, then we empirically



7. Classification Networks104

measured P(k=c|yk(x)), or equivalently P(k=c|x), since yk(x) is a direct function of x in the
trained network.  In the graph, the horizontal axis shows the activations yk(x), and the verti-
cal axis shows the empirical values of P(k=c|x).  (The graph contains ten bins, each with
about 100,000 data points.) The fact that the empirical curve nearly follow a 45 degree angle
indicates that the network activations are indeed a close approximation for the posterior
class probabilities.

Many speech recognition systems have been based on DTW applied directly to network
class output activations, scoring hypotheses by summing the activations along the best
alignment path.  This practice is suboptimal for two reasons:

• The output activations represent probabilities, therefore they should be multiplied
rather than added (alternatively, their logarithms may be summed).

• In an HMM, emission probabilities are defined as likelihoods P(x|c), not as poste-
riors P(c|x); therefore, in a NN-HMM hybrid, during recognition, the posteriors
should first be converted to likelihoods using Bayes Rule:

(72)

where P(x) can be ignored during recognition because it’s a constant for all states
in any given frame, so the posteriors P(c|x) may be simply divided by the priors
P(c).  Intuitively, it can be argued that the priors should be factored out because
they are already reflected in the language model (grammar) used during testing.

Figure 7.2: Network output activations are reliable estimates of posterior class probabilities.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
ob

ab
ili

ty
 c

or
re

ct
 =

 P
(c

|x
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
activation

actual
theoretical

P x c( )
P c x( ) P x( )u

P c( )
------------------------------------=



7.2. Theory 105

Bourlard and Morgan (1990) were the first to demonstrate that word accuracy in a NN-
HMM hybrid can be improved by using log(y/P(c)) rather than the output activation y itself
in Viterbi search.  We will provide further substantiation of this later in this chapter.

7.2.2. Likelihoods vs. Posteriors

The difference between likelihoods and posteriors is illustrated in Figure 7.3.  Suppose we
have two classes, c1 and c2.  The likelihood P(x|ci) describes the distribution of the input x
given the class, while the posterior P(ci|x) describes the probability of each class ci given the
input.  In other words, likelihoods are independent density models, while posteriors indicate
how a given class distribution compares to all the others. For likelihoods we have

, while for posteriors we have .

Posteriors are better suited to classifying the input: the Bayes decision rule tells us that we
should classify x into class  iff

.

If we wanted to classify the input using likelihoods, we would first have to convert these
posteriors into likelihoods using Bayes Rule, yielding a more complex form of the Bayes
decision rule which says that says we should classify x into class  iff

(73)

Figure 7.3: Likelihoods model independent densities; posteriors model their comparative probability.

P x ci( )x0 1= P ci x( )i- 1=

x

xPo
ste

rio
r, 

P(
c i|

x)
Li

ke
lih

oo
d,

 P
(x

|c i
)

c1 c2

c1 c2

1

c1

P c1 x( ) P c2 x( )>

c1

P x c1( ) P c1( ) P x c2( ) P c2( )>



7. Classification Networks106

Note that the priors P(ci) are implicit in the posteriors, but not in likelihoods, so they must be
explicitly introduced into the decision rule if we are using likelihoods.

Intuitively, likelihoods model the surfaces of distributions, while posteriors model the
boundaries between distributions.  For example, in Figure 7.3, the bumpiness of the distri-
butions is modeled by the likelihoods, but the bumpy surface is ignored by the posteriors,
since the boundary between the classes is clear regardless of the bumps.  Thus, likelihood
models (as used in the states of an HMM) may have to waste their parameters modeling
irrelevant details, while posterior models (as provided by a neural network) can represent
critical information more economically.

7.3.  Frame Level Training
Most of our experiments with classification networks were performed using frame level

training.  In this section we will describe these experiments, reporting the results we
obtained with different network architectures, input representations, speech models, training
procedures, and testing procedures.

Unless otherwise noted, all experiments in this section were performed with the Resource
Management database under the following conditions (see Appendix A for more details):

• Network architecture:
• 16 LDA (or 26 PLP) input coefficients per frame; 9 frame input window.
• 100 hidden units.
• 61 context-independent TIMIT phoneme outputs (1 state per phoneme).
• all activations = [-1..1], except softmax [0..1] for phoneme layer outputs.

• Training:
• Training set = 2590 sentences (male), or 3600 sentences (mixed gender).
• Frames presented in random order; weights updated after each frame.
• Learning rate schedule = optimized via search (see Section 7.3.4.1).
• No momentum, no derivative offset.
• Error criterion = Cross Entropy.

• Testing:
• Cross validation set = 240 sentences (male), or 390 sentences (mixed).
• Grammar = word pairs � perplexity 60.
• One pronunciation per word in the dictionary.
• Minimum duration constraints for phonemes, via state duplication.
• Viterbi search, using log (Yi /Pi), where Pi = prior of phoneme i.

7.3.1. Network Architectures

The following series of experiments attempt to answer the question: “What is the optimal
neural network architecture for frame level training of a speech recognizer?”



7.3. Frame Level Training 107

7.3.1.1. Benefit of a Hidden Layer

In optimizing the design of a neural network, the first question to consider is whether the
network should have a hidden layer, or not. Theoretically, a network with no hidden layers
(a single layer perceptron, or SLP) can form only linear decision regions, but it is guaran-
teed to attain 100% classification accuracy if its training set is linearly separable. By con-
trast, a network with one or more hidden layers (a multilayer perceptron, or MLP) can form
nonlinear decision regions, but it is liable to get stuck in a local minimum which may be
inferior to the global minimum.

It is commonly assumed that an MLP is better than an SLP for speech recognition,
because speech is known to be a highly nonlinear domain, and experience has shown that
the problem of local minima is insignificant except in artificial tasks. We tested this assump-
tion with a simple experiment, directly comparing an SLP against an MLP containing one
hidden layer with 100 hidden units; both networks were trained on 500 training sentences.
The MLP achieved 81% word accuracy, while the SLP obtained only 58% accuracy. Thus, a
hidden layer is clearly useful for speech recognition.

We did not evaluate architectures with more than one hidden layer, because:

1. It has been shown (Cybenko 1989) that any function that can be computed by an
MLP with multiple hidden layers can be computed by an MLP with just a single
hidden layer, if it has enough hidden units; and

2. Experience has shown that training time increases substantially for networks with
multiple hidden layers.

However, it is worth noting that our later experiments with Word Level Training (see Sec-
tion 7.4) effectively added extra layers to the network.

Figure 7.4: A hidden layer is necessary for good word accuracy.

Word Accuracy: 58% 81%

Multi-Layer
Perceptron

Single Layer
Perceptron



7. Classification Networks108

7.3.1.2. Number of Hidden Units

The number of hidden units has a strong impact on the performance of an MLP.  The more
hidden units a network has, the more complex decision surfaces it can form, and hence the
better classification accuracy it can attain.  Beyond a certain number of hidden units, how-
ever, the network may possess so much modeling power that it can model the idiosyncrasies
of the training data if it’s trained too long, undermining its performance on testing data.
Common wisdom holds that the optimal number of hidden units should be determined by
optimizing performance on a cross validation set.

Figure 7.5 shows word recognition accuracy as a function of the number of hidden units,
for both the training set and the cross validation set. (Actually, performance on the training
set was measured on only the first 250 out of the 2590 training sentences, for efficiency.) It
can be seen that word accuracy continues to improve on both the training set and the cross
validation set as more hidden units are added — at least up to 400 hidden units. This indi-
cates that there is so much variability in speech that it is virtually impossible for a neural
network to memorize the training set. We expect that performance would continue to
improve beyond 400 hidden units, at a very gradual rate. (Indeed, with the aid of a powerful
parallel supercomputer, researchers at ICSI have found that word accuracy continues to
improve with as many as 2000 hidden units, using a network architecture similar to ours.)
However, because each doubling of the hidden layer doubles the computation time, in the
remainder of our experiments we usually settled on 100 hidden units as a good compromise
between word accuracy and computational requirements.

Figure 7.5: Performance improves with the number of hidden units.

trainable weights
82K41K21K10K2 5K

70

75

80

85

90

95

100

w
or

d 
ac

cu
ra

cy
 (%

)

0 50 100 150 200 250 300 350 400
hidden units

Cross Validation set
Training set



7.3. Frame Level Training 109

7.3.1.3. Size of Input Window

The word accuracy of a system improves with the context sensitivity of its acoustic mod-
els.  One obvious way to enhance context sensitivity is to show the acoustic model not just
one speech frame, but a whole window of speech frames, i.e., the current frame plus the sur-
rounding context.  This option is not normally available to an HMM, however, because an
HMM assumes that speech frames are mutually independent, so that the only frame that has
any relevance is the current frame1; an HMM must rely on a large number of context-
dependent models instead (such as triphone models), which are trained on single frames
from corresponding contexts.  By contrast, a neural network can easily look at any number
of input frames, so that even context-independent phoneme models can become arbitrarily
context sensitive.  This means that it should be trivial to increase a network’s word accuracy
by simply increasing its input window size.

We tried varying the input window size from 1 to 9 frames of speech, using our MLP which
modeled 61 context-independent phonemes. Figure 7.6 confirms that the resulting word
accuracy increases steadily with the size of the input window.  We expect that the context
sensitivity and word accuracy of our networks would continue to increase with more input
frames, until the marginal context becomes irrelevant to the central frame being classified.

1. It is possible to get around this limitation, for example by introducing multiple streams of data in which each stream corre-
sponds to another neighboring frame, but such solutions are unnatural and rarely used.

Figure 7.6: Enlarging the input window enhances context sensitivity, and so improves word accuracy.

75

80

85

90

95

100

w
or

d 
ac

cu
ra

cy
 (%

)

0 1 2 3 4 5 6 7 8 9
number of input frames



7. Classification Networks110

In all of our subsequent experiments, we limited our networks to 9 input frames, in order to
balance diminishing marginal returns against increasing computational requirements.

Of course, neural networks can be made not only context-sensitive, but also context-
dependent like HMMs, by using any of the techniques described in Sec. 4.3.6. However, we
did not pursue those techniques in our research into classification networks, due to a lack of
time.

7.3.1.4. Hierarchy of Time Delays

In the experiments described so far, all of the time delays were located between the input
window and the hidden layer.  However, this is not the only possible configuration of time
delays in an MLP.  Time delays can also be distributed hierarchically, as in a Time Delay
Neural Network.  A hierarchical arrangement of time delays allows the network to form a
corresponding hierarchy of feature detectors, with more abstract feature detectors at higher
layers (Waibel et al, 1989); this allows the network to develop a more compact representa-
tion of speech (Lang 1989).  The TDNN has achieved such renowned success at phoneme
recognition that it is now often assumed that hierarchical delays are necessary for optimal
performance.  We performed an experiment to test whether this assumption is valid for con-
tinuous speech recognition.

We compared three networks, as shown in Figure 7.7:

(a) A simple MLP with 9 frames in the input window, 16 input coefficients per frame,
100 hidden units, and 61 phoneme outputs (20,661 weights total);

(b) An MLP with the same number of input, hidden, and output units as (a), but whose
time delays are hierarchically distributed between the two layers (38661 weights);

(c) An MLP like (b), but with only 53 hidden units, so that the number of weights is
approximately the same as in (a) (20519 weights).

All three networks were trained on 500 sentences and tested on 60 cross validation sen-
tences.  Surprisingly, the best results were achieved by the network without hierarchical
delays (although its advantage was not statistically significant).  We note that Hild (1994,
personal correspondence) performed a similar comparison on a large database of spelled let-
ters, and likewise found that a simple MLP performed at least as well as a network with
hierarchical delays.

Our findings seemed to contradict the conventional wisdom that the hierarchical delays in
a TDNN contribute to optimal performance.  This apparent contradiction is resolved by not-
ing that the TDNN’s hierarchical design was initially motivated by a poverty of training data
(Lang 1989); it was argued that the hierarchical structure of a TDNN leads to replication of
weights in the hidden layer, and these replicated weights are then trained on shifted subsets
of the input speech window, effectively increasing the amount of training data per weight,
and improving generalization to the testing set.  Lang found hierarchical delays to be essen-
tial for coping with his tiny database of 100 training samples per class (“B, D, E, V”);
Waibel et al (1989) also found them to be valuable for a small database of about 200 sam-
ples per class (/b,d,g/).  By contrast, our experiments (and Hild’s) used over 2,700 train-



7.3. Frame Level Training 111

ing samples per class.  Apparently, when there is such an abundance of training data, it is no
longer necessary to boost the amount of training data per weight via hierarchical delays.

In fact, it can be argued that for a large database, hierarchical delays will theoretically
degrade system performance, due to an inherent tradeoff between the degree of hierarchy
and the trainability of a network.  As time delays are redistributed higher within a network,
each hidden unit sees less context, so it becomes a simpler, less potentially powerful pattern
recognizer; however, as we have seen, it also receives more training, because it is applied
over several adjacent positions, with tied weights, so it learns its simpler patterns more reli-
ably.  Consequently, when relatively little training data is available, hierarchical time delays
serve to increase the amount of training data per weight and improve the system’s accuracy;
but when a large amount of training data is available, a TDNN’s hierarchical time delays
make the hidden units unnecessarily coarse and hence degrade the system’s accuracy, so a
simple MLP becomes theoretically preferable.  This seems to be what we observed in our
experiment with a large database.

7.3.1.5. Temporal Integration of Output Activations

A TDNN is distinguished from a simple MLP not only by its hierarchical time delays, but
also by the temporal integration of phoneme activations over several time delays.  Lang
(1989) and Waibel et al (1989) argued that temporal integration makes the TDNN time-shift
invariant, i.e., the TDNN is able to classify phonemes correctly even if they are poorly seg-
mented, because the TDNN’s feature detectors are finely tuned for shorter segments, and
will contribute to the overall score no matter where they occur within a phonemic segment.

Although temporal integration was clearly useful for phoneme classification, we won-
dered whether it was still useful for continuous speech recognition, given that temporal inte-

Figure 7.7: Hierarchical time delays do not improve performance when there is abundant training data.

100 100 53

Word Accuracy:
# Weights:

77% 75% 76%
21,000 39,000 21,000



7. Classification Networks112

gration is now performed by DTW over the whole utterance.  We did an experiment to
compare the word accuracy resulting from the two architectures shown in Figure 7.8.  The
first network is a standard MLP; the second network is an MLP whose phoneme level acti-
vations are summed over 5 frames and then normalized to yield smoothed phoneme activa-
tions.  In each case, we trained the network on data centered on each frame within the whole
database, so there was no difference in the prior probabilities.  Each network used softmax
activations in its final layer, and tanh activations in all preceding layers.  We emphasize that
temporal integration was performed twice in the second system — once by the network
itself, in order to smooth the phoneme activations, and later by DTW in order to determine a
score for the whole utterance.  We found that the simple MLP achieved 90.8% word accu-
racy, while the network with temporal integration obtained only 88.1% word accuracy.  We
conclude that TDNN-style temporal integration of phoneme activations is counterproduc-
tive for continuous speech recognition, because it is redundant with DTW, and also because
such temporally smoothed phoneme activations are blurrier and thus less useful for DTW.

7.3.1.6. Shortcut Connections

It is sometimes argued that direct connections from the input layer to the output layer,
bypassing the hidden layer, can simplify the decision surfaces found by a network, and thus
improve its performance.  Such shortcut connections would appear to be more promising for
predictive networks than for classification networks, since there is a more direct relationship
between inputs and outputs in a predictive network.  Nevertheless, we performed a simple

Figure 7.8: Temporal integration of phoneme outputs is redundant and not helpful.

Y

phonemes

Word Accuracy: 88.1%90.8%

no temporal
integration

phonemes

smoothed
phonemes



7.3. Frame Level Training 113

experiment to test this idea for our classification network.  We compared three networks, as
shown in Figure 7.9:

(a) a standard MLP with 9 input frames;

(b) an MLP augmented by a direct connection from the central input frame to the cur-
rent output frame;

(c) an MLP augmented by direct connections from all 9 input frames to the current
output frame.

All three networks were trained on 500 sentences and tested on 60 cross validation sen-
tences.  Network (c) achieved the best results, by an insignificantly small margin.  It was not
surprising that this network achieved slightly better performance than the other two net-
works, since it had 50% more weights as a result of all of its shortcut connections.  We con-
clude that the intrinsic advantage of shortcut connections is negligible, and may be
attributed merely to the addition of more parameters, which can be achieved just as easily by
adding more hidden units.

7.3.1.7. Transfer Functions

The choice of transfer functions (which convert the net input of each unit to an activation
value) can make a significant difference in the performance of a network. Linear transfer
functions are not very useful since multiple layers of linear functions can be collapsed into a
single linear function; hence they are rarely used, especially below the output layer. By con-
trast, nonlinear transfer functions, which squash any input into a fixed range, are much more
powerful, so they are used almost exclusively. Several popular nonlinear transfer functions
are shown in Figure 7.10.

Figure 7.9: Shortcut connections have an insignificant advantage, at best.

Word Accuracy:
# Weights:

81% 76% 82%
30,000 31,000 44,000



7. Classification Networks114

The sigmoid function, which has an output range [0,1], has traditionally served as the
“default” transfer function in neural networks.  However, the sigmoid has the disadvantage
that it gives a nonzero mean activation, so that the network must waste some time during
early training just pushing its biases into a useful range. It is now widely recognized that
networks learn most efficiently when they use symmetric activations (i.e., in the range
[-1,1]) in all non-output units (including the input units), hence the symmetric sigmoid or
tanh functions are often preferred over the sigmoid function. Meanwhile, the softmax func-
tion has the special property that it constrains all the activations to sum to 1 in any layer
where it is applied; this is useful in the output layer of a classification network, because the
output activations are known to be estimate of the posterior probabilities P(class|input),
which should add up to 1. (We note, however, that even without this constraint, our net-
works’ outputs typically add up to something in the range of 0.95 to 1.05, if each output
activation is in the range [0,1].)

Based on these considerations, we chose to give each network layer its own transfer func-
tion, so that we could use the softmax function in the output layer, and a symmetric or tanh
function in the hidden layer (we also normalized our input values to lie within the range
[-1,1]).  Figure 7.11 shows the learning curve of this “standard” set of transfer functions
(solid line), compared against that of two other configurations. (In these experiments, per-
formed at an early date, we trained on frames in sequential order within each of 3600 train-
ing sentences, updating the weights after each sentence; and we used a fixed, geometrically
decreasing learning rate schedule.)  These curves confirm that performance is much better
when the hidden layer uses a symmetric function (tanh) rather than the sigmoid function.

Figure 7.10: Four popular transfer functions, for converting a unit’s net input x to an activation y.

1

-1

-1

1

1

1

-1

-1

softmax

y 1
1 e x–+
-----------------=

sigmoid symmetric
sigmoid

y 2
1 e x–+
----------------- 1–=

yi
exi

exj

j
-
-------------=

yi
i
- 1= tanh

y tanh x( )=
2

1 e 2x–+
-------------------- 1–=



7.3. Frame Level Training 115

Also, we see that learning is accelerated when the output layer uses the softmax function
rather than an unconstrained function (tanh), although there is no statistically significant dif-
ference in their performance in the long run.

7.3.2. Input Representations

It is universally agreed that speech should be represented as a sequence of frames, result-
ing from some type of signal analysis applied to the raw waveform.  However, there is no
universal agreement as to which type of signal processing ultimately gives the best perform-
ance; the optimal representation seems to vary from system to system.  Among the most
popular representations, produced by various forms of signal analysis, are spectral (FFT)
coefficients, cepstral (CEP) coefficients, linear predictive coding (LPC) coefficients, and
perceptual linear prediction (PLP) coefficients.  Since every representation has its own
champions, we did not expect to find much difference between the representations; never-
theless, we felt obliged to compare some of these representations in the environment of our
NN-HMM hybrid system.

We studied the following representations (with a 10 msec frame rate in each case):

• FFT-16: 16 melscale spectral coefficients per frame.  These coefficients, produced
by the Fast Fourier Transform, represent discrete frequencies, distributed linearly
in the low range but logarithmically in the high range, roughly corresponding to

Figure 7.11: Results of training with different transfer functions in the hidden and output layers.

55

60

65

70

75

80

85

90

95

100

w
or

d 
ac

cu
ra

cy
 (%

)

0 1 2 3 4 5 6 7 8 9 10
epochs

hidden = sigmoid, output = softmax
hidden = tanh,       output = tanh
hidden = tanh,       output = softmax



7. Classification Networks116

the ranges of sensitivity in the human ear.  Adjacent spectral coefficients are mutu-
ally correlated; we imagined that this might simplify the pattern recognition task
for a neural network.  Viewed over time, spectral coefficients form a spectrogram
(as in Figure 6.5), which can be interpreted visually.

• FFT-32: 16 melscale spectral coefficients augmented by their first order differ-
ences (between t-2 and t+2).  The addition of delta information makes explicit
what is already implicit in a window of FFT-16 frames.  We wanted to see whether
this redundancy is useful for a neural network, or not.

• LDA-16: Compression of FFT-32 into its 16 most significant dimensions, by
means of linear discriminant analysis.  The resulting coefficients are uncorrelated
and visually uninterpretable, but they are dense in information content.  We
wanted to see whether our neural networks would benefit from such compressed
inputs.

• PLP-26: 12 perceptual linear prediction coefficients augmented by the frame’s
power, and the first order differences of these 13 values.  PLP coefficients are the
cepstral coefficients of an autoregressive all-pole model of a spectrum that has
been specially enhanced to emphasize perceptual features (Hermansky 1990).
These coefficients are uncorrelated, so they cannot be interpreted visually.

All of these coefficients lie in the range [0,1], except for the PLP-26 coefficients, which
had irregular ranges varying from [-.5,.5] to [-44,44] because of the way they were normal-
ized in the package that we used.

7.3.2.1. Normalization of Inputs

Theoretically, the range of the input values should not affect the asymptotic performance
of a network, since the network can learn to compensate for scaled inputs with inversely
scaled weights, and it can learn to compensate for a shifted mean by adjusting the bias of the
hidden units. However, it is well known that networks learn more efficiently if their inputs
are all normalized in the same way, because this helps the network to pay equal attention to
every input.  Moreover, the network also learns more efficiently if the inputs are normalized
to be symmetrical around 0, as explained in Section 7.3.1.7. (In an early experiment, sym-
metrical [-1..1] inputs achieved 75% word accuracy, while asymmetrical [0..1] inputs
obtained only 42% accuracy.)

We studied the effects of normalizing the PLP coefficients to a mean of 0 and standard
deviation of  for different values of , comparing these representations against PLP
inputs without normalization. In each case, the weights were randomly initialized to the
same range, . For each input representation, we trained on 500 sentences and
tested on 60 cross validation sentences, using a learning rate schedule that was separately
optimized for each case.  Figure 7.12 shows that the learning curves are strongly affected by
the standard deviation.  On the one hand, when , learning is erratic and performance
remains poor for many iterations.  This apparently occurs because large inputs lead to large
net inputs into the hidden layer, causing activations to saturate, so that their derivatives
remain small and learning takes place very slowly.   On the other hand, when , we
see that normalization is extremely valuable.  gave slightly better asymptotic

m m

1± fanin⁄

m 1*

m 0.5)
m 0.5=



7.3. Frame Level Training 117

results than , so we used  for subsequent experiments. Of course, this opti-
mal value of  would be twice as large if the initial weights were twice as small, or if the
sigmoidal transfer functions used in the hidden layer (tanh) were only half as steep.

We note that  implies that 95% of the inputs lie in the range [-1,1].  We found that
saturating the normalized inputs at [-1,1] did not degrade performance, suggesting that such
extreme values are semantically equivalent to ceilinged values.  We also found that quantiz-
ing the input values to 8 bits of precision did not degrade performance.  Thus, we were able
to conserve disk space by encoding each floating point input coefficient (in the range [-1,1])
as a single byte in the range [0..255], with no loss of performance.

Normalization may be based on statistics that are either static (collected from the entire
training set, and kept constant during testing), or dynamic (collected from individual sen-
tences during both training and testing). We compared these two methods, and found that it
makes no significant difference which is used, as long as it is used consistently.  Perform-
ance erodes only if these methods are used inconsistently during training and testing.  For
example, in an experiment where training used static normalization, word accuracy was
90% if testing also used static normalization, but only 84% if testing used dynamic normali-
zation.  Because static and dynamic normalization gave equivalent results when used con-
sistently, we conclude that dynamic normalization is preferable only if there is any
possibility that the training and testing utterances were recorded under different conditions
(such that static statistics do not apply to both).

Figure 7.12: Normalization of PLP inputs is very helpful.

0

10

20

30

40

50

60

70

80

w
or

d 
ac

cu
ra

cy
 (%

)

0 1 2 3 4 5 6 7 8 9 10
epochs

stdev 2
stdev 1.0
stdev .5
stdev .25
stdev .125
No normalization

m 0.5< m 0.5=
m

m 0.5=



7. Classification Networks118

7.3.2.2. Comparison of Input Representations

In order to make a fair comparison between our four input representations, we first nor-
malized all of them to the same symmetric range, [-1,1].  Then we evaluated a network on
each representation, using an input window of 9 frames in each case; these networks were
trained on 3600 sentences and tested on 390 sentences.  The resulting learning curves are
shown in Figure 7.13.

The most striking observation is that FFT-16 gets off to a relatively slow start, because
given this representation the network must automatically discover the temporal dynamics
implicit in its input window, whereas the temporal dynamics are explicitly provided in the
other representations (as delta coefficients).  Although this performance gap shrinks over
time, we conclude that delta coefficients are nevertheless moderately useful for neural net-
works.

There seems to be very little difference between the other representations, although PLP-
26 coefficients may be slightly inferior.  We note that there was no loss in performance from
compressing FFT-32 coefficients into LDA-16 coefficients, so that LDA-16 was always bet-
ter than FFT-16, confirming that it is not the number of coefficients that matters, but their
information content. We conclude that LDA is a marginally useful technique because it
orthogonalizes and reduces the dimensionality of the input space, making the computations
of the neural network more efficient.

Figure 7.13: Input representations, all normalized to [-1..1]: Deltas and LDA are moderately useful.

75

80

85

90

95

100

w
or

d 
ac

cu
ra

cy
 (%

)

0 1 2 3 4 5
epochs

FFT-16
FFT-32 (with deltas)
PLP-26 (with deltas)
LDA-16 (derived from FFT-32)



7.3. Frame Level Training 119

7.3.3. Speech Models

Given enough training data, the performance of a system can be improved by increasing
the specificity of its speech models.  There are many ways to increase the specificity of
speech models, including:

• augmenting the number of phones (e.g., by splitting the phoneme /b/ into /b:clo-
sure/ and /b:burst/, and treating these independently in the dictionary of word pro-
nunciations);

• increasing the number of states per phone (e.g., from 1 state to 3 states for every
phone);

• making the phones context-dependent (e.g., using diphone or triphone models);

• modeling variations in the pronunciations of words (e.g., by including multiple
pronunciations in the dictionary).

Optimizing the degree of specificity of the speech models for a given database is a time-
consuming process, and it is not specifically related to neural networks.  Therefore we did
not make a great effort to optimize our speech models.  Most of our experiments were per-
formed using 61 context-independent TIMIT phoneme models, with a single state per pho-
neme, and only a single pronunciation per word.  We believe that context-dependent phone
models would significantly improve our results, as they do for HMMs; but we did not have
time to explore them.  We did study a few other variations on our speech models, however,
as described in the following sections.

7.3.3.1. Phoneme Topology

Most of our experiments used a single state per phoneme, but at times we used up to 3
states per phoneme, with simple left-to-right transitions.  In one experiment, using 3600
training sentences and 390 cross validation sentences, we compared three topologies:

• 1 state per phoneme;

• 3 states per phoneme;

• between 1 and 3 states per phoneme, according to the minimum encountered dura-
tion of that phoneme in the training set.

Figure 7.14 shows that best results were obtained with 3 states per phoneme, and results
deteriorated with fewer states per phoneme. Each of these experiments used the same mini-
mum phoneme duration constraints (the duration of each phoneme was constrained, by
means of state duplication, to be at least 1/2 the average duration of that phoneme as meas-
ured in the training set); therefore the fact that the 1...3 state model outperformed the 1 state
model was not simply due to better duration modeling, but due to the fact that the additional
states per phoneme were genuinely useful, and that they received adequate training.



7. Classification Networks120

7.3.3.2. Multiple Pronunciations per Word

It is also possible to improve system performance by making the dictionary more flexible,
e.g., by allowing multiple pronunciations per word. We tried this technique on a small scale.
Examining the results of a typical experiment, we found that the words “a” and “the” caused
more errors than any other words. This was not surprising, because these words are ubiqui-
tous and they each have at least two common pronunciations (with short or long vowels),
whereas the dictionary listed only one pronunciation per word. Thus, for example, the word
“the” was often misrecognized as “me”, because the dictionary only provided “the” with a
short vowel (/DX AX/).

We augmented our dictionary to include both the long and short pronunciations for the
words “a” and “the”, and retested the system. We found that this improved the word accu-
racy of the system from 90.7% to 90.9%, by fixing 11 errors while introducing 3 new errors
that resulted from confusions related to the new pronunciations. While it may be possible to
significantly enhance a system’s performance by a systematic optimization of the dictionary,
we did not pursue this issue any further, considering it outside the scope of this thesis.

7.3.4. Training Procedures

We used backpropagation to train all of our networks, but within that framework we
explored many variations on the training procedure. In this section we present our research
on training procedures, including learning rate schedules, momentum, data presentation and
update schedules, gender dependent training, and recursive labeling.

Figure 7.14: A 3-state phoneme model outperforms a 1-state phoneme model.

80

82

84

86

88

90

92

94

96

98

100
w

or
d 

ac
cu

ra
cy

 (%
)

0 1 2 3 4 5
epochs

1 state per phoneme
1..3 states per phoneme
3 states per phoneme



7.3. Frame Level Training 121

7.3.4.1. Learning Rate Schedules

The learning rate schedule is of critical importance when training a neural network.  If the
learning rate is too small, the network will converge very slowly; but if the learning rate is
too high, the gradient descent procedure will overshoot the downward slope and enter an
upward slope instead, so the network will oscillate.  Many factors can affect the optimal
learning rate schedule of a given network; unfortunately there is no good understanding of
what those factors are.  If two dissimilar networks are trained with the same learning rate
schedule, it will be unfair to compare their results after a fixed number of iterations, because
the learning rate schedule may have been optimal for one of the networks but suboptimal for
the other.  We eventually realized that many of the conclusions drawn from our early exper-
iments were invalid for this reason.

Because of this, we finally decided to make a systematic study of the effect of learning rate
schedules on network performance. In most of these experiments we used our standard net-
work configuration, training on 3600 sentences and cross validating on 60 sentences.  We
began by studying constant learning rates.  Figure 7.15 shows the learning curves (in terms
of both frame accuracy and word accuracy) that resulted from constant learning rates in the
range .0003 to .01.  We see that a learning rate of .0003 is too small (word accuracy is still
just 10% after the first iteration of training), while .01 is too large (both frame and word
accuracy remain suboptimal because the network is oscillating).  Meanwhile, a learning rate
of .003 gave best results at the beginning, but .001 proved better later on.  From this we con-
clude that the learning rate should decrease over time, in order to avoid disturbing the net-
work too much as it approaches the optimal solution.

Figure 7.15: Constant learning rates are unsatisfactory; the learning rate should decrease over time.

.003

0

10

20

30

40

50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

0 1 2 3 4 5 6 7 8 9 10
epochs

learnRate = .01
learnRate = .003
learnRate = .001
learnRate = .0003

frame
acc.

word
acc.

.001



7. Classification Networks122

The next question is, exactly how should the learning rate shrink over time?  We studied
schedules where the learning rate starts at .003 (the optimal value) and then shrinks geomet-
rically, by multiplying it by some constant factor less than 1 after each iteration of training.
Figure 7.16 shows the learning rates that resulted from geometric factors ranging from 0.5
to 1.0.  We see that a factor of 0.5 (i.e., halving the learning rate after each iteration) initially
gives the best frame and word accuracy, but this advantage is soon lost, because the learning
rate shrinks so quickly that the network cannot escape from local minima that it wanders
into.  Meanwhile, as we have already seen, a factor of 1.0 (a constant learning rate) causes
the learning rate to remain too large, so learning is unstable. The best geometric factor
seems to be an intermediate value of 0.7 or 0.8, which gives the network time to escape from
local minima before the learning rate effectively shrinks to zero.v

Although a geometric learning rate schedule is clearly useful, it may still be suboptimal.
How do we know that a network really learned as much as it could before the learning rate
vanished? And isn’t it possible that the learning rate should shrink nongeometrically, for
example, shrinking by 60% at first, and later only by 10%? And most importantly, what
guarantee is there that a fixed learning rate schedule that has been optimized for one set of
conditions will still be optimal for another set of conditions?  Unfortunately, there is no such
guarantee.

Therefore, we began studying learning rate schedules that are based on dynamic search.
We developed a procedure that repeatedly searches for the optimal learning rate during each

Figure 7.16: Geometric learning rates (all starting at LR = .003) are better, but still may be suboptimal.

55

60

65

70

75

80

85

90

ac
cu

ra
cy

 (%
)

1 2 3 4 5 6 7 8 9 10
epochs

learnRate *= 1.0/epoch
learnRate *= .8/epoch
learnRate *= .7/epoch
learnRate *= .6/epoch
learnRate *= .5/epoch

frame
acc.

word
acc.



7.3. Frame Level Training 123

iteration; the algorithm is as follows. Beginning with an initial learning rate in iteration #1,
we train for one iteration and measure the cross validation results.  Then we start over and
train for one iteration again, this time using half the learning rate, and again measure the
cross validation results.  Comparing these two results, we can infer whether the optimal
learning rate for iteration #1 is larger or smaller than these values, and accordingly we either
double or halve the nearest learning rate, and try again.  We continue doubling or halving the
learning rate in this way until the accuracy finally gets worse for some learning rate. Next
we begin interpolating between known points (x = learning rate, y = accuracy), using a
quadratic interpolation on the best data point and its left and right neighbor, to find succes-
sive learning rates to try.  That is, if the three best points are , , and

, such that the learning rate  gave the best result , then we first solve for the
parabola  that goes through these three points using Kramer’s Rule:

and then we find the highest point of this parabola,

(74)

so that  is the next learning rate to try.  The search continues in this way until the expected
improvement  is less than a given threshold, at which point it becomes a waste of
time to continue refining the learning rate for iteration #1.  (If two learning rates result in
indistinguishable performance, we keep the smaller one, because it is likely to be preferable
during the next iteration.) We then move on to iteration #2, setting its initial learning rate set
to the optimal learning rate from iteration #1, and we begin a new round of search.

We note in passing that it is very important for the search criterion to be the same as the
testing criterion.  In an early experiment, we compared the results of two different searches,
based on either word accuracy or frame accuracy.  The search based on word accuracy
yielded 65% word accuracy, but the search based on frame accuracy yielded only 48% word
accuracy.  This discrepancy arose partly because improvements in frame accuracy were too
small to be captured by the 2% threshold, so the learning rate rapidly shrank to zero; but it
was also partly due to the fact that the search criterion was inconsistent with and poorly cor-
related with the testing criterion.  All of our remaining experiments were performed using
word accuracy as the search criterion.

Because the search procedure tries several different learning rates during each iteration of
training, this procedure obviously increases the total amount of computation, by a factor that
depends on the arbitrary threshold.  We typically set the threshold to a 2% relative margin,
such that computation time typically increased by a factor of 3-4.

x1 y1,( ) x2 y2,( )
x3 y3,( ) x2 y2

y ax2 bx c+ +=

a

y1 x1 1

y2 x2 1

y3 x3 1

D
--------------------------= b

x1
2 y1 1

x2
2 y2 1

x3
2 y3 1

D
--------------------------= c

x1
2 x1 y1

x2
2 x2 y2

x3
2 x3 y3

D
-----------------------------=

D

x1
2 x1 1

x2
2 x2 1

x3
2 x3 1

=

x̂ ŷ,( )
b–

2a
------ 4ac b2–

4a
---------------------,¤ ¦

£ ¥=

x̂
ŷ y2–( )



7. Classification Networks124

Figure 7.17 illustrates the search procedure, and its advantage over a geometric schedule.
Since the search procedure increases the computation time, we performed this experiment
using only 500 training sentences.  The lower learning curve in Figure 7.17 corresponds to a
fixed geometric schedule with a factor of 0.7 (recall that this factor was optimized on the full
training set).  The upper learning curves correspond to the search procedure.  Different types
of lines correspond to different multiplicative factors that were tried during the search pro-
cedure; for example, a solid line corresponds to a factor of 1.0 (i.e., same learning rate as in
the previous iteration), and a dashed line corresponds to a factor of 0.5 (i.e., half the learning
rate as in the previous iteration). The numbers along the upper and lower curves indicate the
associated learning rate during each iteration.  Several things are apparent from this graph:

• The search procedure gives significantly better results than the geometric schedule.
Indeed, the search procedure can be trusted to find a schedule that is nearly optimal
in any situation, outperforming virtually any fixed schedule, since it is adaptive.

• The initial learning rate of .003, which was optimal in an earlier experiment, is not
optimal anymore, because the experimental conditions have changed (in this case,
the number of training sentences has decreased).  Because performance is so sensi-
tive to the learning rate schedule, which in turn is so sensitive to experimental con-
ditions, we conclude that it can be very misleading to compare the results of two
experiments that were performed under different conditions but which used the

Figure 7.17: Searching for the optimal learning rate schedule.

0

10

20

30

40

50

60

70
wo

rd
 ac

cu
ra

cy
 (%

)

0 1 2 3 4 5 6
epochs

learnRate *= 0.7
learnRate *= 0.125
learnRate *= 0.25
learnRate *= 0.5
learnRate *= 1.0
learnRate *= 2.0+

.0001.0001.0001

.0003

.0010

.0090

.0030

.0021

.0015

.0010
.0007

.0005



7.3. Frame Level Training 125

same fixed learning rate schedule.  We realized in hindsight that many of our early
experiments (not reported in this thesis) were flawed and inconclusive for this rea-
son.  This reinforces the value of dynamically searching for the optimal learning
rate schedule in every experiment.

• The optimal learning rate schedule starts at .009 and decreases very rapidly at first,
but ultimately asymptotes at .0001 as the word accuracy also asymptotes.  (Notice
how much worse is the accuracy that results from a learning rate multiplied by a
constant 1.0 factor [solid lines] or even a 0.5 factor [dashed lines], compared to the
optimal factor, during the early iterations.)

The fact that the optimal learning rate schedule decreases asymptotically suggested one
more type of fixed learning rate schedule — one that decays asymptotically, as a function of
the cross validation performance.  We hypothesized a learning rate schedule of the form

(75)

where  is the initial learning rate (determined by search),  is the word error rate
on the cross validation set (between 0.0 and 1.0), and  is a constant power.  Note that this
schedule begins with ; it asymptotes whenever the cross validation performance asymp-
totes; the asymptotic value can be controlled by k; and if  = 0, then we also have

 = 0.  We performed a few experiments with this learning rate schedule (using  = 5 to
approximate the above optimized schedule); but since this sort of asymptotic schedule
appeared less reliable than the geometric schedule, we didn’t pursue it very far.

Figure 7.18: Performance of different types of learning rate schedules: Search is reliably optimal.

lr lr0 wordErrk
u=

lr0 wordErr
k

lr0
wordErr

lr k

84

86

88

90

92

94

96

98

100

w
or

d 
ac

cu
ra

cy
 (%

)

0 1 2 3 4 5 6 7 8 9 10
epochs

learnRate = constant
learnRate = asymptotic
learnRate = geometric
learnRate = search



7. Classification Networks126

Figure 7.18 directly compares the performance of each of the above four learning rate
schedules — constant, geometric, search, and asymptotic — using a training set of 2590
male sentences, and a cross validation set of 240 male sentences.  All four schedules start
with the optimal initial learning rate of .01.  We see that a constant learning rate schedule
(.01) yields the worst performance, because this value remains too high and causes the net-
work to oscillate after the first iteration.  The asymptotic schedule begins as optimally as the
search schedule, because its learning rate immediately shrinks by more than half; but its
later performance is erratic, because its asymptotic learning rate (.00134) is still too high,
due to a poor choice of k. The best performance is given by either the search or geometric
schedule. Note that the gap between the search and geometric schedules, so wide in the ear-
lier experiment, has now virtually disappeared, because we carefully initialized the geomet-
ric schedule with an optimal learning rate this time.

By comparing the various learning rate schedules discovered by our search procedure
under different conditions, we have observed that the optimal learning rate schedule is
affected by at least the following factors:

• Number of training sentences. A larger training set implies smaller learning rates
in each iteration, as shown in Figure 7.19.  This is primarily because the optimal
learning rate curve decays a little after each weight update, and larger training sets
travel further down this curve during each iteration, as shown in Figure 7.20.
(Interestingly, Figure 7.20 also suggests that learning might be more efficient if we
adjusted the learning rate after each sample, rather than after each iteration; but we
did not have time to explore this idea.)

Figure 7.19: Learning rate schedules (as a function of training set size), as optimized by search.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

op
tim

al
 le

ar
ni

ng
 ra

te

1 2 3 4 5 6
epochs

3600 training sentences
2000 training sentences
1000 training sentences
500 training sentences
200 training sentences
100 training sentences



7.3. Frame Level Training 127

• Normalization of inputs.  A greater standard deviation in the inputs implies larger
learning rates, to compensate for the fact that the hidden units become saturated so
the derivative of the sigmoid vanishes so learning is inhibited.  (Unfortunately,
these larger learning rates also lead to network oscillation, as we saw in Figure
7.12.)

• Transfer functions in output layer.  Softmax outputs can initially use a larger
learning rate than tanh outputs, apparently because softmax is “safer” than tanh, in
the sense that the resulting output activations form better estimates of posterior
probabilities during early training than tanh outputs do, since they are guaranteed
to sum to 1.

• Number of units.  It appears that more input units, regardless of their representa-
tion, imply smaller learning rates; and more hidden units imply a slower decay
rate.  Overall, it appears that the learning rate schedule becomes gentler as the net-
work increases in size and its statistical fluctuations are smoothed out.

We found that the optimal learning rate schedule was less affected by other factors, such
as the input representation, the use of shortcut connections, the hierarchy of delays, the
speaker population (male vs. everyone), or the labels used during training. It remains
unclear whether the schedule is affected by other factors, such as the weight update fre-
quency or the use of different error criteria.

Figure 7.20: A larger training set should use smaller learning rates per epoch.

1 2 3 40

0 1 2 3

lr1

lr2

lr3
lr4lr1

lr2

lr3
samples

epochs (small)

epochs (large)

le
ar

ni
ng

 ra
te

optimal learning rate per sample



7. Classification Networks128

7.3.4.2. Momentum and Other Heuristics

Momentum is often a useful technique for hastening convergence in a neural network.
Because it pushes weights further in a previously useful direction, momentum is most effec-
tive when the direction of change is fairly stable from one update to the next, implying that
weights should not be updated after each training sample, but after a large number of train-
ing samples. Unfortunately, while momentum may increase the speed of convergence, it
also destabilizes the learning rate schedule, and so it can be tricky to use.  We tried using
momentum in a few early experiments, in which training samples (frames) were presented
in sequential order within a sentence rather than randomized order, and weights were
updated after each sentence (~300 frames) rather than after each frame.  We found that a
momentum value of 0.9, which is often optimal in other domains, was too high and seri-
ously degraded performance.  A smaller value of 0.5 seemed somewhat helpful during the
first iteration, but made no difference in subsequent iterations.  We shortly thereafter aban-
doned the use of momentum, not wishing to complicate our system with a marginally useful
technique.

Another technique that is often used to increase the convergence rate is a derivative offset.
This is a value (typically 0.1) that is added to the derivative of the sigmoid function (one of
the multiplicative factors in backpropagation), so that learning does not stall for saturated
units whose sigmoid derivative is near zero.  We performed some early experiments with a
sigmoid derivative of 0.1, but we found it to be unnecessary for our data, so we soon
stopped using it.

Networks that are trained as classifiers sometimes get stuck in a suboptimal corner of
weight space, because it is difficult to learn the binary targets 0.0 and 1.0 (which lie in the
saturation regions of a sigmoid) unless the network develops huge, dangerous weights.
Many researchers avoid this problem by introducing a target offset, redefining the targets as
0.1 and 0.9 (well within the active region of the sigmoid), so the network can learn to clas-
sify the data using smaller, safer weights.  We tried using target offsets for a while, but even-
tually realized that it undermined the ability of our system to estimate posterior
probabilities.  For example, after training had asymptoted, our 61 output units summed to
something closer to  than to , so
our outputs didn’t resemble probabilities of any kind, and we were unable to take advantage
of the probabilistic framework of HMMs.  We concluded that target offsets are useful only
in domains whose class distributions have virtually no overlap, such that the posterior prob-
abilities that will be estimated by the network’s outputs are virtually binary, subjecting the
network to the problems of saturation.  In the case of speech, class distributions overlap con-
siderably, so target offsets are unnecessary, and even harmful.

7.3.4.3. Training Schedule

A training schedule has many dimensions; among these are the sequence of presentation
of the training samples, and the weight update frequency.  We will treat these two issues
together, because we studied them together rather than independently.

Training samples may be presented in linear sequence (as they occur naturally) or in ran-
domized sequence, where randomization may occur at the level of frames, sentences, and/or

60 0.1( ) 1 0.9( )+( ) 6.9= 60 0.0( ) 1 1.0( )+( ) 1.0=



7.3. Frame Level Training 129

speakers. A totally randomized sequence is preferable because it exposes the network to the
greatest diversity of data in any period of time, so the network is less liable to forget what it
previously learned about any region of acoustic space.

Meanwhile, weights may be updated after every N training samples, for any value of N
between 1 and Nmax, i.e., the number of samples in the whole training set.  (The case of N=1
is often called online training, while N>1 is called batch training.)  Smaller values of N
imply more randomness in the weights’ trajectory, which means there is a lot of wasted
movement (although this also helps the network escape from local minima); larger values of
N imply a smoother trajectory, but longer intervals between weight updates.  Fastest learn-
ing often results from using N << Nmax, especially when training on a large database of fairly
redundant data, as in the speech domain.

Our experiments did not cleanly separate these two dimensions of the training schedule,
but instead considered them together.  We worked with two kinds of training schedules,
based on frames or sentences. In frame-based training, we presented frames in random
order, and updated the weights after each frame.  In sentence-based training, we presented
frames in sequential order within a sentence, and updated the weights at the end of each sen-
tence. Note that in both cases, we have N << Nmax = 1.2 million frames; but the former case
uses online training, while the latter uses batch training (with ).

In an early experiment, using sentence-based training (with geometric learning rates), we
measured the benefit of randomizing the training sentences.  The 3600 training sentences,
representing an average of 36 sentences from each of 100 speakers, were ordered either seri-
ally (36 at a time from each speaker) or randomly (out of the 3600 sentences).  We found
that randomized sequencing reduced the error rate by about 15% during each iteration,
asymptoting at 82% word accuracy vs. 79% in the serial case.  We conclude that it is impor-
tant to randomize the training sentences, because grouping them by speaker allows the net-
work to focus for too long on the acoustic characteristics of the current speaker, eroding
performance on the other speakers.

In later experiments, we found frame-based training to be significantly better than sen-
tence-based training.  In a direct comparison between these two approaches, using 3600
training sentences (with separately optimized learning rate schedules), frame-based training
gave about 30% fewer errors than sentence-based training in each iteration (e.g., 88% vs
82% word accuracy after 3 iterations).  However, further experiments would be required to
determine how much of this improvement was due to randomized vs. serial frame-level
sequencing, and how much was due to online vs. batch updating.  We note that it has yet to
be established whether online updating (N=1) really gives faster learning than batch updat-
ing with a small value of N (e.g, 10, 100, or even 300).

7.3.4.4. Gender Dependence

Speech recognition is difficult because of overlapping distributions.  This problem is exac-
erbated in a speaker-independent system, because everyone has different voice characteris-
tics, so the phonetic class distributions are further spread out, increasing their overlap and
confusability.  Recognition accuracy can be improved if the overlapping distributions can be
teased apart by some form of clustering.  A simple and elegant way to do this in a speaker

N 3005



7. Classification Networks130

independent system is to cluster the data by the speaker’s gender.  In other words, we can
train one system on male data, and another on female data; subsequently we can recognize
speech from an unknown speaker by first classifying the speaker’s gender, and then apply-
ing the appropriate gender-dependent recognizer. This approach is particularly appealing
because males and females have substantially different voice characteristics, so they signifi-
cantly worsen the overlap and they are very easy to distinguish.  (For example, Konig and
Morgan (1993) found that a simple neural network can identify the gender of an utterance
with 98.3% accuracy.)

Figure 7.21 shows the performance of three networks: a male-only network, a female-only
network, and a mixed-gender network.  The male network was trained on 2590 male sen-
tences and tested on 240 male sentences; the female network was trained on 1060 female
sentences and tested on 100 female sentences; and the mixed network was trained on 3600
mixed sentences and tested on 390 mixed sentences.  We see that each of the gender depend-
ent networks outperforms the mixed network, by a significant margin. The fact that the male
and female networks outperformed the mixed network despite their relative poverty of train-
ing data testifies to the separability of male and female distributions.

We note that cross-gender testing gave poor results.  For example, a network trained on
male data achieved 89% word accuracy on male data, but only 61% on female data.  For this
reason, it may not even be necessary to identify the gender of the speaker with a separate
network; it may work just as well to present the unknown utterance to both the male and
female network, and to return the result from the system that obtained the highest DTW
score.  However, we did not have time to confirm the merit of this approach.

Figure 7.21: Gender dependent training improves results by separating two overlapping distributions.

82

84

86

88

90

92

94

96

98

100

w
or

d 
ac

cu
ra

cy
 (%

)

0 1 2 3 4 5 6 7 8 9
epochs

combined
males only
females only



7.3. Frame Level Training 131

7.3.4.5. Recursive Labeling

In order to train a classifier network, we require a phonetic label (target class) for each
frame in the database.  These labels can be generated by any speech recognizer, by perform-
ing a Viterbi alignment between each utterance and its known phonetic pronunciation, thus
identifying the correspondence between frames and states.  The quality of the labels that are
provided will affect the resulting word accuracy, i.e., high-quality labels will give better
results than sloppy labels.  As a system learns, it becomes capable of producing better and
better labels itself; indeed, at some point it may even become capable of producing better
labels than the ones it was trained on.  When that happens, the system may be further
improved by training it on these recursive labels instead of the original labels.  This cycle
can be repeated to the point of final optimality.

Our networks were initially trained on phonetic labels generated by SRI’s DECIPHER
system, provided to us through ICSI.  (We note that DECIPHER achieved 86% word accu-
racy with the context-independent phone models from which these labels were generated.)
We used these labels to train a network, and then we generated our own “second generation”
labels via Viterbi alignment of the training data.  We then used these second generation
labels to train a gender-dependent network, and generated “third generation” labels.  Figure
7.22 shows the performance of a gender-dependent network that was subsequently trained
on each of these three generations of labels, under otherwise identical conditions (geometric
learning rate schedule, male speakers).  We see that each generation of labels improved the
word accuracy somewhat, so the third generation resulted in 5-10% fewer errors than the
first generation.  We conclude that recursive labeling is another valuable technique for
enhancing word accuracy.

Figure 7.22: Recursive labeling optimizes the targets, and so improves accuracy.

82

84

86

88

90

92

94

96

98

100

w
or

d 
ac

cu
ra

cy
 (%

)

0 1 2 3 4 5 6 7 8 9 10
epochs

3rd generation labels
2nd generation labels
1st generation labels



7. Classification Networks132

7.3.5. Testing Procedures

A neural network, no matter how well it has been trained, will yield poor results unless it
is used properly during testing.  In this section we discuss the effectiveness of different test-
ing procedures for our system.

7.3.5.1. Transforming the Output Activations

One might suggest at least three plausible ways to use the output activations of a classifier
network to perform continuous speech recognition:

1. Apply DTW directly to these activations (scoring hypotheses by summing the acti-
vations along the alignment path).  This approach might be prompted by a visual
inspection of the output activations, noting that the network generally shows a
high activation for the correct phoneme at each frame, and low activation for all
incorrect phonemes.

2. Apply DTW to the logarithms of the activations (summing the log activations
along the alignment path).  This approach is motivated by the fact that the activa-
tions are estimates of probabilities, which should be multiplied rather than added,
implying that their logarithms should be added.

3. Apply DTW to log (Yi/P(i)), i.e., divide the activations by the priors (summing the
log quotients along the alignment path).  This approach is motivated by the fact
that the activations are estimates of posterior probabilities.  Recall that in an
HMM, emission probabilities are defined as likelihoods P(x|c), not posteriors
P(c|x); therefore, in an NN-HMM hybrid, during recognition, the posteriors should
first be converted to likelihoods using Bayes Rule:

where P(x) can be ignored during recognition because it’s a constant for all states
in any given frame, so the posteriors P(c|x) may be simply divided by the priors
P(c).

Each of these successive approaches is better justified than the previous ones; therefore we
would expect the last approach to give the best results.  This was confirmed by a direct com-
parison, which gave the following results:

DTW value Word Accuracy
74.9%
90.6%
91.5%

Table 7.1: Performance improves when output activations are transformed properly.

P x c( )
P c x( ) P x( )u

P c( )
------------------------------------=

Yi
Yilog

Yi P i( )⁄( )log



7.3. Frame Level Training 133

7.3.5.2. Duration Constraints

In a standard HMM, the state transition probabilities aij are reestimated during training,
and these probabilities influence the duration of each state during recognition.  Unfortu-
nately, as we saw earlier, a self-transition with a constant probability implies an exponen-
tially decaying duration model, rather than a more accurate bell-shaped model; moreover, it
is well known that duration modeling plays a relatively small role in recognition accuracy.
Therefore, in our NN-HMM hybrid, we chose to ignore the issue of reestimation of aij, and
we simply assumed a uniform probability distribution for all aij.  Meanwhile, we explored
other types of duration constraints, i.e., hard minimum and maximum duration constraints at
both the phoneme and word level, and probabilistic duration constraints applied to segments
rather than frames.

In all cases, the durational statistics were obtained from the labeled training data. How-
ever, minimum phoneme durations taken from the training data proved not to be very help-
ful, since there is always some instance of each phoneme that is labeled with an essentially
zero duration, rendering that minimum duration constraint useless during testing.  Therefore
we assigned a minimum duration to each phoneme equal to  times the phoneme’s average
duration in the training set; we obtained best results with  = 0.5 (searching at intervals of
0.1), so we used this value in all of our experiments.

7.3.5.2.1. Phoneme Duration Constraints

We first studied the effect of hard minimum and maximum phoneme duration constraints.
There are at least two ways to impose such constraints:

1. Enforce constraints dynamically. That is, during DTW, keep track of the current
duration of each state in each frame (implicit in the backtrace information), and
place special restrictions on the final state of each phoneme, forcing it to self-tran-
sition until the phoneme has met its minimum duration requirement, or forcing it
to exit-transition when the phoneme has met its maximum duration requirement.

2. Duplicate the states, and impose a pattern of transitions that enforce the duration
constraints, as illustrated in Figure 7.23. Panel (a) shows how to use state duplica-
tion to enforce minimum duration constraints only; panel (b) shows how to enforce
both minimum and maximum duration constraints.

Of these two approaches, state duplication clearly requires more memory, but it has the
advantage that it gives correct results while the other method does not. The suboptimality of
dynamically enforced constraints is demonstrated by the following examples.

Figure 7.23: Duration constraints via state duplication. (a) 4 or more frames. (b) 4 to 8 frames.

j
j

(a) (b)



7. Classification Networks134

Suppose we have a word with 3 states, and a minimum duration constraint of 2 frames per
state.  Figure 7.24 shows how this would be modeled using (a) dynamically enforced con-
straints and (b) state duplication. The solid line shows the only legal path through a 6-frame
matrix. If, at the circled point in Figure 7.24(a), the diagonal predecessor is better than the
horizontal predecessor, so that the dotted path is established to that point, then it will later be
impossible to recover from that local decision, and the entire word will be rejected. By con-
trast, as shown in Figure 7.24(b), state duplication allows a diagonal path to proceed straight
through this word with some cumulative score, so the word will never be rejected outright.
Thus, state duplication is a safer strategy for implementing minimum duration constraints.

Experimentally, we found that minimum duration constraints were extremely helpful if
implemented by state duplication, but actually harmful if they were enforced dynamically.
For example, in a baseline experiment, when training on 3600 sentences and testing on 390
sentences, we obtained 74.5% word accuracy without duration constraints.  When we
imposed minimum duration constraints using state duplication, word accuracy jumped to
86.0%; but when we dynamically enforced the minimum duration constraints, accuracy
degraded to 71.7%, apparently because too many words were being prematurely rejected on
the basis of local decisions.

Maximum duration constraints are likewise more safely implemented with state duplica-
tion, as shown by the following example. Suppose we have a word with 3 states, and a max-
imum duration constraint of 4 frames per state. Figure 7.25 shows how this would be
modeled using (a) dynamically enforced constraints and (b) state duplications. In Figure
7.25(a), if point a has a local score of 1 while point b has a local score of 2, then point c will
choose b as its predecessor, establishing the path along the solid line.  However, this local
decision, combined with the maximum duration constraint of 4 frames, will prevent the path
from reaching point d which has a local score of 3, and instead we will have to settle for
point e which has a local score of only 1, so the cumulative score along the solid line will be
worse than if the transition into the middle state had been delayed by one frame.  By con-
trast, Figure 7.25(b) shows that state duplication permits entry into the middle state to be
postponed, so we can determine the true optimal path (dashed line).

Figure 7.24: Minimum phoneme duration constraints. Only state duplication gives optimal results.

(a) Dynamically enforced constraints,

(b) State duplication.

minimum 2 frames per state.



7.3. Frame Level Training 135

Because the phonemes in our hypotheses tend to be too short rather than too long, we did
not expect maximum phoneme duration constraints to make much difference.  Indeed, we
found experimentally that enforcing maximum duration constraints dynamically had no
effect on word accuracy.  Due to a lack of time we did not investigate state duplication, but
we do not expect that it would make much difference either.

We also tried phoneme duration constraints based on segment duration probabilities,
instead of hard minimum and maximum limits. In this approach, we used the labeled train-
ing data to construct a histogram of durations for each phoneme (up to 25 frames), as illus-
trated in Figure 7.26 for some typical phonemes.  Then, during recognition, whenever
transitioning out of the final state of any phoneme, we added a penalty of ,

Figure 7.25: Maximum phoneme duration constraints. Only state duplication gives optimal results.

Figure 7.26: Histogram of durations of some typical phonemes.

a

b c d

e

1

2 3

1

a 1

b 2 c

c

c

c

b 2

b 2

b 2 d 3

d 3

d 3

d 3

e 1

(a) Dynamically enforced constraints,
maximum 4 frames per state.

(b) State duplication.

g P dur( )logu

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pr
ob

ab
ili

ty

0 5 10 15 20 25
duration (frames)

phoneme /S/
phoneme /AH/
phoneme /B/



7. Classification Networks136

where dur is the segment duration of that phoneme (implicit in the backtrace),  is
the probability of that duration for that phoneme (according to the appropriate histogram),
and  is a scaling factor.  Experiments showed that  = 1 was the best scaling factor, and
that the best word accuracy we could achieve with this approach was 85.4%.  We concluded
that hard minimum and maximum limits are more effective than a probabilistic model, so
we reverted to that approach in our subsequent experiments.

7.3.5.2.2. Word Duration Constraints

We tried extending hard duration constraints to the word level, using both state duplication
and dynamic enforcement, with only limited success.  At the word level, there is no longer
any guarantee that state duplication will give optimal results, because we must make an
arbitrary decision about how to distribute the duplication of states over all the phonemes of
the word, and this distribution may be suboptimal.  In our experiments with state duplica-
tion, we tried distributing the states evenly over all the phonemes (or evenly distributing the
“leftover” states if minimum phoneme duration constraints were also used).  We found that
this gave worse results than using no contraints at all, i.e., word accuracy degraded from
74.5% to 70.6%, or from 86.0% to 84.3% if minimum phoneme duration constraints were
also being used.  This degradation probably reflected the fact that states should be distrib-
uted not evenly, but in proportion to their average phoneme duration, or in some other statis-
tical fashion; but we did not have time to investigate this further.

We then studied word duration constraints using dynamic enforcement, i.e., keeping track
of the current duration of each word in each frame (implicit in the backtrace from the final
state of the word), and requiring the final state to self-loop until it met the word’s minimum
duration requirement.  This improved the word accuracy from 74.5% to 79.8%, or even to
85.7% when combined with phoneme duration constraints.  Note, however, that this final
result was a degradation from 86.0% when using only phoneme duration constraints.  We
further extended this approach by dynamically enforcing up to three minimum durations for
each word, corresponding to three different amounts of word context, i.e., the word by itself,
vs. the word preceded by any other word, vs. the word preceded by any other two words.
This was motivated by our observation that some hypotheses contained strings of adjacent
words all having impossibly short durations.  Unfortunately, each of these additional con-
straints further degraded word accuracy, from 86.0% without word constraints, to 85.7%,
85.3%, and 85.0% respectively (and cumulatively) using single, double, and triple minimum
word duration constraints.  Maximum word durations also degraded performance, for exam-
ple from 85.0% to 81.5% accuracy.

We believe that word duration constraints were dangerous largely because they were
based on insufficient statistics.  All of our duration constraints were derived from the 3600
training sentences.  While this represents an average of 3000 instances of each of our 61
phonemes, it represents an average of only 30 samples of each of the 1000 words in our
vocabulary, which is a dangerously small population.  We tried to compensate for this fact
by relaxing the constraints, e.g., shaving 30% off the minimum word durations and adding
30% to the maximum word durations seen in the training set; but this gave no significant
improvement.  We conclude that hard word duration constraints are not reliable enough to
be useful.

P dur( )

g g



7.3. Frame Level Training 137

7.3.5.3. Word Transition Penalties

As in a standard HMM, we found it useful to balance the acoustic modeling against the
language modeling by using word transition penalties, i.e., adding a constant penalty during
every transition out of any word.  Values of -15 to -20 generally gave best results, when we
performed Viterbi search on .  (Values of -2 to -4 were better when we per-
formed Viterbi search on  directly.)

7.3.6. Generalization

We conclude our discussion of frame level training by presenting some results on general-
ization. Of course performance will always be better on the training set than on the test set.
If a system were trained on just a few sentences, the system could learn to memorize the pat-
terns and score 100% on the training set; but it would fail miserably on the independent test
set, because the testing data would be too different from the training data. With more train-
ing sentences, the network will lose the ability to memorize all of the training data, but
because the system is exposed to a more representative range of data, its performance on the
test set will rapidly improve. With still more training data, the system will form an increas-
ingly accurate model of the distribution in acoustic space, and performance will steadily
improve on both the training and testing sets. This is the reason behind the adage, “There’s
no data like more data.”

Figure 7.27: Generalization improves with more training data. The training-testing gap also shrinks.

Yi P i( )⁄( )log
Yi

65

70

75

80

85

90

95

100

w
or

d 
ac

cu
ra

cy
 (%

)

0 1000 2000 3000 4000
training sentences

Cross Validation set
Training set

330K 660K 1M
training samples (frames)

1.2M0



7. Classification Networks138

We measured the asymptotic word accuracy on both the training set and a cross validation
set, using a system with 100 hidden units (i.e., 21,000 weights) that was trained on either
100, 200, 500, 1000, 2000, or 3600 sentences; results are shown in Figure 7.27. As
expected, we see that performance steadily improves on both the training and cross valida-
tion sets, given increasing amounts of training data. The immediate rise in accuracy on the
training set implies that 100 training sentences (33,000 frames) is already too much for the
network to memorize; thus, all of the improvements in this graph arise from more accurate
modeling of the distribution in acoustic space.

7.4.  Word Level Training
All of the experiments described so far used frame level training, i.e., outputs and targets

that are defined on a frame-by-frame basis.  We have seen how to optimize the performance
of such a system, by exploiting the fact that its outputs provide estimates of posterior proba-
bilities, and using techniques such as division by priors, expanded window sizes, optimized
learning rate schedules, gender dependent training, and duration constraints.  While each of
these optimizations leads to better performance, there is a natural limit associated with the
use of frame level training.

One fundamental problem with frame level training is that the training criterion is incon-
sistent with the testing criterion — that is, the training criterion is framewise phoneme clas-
sification accuracy, while the testing criterion is word recognition accuracy.  We saw in
Section 6.3.5 (in the context of predictive networks) that there may be only a weak correla-
tion between phoneme accuracy and word accuracy, therefore we can expect better perform-
ance from a system that consistently uses word accuracy as both the training and testing
criterion.

In order to perform word level training, we must define a neural network that classifies a
whole word at a time (i.e., its inputs represent all the frames of speech in a whole word, and
its outputs represent the N words in the vocabulary), so that we can compare the output acti-
vations against the desired targets of “1” for the correct word and “0” for all incorrect
words, and backpropagate error through the whole network.  Such a network must accept a
variable number of input frames, therefore it should be a dynamic network (i.e., it should
integrate local evidence over the duration of a word), as in a TDNN; meanwhile it should
also use shared subword units (like phonemes) in order to scale well, thus it should be a
state-based network, as in an HMM.

7.4.1. Multi-State Time Delay Neural Network

An interesting network that combines the above two features is the Multi-State Time Delay
Neural Network (Haffner and Waibel, 1992). As can be seen in Figure 7.1, the MS-TDNN is
an extension of the TDNN from the phoneme level to the word level, and from a single state
to multiple states.  That is, while a TDNN performs temporal integration by summing the
activations of a single phoneme (a single state) over the duration of the phoneme, by con-



7.4. Word Level Training 139

trast an MS-TDNN performs temporal integration by applying DTW to a sequence of states
(comprising a word) over the duration of a word.

We will see in the next section that we obtained better word accuracy with word-level
training than with frame-level training. But first we must describe the MS-TDNN in greater
detail, presenting and motivating the details of its design.  We will take an incremental
approach, stepping through a series of possible designs, and showing how each improves on
the earlier designs by resolving subtle inconsistencies, leading up to the design of the MS-
TDNN that we actually used in our experiments.

Figure 7.28(a) shows a baseline system (with frame-level training), i.e., a simple TDNN
whose phoneme outputs are copied into a DTW matrix, in which continuous speech is per-
formed.  As already noted, this system is suboptimal because the training criterion is incon-
sistent with the testing criterion: phoneme classification is not word classification.

To address this inconsistency, as argued above, we must train the network explicitly to
perform word classification.  To this end, we shall define a word layer with one unit for each
word in the vocabulary, as illustrated in Figure 7.28(b) for the particular word “cat”. We cor-
relate the activation of the word unit with the associated DTW score by establishing connec-
tions from the DTW alignment path to the word unit.  Also, we give the phonemes within a
word independently trainable weights, to enhance word discrimination (for example, to dis-
criminate “cat” from “mat” it may be useful to  give special emphasis to the first phoneme);
these weights are tied over all frames in which the phoneme occurs.  Thus a word unit is an
ordinary unit, except that its connectivity to the preceding layer is determined dynamically,
and its net input should be normalized by the total duration of the word.  The word unit is
trained on a target of 1 or 0, depending if the word is correct or incorrect for the current seg-
ment of speech, and the resulting error is backpropagated through the entire network.  Thus,
word discrimination is treated very much like phoneme discrimination.

Although network (b) resolves the original inconsistency, it now suffers from a secondary
one — namely, that the weights leading to a word unit are used during training but ignored
during testing, since DTW is still performed entirely in the DTW layer. We resolve this
inconsistency by “pushing down” these weights one level, as shown in Figure 7.28(c).  Now
the phoneme activations are no longer directly copied into the DTW layer, but instead are
modulated by a weight and bias before being stored there (DTW units are linear); and the
word unit has constant weights, and no bias.  During word level training, error is still back-
propagated from targets at the word level, but biases and weights are modified only at the
DTW level and below.  Note that this transformed network is not exactly equivalent to the
previous one, but it preserves the properties that there are separate learned weights associ-
ated with each phoneme, and there is an effective bias for each word.

Network (c) is still flawed by a minor inconsistency, arising from its sigmoidal word unit.
The problem does not exist for isolated word recognition, since any monotonic function
(sigmoidal or otherwise) will correlate the highest word activation with the highest DTW
score.  However, for continuous speech recognition, which concatenates words into a
sequence, the optimal sum of sigmoids may not correspond to the optimal sigmoid of a sum,
leading to an inconsistency between word and sentence recognition.  Linear word units, as



7. Classification Networks140

Figure 7.28: MS-TDNN, designed by resolving inconsistencies. (a) TDNN+DTW. (b) Adding word layer.
(c) Pushing down weights. (d) Linear word units, for continuous speech recognition.

A 
B 

C 
...

 T
 ..

. Z
C 

A 
T

A 
B 

C 
...

 T
 ..

. Z
C 

A 
T

A 
B 

C 
...

 T
 ..

. Z
C 

A 
T

A 
B 

C 
...

 T
 ..

. Z
C 

A 
T

Speech: “CAT”

hidden

TDNN

Tra in

Test

copy

DTW

Speech: “CAT”

hidden

Tra inTest

w1 w2 w3

“CAT”

w=1.0
no bias

Speech: “CAT”

hidden

Tra in

Test

copy

w1 w2 w3

“CAT”

(b)

(c)

(a)

Word

Speech: “CAT”

hidden

Tra inTest

w1 w2 w3

“CAT”

w=1.0
no bias

(d)

TDNN

DTW

Word



7.4. Word Level Training 141

shown in Figure 7.28(d), would resolve this problem; in practice we have found that linear
word units perform slightly better than sigmoidal word units.

At least two potential inconsistencies remain in network (d).  First, the MS-TDNN train-
ing algorithm assumes that the network connectivity is fixed; but in fact the connectivity at
the word level varies, depending on the DTW alignment path during the current iteration.
Of course, as the training asymptotes and the segmentation stabilizes, this becomes a negli-
gible issue.  A more serious inconsistency can arise if discriminative training is performed at
known word boundaries, because the word boundaries are in fact unknown during testing.
This inconsistency could be resolved by discriminating against words within boundaries that
are found by a free alignment during training, as suggested by Hild (1993).  Unfortunately,
this is an expensive operation, and it proved impractical for our system.  Therefore, we set-
tled on network (d), with known word boundaries during training, for our word level exper-
iments.

The MS-TDNN has a fairly compact design.  Note that its first three layers (the TDNN)
are shared by all words in the vocabulary, while each word requires only one non-shared
weight and bias for each of its phonemes.  Thus the number of parameters remains moderate
even for a large vocabulary, and the system can cope with limited training data.  Moreover,
new words can be added to the vocabulary without retraining, by simply defining a new
DTW layer for each new word, with incoming weights and biases initialized to 1.0 and 0.0,
respectively.

Given constant weights under the word layer, it may be argued that word level training is
really just another way of viewing DTW level training; but the former is conceptually sim-
pler because there is a single binary target for each word, which makes word level discrimi-
nation very straightforward.  For a large vocabulary, discriminating against all incorrect
words would be very expensive, so we discriminate against only a small number of close
matches (typically one).

7.4.2. Experimental Results

We evaluated the MS-TDNN on both the Conference Registration database and the
Resource Management database.  These two sets of experiments were performed under
rather different experimental conditions, both because these databases are of different sizes,
and also because there was a delay of two years between these experiments, during which
time we developed a better approach to frame-level training with techniques that carried
over to our word-level experiments.  We begin this section by summarizing the experimen-
tal conditions for each database.

In the Conference Registration experiments, we used an MS-TDNN with 16 melscale
spectral coefficients (with 3 time delays), 20 hidden units (with 5 time delays), 120 phoneme
units (40 phonemes with 3 states each), 5487 DTW units, and 402 word units, giving a total
of 24,074 weights.  The network used symmetric [-1,1] unit activations and inputs, and lin-
ear DTW units and word units.  The system was first bootstrapped to asymptotic perform-
ance using frame level training.  Word level training was then performed using the
Classification Figure of Merit (CFM) error function, , in which theE 1 Yc Yc–( )+( ) 2=



7. Classification Networks142

correct word (with activation ) is explicitly discriminated from the best incorrect word
(with activation ) (Hampshire and Waibel 1990a).  CFM proved somewhat better than
MSE for word level training, although the opposite was true for frame level training.  Nega-
tive word level training was performed only if the two words were sufficiently confusable
(i.e., if ), in order to avoid disrupting the network on behalf of words that had
already been well-learned.

In our Resource Management experiments, we used an MS-TDNN with 16 LDA coeffi-
cients (with 9 time delays), 100 hidden units, 61 phoneme units, 6429 DTW units, and 994
word units, giving a total of 33,519 weights.  The hidden layer used tanh activations, and
the phoneme layer used softmax activations (preserving the MLP’s bootstrap conditions);
but the DTW units and word units were still linear.  By this time, we understood that frame
level training (used during the bootstrapping phase) yields phoneme activations that esti-
mate the posterior probabilities, so we computed the net input to a DTW unit by

where  is the activation of the corresponding phoneme unit, and  is its prior proba-
bility.  Also, in these experiments, the learning rate schedule was optimized by dynamic
search, rather than fixed at a constant value as in the Conference Registration experiments.

We found that different amounts of training were necessary for these two sets of experi-
ments.  In the Conference Registration experiments, we typically bootstrapped with frame
level training for about 30 iterations, and then continued with word level training for another
10 iterations.  For the Resource Management experiments, on the other hand, we typically
bootstrapped with frame level training for only about 7 iterations, and then continued with
word level training for another 2 iterations.  The RM database required fewer iterations of
training, both because it has 15 times as much training data, and also because our training
techniques had improved in the two years between these experiments.

Figure 7.29 shows that for both databases, word level training gave significantly better
word accuracy than frame level training.  For example, on the Conference Registration data-
base, word accuracy was 72% after frame level training, and 81% after word level training
(representing a 32% reduction in the error rate); and on the Resource Management database,
word accuracy was 89.2% after frame level training, and 90.5% after word level training
(representing a 12% reduction in the error rate).  This improvement was partly due to the
increase in the number of weights in the system (from 13K to 24K, or from 21K to 33K); but
we determined that it was also partly due to the word level training itself.  To show this, we
performed an intermediate experiment on each database, in which we trained the network at
the word level, but we updated only the weights below the phoneme layer (as during boot-
strapping), keeping the DTW weights fixed; results were 75% and 89.9% word accuracy for
the two databases.  Thus, even without adding any new weights, word level training leads to
better word accuracy.

Yc
Yc

Yc Yc– 0.3<

X bias weight
Yi

P i( )( )
-------------------¤ ¦

£ ¥logu+= rather than X bias weight Yiu+=

Yi P i( )



7.5. Summary 143

7.5.  Summary
In this chapter we have seen that good word recognition accuracy can be achieved using

neural networks that have been trained as speech classifiers.  However, the networks cannot
be simply thrown at the problem; they must be used carefully, and optimized well.

Table 7.2 summarizes the most important optimizations we made to our system, ranked by
their relative impact on performance. We note that these values were all derived under par-
ticular experimental conditions, and that the values will change under different conditions,
because these factors are nonlinearly related to each other. Thus, this table represents only a
rough ranking of the value of these techniques.

Figure 7.29: Word level training is better than frame level training, even if no new weights are added.

A 
B 

C 
...

 T
 ..

. Z
C 

A 
T

Speech: “CAT”

hidden

w1 w2 w3

“ CAT ” Training level

word accuracy:

89.2% 89.9% 90.5%

(fi
xe

d 
we

ig
ht

s)

bootstrap

w=1.0

Resource Management database:

Conference Registration database: 72% 75% 81%



7. Classification Networks144

In our experiments using the Resource Management database, we ordinarily trained on
3600 sentences and tested on a cross-validation set of 390 speaker-independent sentences.
However, we periodically evaluated performance as well on 600 test sentences representing
the combined February 1989 and October 1989 official test sets.  Our results were generally
somewhat worse on the official test set; for example, our best results were 91.9% on the
cross validation set, but only 90.5% on the official test set.

Figure 7.30 shows the performance of several versions of our system on the official test
set. There were a number of differences between successive versions of our system (includ-
ing some factors that went back and forth as we kept experimenting), but the primary factors
that changed were as follows:

1. Baseline system, already incorporating the most important techniques in Table 7.2.

2. Normalized PLP inputs; better learning rate schedule.

3. Online weight update; softmax outputs.

4. Search for optimal learning rate schedule; gender dependence; LDA inputs.

5. Word level training.

All of these techniques, used together, contributed to an official word accuracy of 90.5%
(i.e., a word error rate of 9.5%) using context-independent phoneme models with only 67K
parameters. The final version of our system is described in detail in Appendix A.

Technique
Word

accuracy
 (before)

Word
accuracy
 (after)

Error
Reduction

10 A 400 hidden units 71.8% 90.9% 68%
DTW uses A 74.9% 91.5% 66%
1 A 9 input frames 80.4% 89.6% 47%
state duplication 74.5% 86.0% 45%
normalized inputs 67.2% 77.9% 33%
batch A online weight updates 82.0% 88.0% 33%
asymmetric A symmetric sigmoids 72.9% 81.4% 31%
gender dependence 86.9% 90.6% 28%
constant A dynamic learning rates 88.2% 90.7% 21%
grouped A randomized sentences 79.0% 82.0% 14%
word level training 89.2% 90.5% 12%
1 A 3 states per phoneme 86.6% 88.2% 12%
recursive labeling 89.3% 90.4% 10%
FFT A LDA inputs 86.0% 86.6% 4%

Table 7.2: Ranking of techniques by their impact on performance.

Yi Yi P i( )( )⁄( )log



7.5. Summary 145

Figure 7.30: Snapshots of system performance on official evaluation set.

0

5

10

15

20

25

30

35

40

w
or

d 
er

ro
r (

%
)

1 2 3 4 5
System Version

Performance on evaluation set



7. Classification Networks146



147

8.  Comparisons

In this chapter we compare the performance of our best NN-HMM hybrids against that of
various other systems, on both the Conference Registration database and the Resource Man-
agement database.  These comparisons reveal the relative weakness of predictive networks,
the relative strength of classification networks, and the importance of careful optimization in
any given approach.

8.1.  Conference Registration Database
Table 8.1 shows a comparison between several systems (all developed by our research

group) on the Conference Registration database.  All of these systems used 40 phoneme
models, with between 1 and 5 states per phoneme.  The systems are as follows:

• HMM-n: Continuous density Hidden Markov Model with 1, 5, or 10 mixture den-
sities per state (as described in Section 6.3.5).

• LPNN: Linked Predictive Neural Network (Section 6.3.4).

• HCNN: Hidden Control Neural Network (Section 6.4), augmented with context
dependent inputs and function word models.

• LVQ: Learned Vector Quantization (Section 6.3.5), which trains a codebook of
quantized vectors for a tied-mixture HMM.

• TDNN: Time Delay Neural Network (Section 3.3.1.1), but without temporal inte-
gration in the output layer. This may also be called an MLP (Section 7.3) with hier-
archical delays.

• MS-TDNN: Multi-State TDNN, used for word classification (Section 7.4).

In each experiment, we trained on 204 recorded sentences from one speaker (mjmt), and
tested word accuracy on another set (or subset) of 204 sentences by the same speaker.  Per-
plexity 7 used a word pair grammar derived from and applied to all 204 sentences; perplex-
ity 111 used no grammar but limited the vocabulary to the words found in the first three
conversations (41 sentences), which were used for testing; perplexity 402(a) used no gram-
mar with the full vocabulary and again tested only the first three conversations (41 sen-
tences); perplexity 402(b) used no grammar and tested all 204 sentences.  The final column
gives the word accuracy on the training set, for comparison.



8. Comparisons148

The table clearly shows that the LPNN is outperformed by all other systems except the
most primitive HMM, suggesting that predictive networks suffer severely from their lack of
discrimination.  On the other hand, the HCNN (which is also based on predictive networks)
achieved respectable results, suggesting that our LPNN may have been poorly optimized,
despite all the work that we put into it, or else that the context dependent inputs (used only
by the HCNN in this table) largely compensate for the lack of discrimination.  In any case,
neither the LPNN nor the HCNN performed as well as the discriminative approaches, i.e.,
LVQ, TDNN, and MS-TDNN.

Among the discriminative approaches, the LVQ and TDNN systems had comparable per-
formance. This reinforces and extends to the word level McDermott and Katagiri’s conclu-
sion (1991) that there is no significant difference in phoneme classification accuracy
between these two approaches — although LVQ is more computationally efficient during
training, while the TDNN is more computationally efficient during testing.

The best performance was achieved by the MS-TDNN, which uses discriminative training
at both the phoneme level (during bootstrapping) and at the word level (during subsequent
training).  The superiority of the MS-TDNN suggests that optimal performance depends not
only on discriminative training, but also on tight consistency between the training and test-
ing criteria.

8.2.  Resource Management Database
Based on the above conclusions, we focused on discriminative training (classification net-

works) when we moved on to the speaker independent Resource Management database.
Most of the network optimizations discussed in Chapter 7 were developed on this database,
and were never applied to the Conference Registration database.

perplexity test on training set

System 7 111 402(a) 402(b) 111

HMM-1 55%
HMM-5 96% 71% 58% 76%
HMM-10 97% 75% 66% 82%
LPNN 97% 60% 41%
HCNN 75%
LVQ 98% 84% 74% 61% 83%
TDNN 98% 78% 72% 64%
MS-TDNN 98% 82% 81% 70% 85%

Table 8.1: Comparative results on the Conference Registration database.



8.2. Resource Management Database 149

Table 8.2 compares the results of various systems on the Resource Management database,
including our two best systems (in boldface) and those of several other researchers.  All of
these results were obtained with a word pair grammar, with perplexity 60.  The systems in
this table are as follows:

• MLP: our best multilayer perceptron using virtually all of the optimizations in
Chapter 7, except for word level training.  The details of this system are given in
Appendix A.

• MS-TDNN: same as the above system, plus word level training.

• MLP (ICSI): An MLP developed by ICSI (Renals et al 1992), which is very simi-
lar to ours, except that it has more hidden units and fewer optimizations (discussed
below).

• CI-Sphinx: A context-independent version of the original Sphinx system (Lee
1988), based on HMMs.

• CI-Decipher: A context-independent version of SRI’s Decipher system (Renals et
al 1992), also based on HMMs, but enhanced by cross-word modeling and multi-
ple pronunciations per word.

• Decipher: The full context-dependent version of SRI’s Decipher system (Renals et
al 1992).

• Sphinx-II: The latest version of Sphinx (Hwang and Huang 1993), which includes
senone modeling.

The first five systems use context independent phoneme models, therefore they have rela-
tively few parameters, and get only moderate word accuracy (84% to 91%).  The last two
systems use context dependent phoneme models, therefore they have millions of parame-
ters, and they get much higher word accuracy (95% to 96%); these last two systems are
included in this table only to illustrate that state-of-the-art performance requires many more
parameters than were used in our study.

System type parameters models test set word
accuracy

MLP NN-HMM 41,000 61 Feb89+Oct89 89.2%
MS-TDNN NN-HMM 67,000 61 Feb89+Oct89 90.5%
MLP (ICSI) NN-HMM 156,000 69 Feb89+Oct89 87.2%
CI-Sphinx HMM 111,000 48 Mar88 84.4%
CI-Decipher HMM 126,000 69 Feb89+Oct89 86.0%
Decipher HMM 5,500,000 3,428 Feb89+Oct89 95.1%
Sphinx-II HMM 9,217,000 7,549 Feb89+Oct89 96.2%

Table 8.2: Comparative results on the Resource Management database (perplexity 60).



8. Comparisons150

We see from this table that the NN-HMM hybrid systems (first three entries) consistently
outperformed the pure HMM systems (CI-Sphinx and CI-Decipher), using a comparable
number of parameters.  This supports our claim that neural networks make more efficient
use of parameters than an HMM, because they are naturally discriminative — that is, they
model posterior probabilities P(class|input) rather than likelihoods P(input|class), and there-
fore they use their parameters to model the simple boundaries between distributions rather
than the complex surfaces of distributions.

We also see that each of our two systems outperformed ICSI’s MLP, despite ICSI’s rela-
tive excess of parameters, because of all the optimizations we performed in our systems.
The most important of the optimizations used in our systems, and not in ICSI’s, are gender
dependent training, a learning rate schedule optimized by search, and recursive labeling, as
well as word level training in the case of our MS-TDNN.

Finally, we see once again that the best performance is given by the MS-TDNN, recon-
firming the need for not only discriminative training, but also tight consistency between
training and testing criteria.  It is with the MS-TDNN that we achieved a word recognition
accuracy of 90.5% using only 67K parameters, significantly outperforming the context inde-
pendent HMM systems while requiring fewer parameters.



151

9.  Conclusions

This dissertation has addressed the question of whether neural networks can serve as a
useful foundation for a large vocabulary, speaker independent, continuous speech recogni-
tion system.  We succeeded in showing that indeed they can, when the neural networks are
used carefully and thoughtfully.

9.1.  Neural Networks as Acoustic Models
A speech recognition system requires solutions to the problems of both acoustic modeling

and temporal modeling.  The prevailing speech recognition technology, Hidden Markov
Models, offers solutions to both of these problems: acoustic modeling is provided by dis-
crete, continuous, or semicontinuous density models; and temporal modeling is provided by
states connected by transitions, arranged into a strict hierarchy of phonemes, words, and
sentences.

While an HMM’s solutions are effective, they suffer from a number of drawbacks. Specif-
ically, the acoustic models suffer from quantization errors and/or poor parametric modeling
assumptions; the standard Maximum Likelihood training criterion leads to poor discrimina-
tion between the acoustic models; the Independence Assumption makes it hard to exploit
multiple input frames; and the First-Order Assumption makes it hard to model coarticula-
tion and duration. Given that HMMs have so many drawbacks, it makes sense to consider
alternative solutions.

Neural networks — well known for their ability to learn complex functions, generalize
effectively, tolerate noise, and support parallelism — offer a promising alternative. How-
ever, while today’s neural networks can readily be applied to static or temporally localized
pattern recognition tasks, we do not yet clearly understand how to apply them to dynamic,
temporally extended pattern recognition tasks. Therefore, in a speech recognition system, it
currently makes sense to use neural networks for acoustic modeling, but not for temporal
modeling. Based on these considerations, we have investigated hybrid NN-HMM systems,
in which neural networks are responsible for acoustic modeling, and HMMs are responsible
for temporal modeling.



9. Conclusions152

9.2.  Summary of Experiments
We explored two different ways to use neural networks for acoustic modeling.  The first

was a novel technique based on prediction (Linked Predictive Neural Networks, or LPNN),
in which each phoneme class was modeled by a separate neural network, and each network
tried to predict the next frame of speech given some recent frames of speech; the prediction
errors were used to perform a Viterbi search for the best state sequence, as in an HMM.  We
found that this approach suffered from a lack of discrimination between the phoneme
classes, as all of the networks learned to perform a similar quasi-identity mapping between
the quasi-stationary frames of their respective phoneme classes.

The second approach was based on classification, in which a single neural network tried
to classify a segment of speech into its correct class.  This approach proved much more suc-
cessful, as it naturally supports discrimination between phoneme classes.  Within this frame-
work, we explored many variations of the network architecture, input representation, speech
model, training procedure, and testing procedure.  From these experiments, we reached the
following primary conclusions:

• Outputs as posterior probabilities. The output activations of a classification net-
work form highly accurate estimates of the posterior probabilities P(class|input),
in agreement with theory.  Furthermore, these posteriors can be converted into
likelihoods P(input|class) for more effective Viterbi search, by simply dividing the
activations by the class priors P(class), in accordance with Bayes Rule1. Intu-
itively, we note that the priors should be factored out from the posteriors because
they are already reflected in the language model (lexicon plus grammar) used dur-
ing testing.

• MLP vs. TDNN. A simple MLP yields better word accuracy than a TDNN with
the same inputs and outputs2, when each is trained as a frame classifier using a
large database.  This can be explained in terms of a tradeoff between the degree of
hierarchy in a network’s time delays, vs. the trainability of the network.  As time
delays are redistributed higher within a network, each hidden unit sees less con-
text, so it becomes a simpler, less potentially powerful pattern recognizer; how-
ever, it also receives more training because it is applied over several adjacent
positions (with tied weights), so it learns its simpler patterns more reliably.  Thus,
when relatively little training data is available — as in early experiments in pho-
neme recognition (Lang 1989, Waibel et al 1989) — hierarchical time delays serve
to increase the amount of training data per weight and improve the system’s accu-
racy. On the other hand, when a large amount of training data is available — as in
our CSR experiments — a TDNN’s hierarchical time delays make the hidden units
unnecessarily coarse and hence degrade the system’s accuracy, so a simple MLP
becomes preferable.

1. The remaining factor of P(input) can be ignored during recognition, since it is a constant for all classes in a given frame.
2. Here we define a “simple MLP” as an MLP with time delays only in the input layer, and a “TDNN” as an MLP with time
delays distributed hierarchically (ignoring the temporal integration layer of the classical TDNN).



9.3. Advantages of NN-HMM hybrids 153

• Word level training. Word-level training, in which error is backpropagated from a
word-level unit that receives its input from the phoneme layer according to a DTW
alignment path, yields better results than frame-level or phoneme-level training,
because it enhances the consistency between the training criterion and testing cri-
terion.  Word-level training increases the system’s word accuracy even if the net-
work contains no additional trainable weights; but if the additional weights are
trainable, the accuracy improves still further.

• Adaptive learning rate schedule. The learning rate schedule is critically impor-
tant for a neural network.  No predetermined learning rate schedule can always
give optimal results, so we developed an adaptive technique which searches for the
optimal schedule by trying various learning rates and retaining the one that yields
the best cross validation results in each iteration of training.  This search technique
yielded learning rate schedules that generally decreased with each iteration, but
which always gave better results than any fixed schedule that tried to approximate
the schedule’s trajectory.

• Input representation. In theory, neural networks do not require careful prepro-
cessing of the input data, since they can automatically learn any useful transforma-
tions of the data; but in practice, such preprocessing helps a network to learn
somewhat more effectively. For example, delta inputs are theoretically unneces-
sary if a network is already looking at a window of input frames, but they are help-
ful anyway because they save the network the trouble of learning to compute the
temporal dynamics.  Similarly, a network can learn more efficiently if its input
space is first orthogonalized by a technique such as Linear Discriminant Analysis.
For this reason, in a comparison between various input representations, we
obtained best results with a window of spectral and delta-spectral coefficients,
orthogonalized by LDA.

• Gender dependence. Speaker-independent accuracy can be improved by training
separate networks on separate clusters of speakers, and mixing their results during
testing according to an automatic identification of the unknown speaker’s cluster.
This technique is helpful because it separates and hence reduces the overlap in dis-
tributions that come from different speaker clusters.  We found, in particular, that
using two separate gender-dependent networks gives a substantial increase in
accuracy, since there is a clear difference between male and female speaker char-
acteristics, and a speaker’s gender can be identified by a neural network with near-
perfect accuracy.

9.3.  Advantages of NN-HMM hybrids
Finally, NN-HMM hybrids offer several theoretical advantages over standard HMM

speech recognizers.  Specifically:



9. Conclusions154

• Modeling accuracy. Discrete density HMMs suffer from quantization errors in
their input space, while continuous or semi-continuous density HMMs suffer from
model mismatch, i.e., a poor match between the a priori choice of statistical model
(e.g., a mixture of K Gaussians) and the true density of acoustic space.  By con-
trast, neural networks are nonparametric models that neither suffer from quantiza-
tion error nor make detailed assumptions about the form of the distribution to be
modeled. Thus a neural network can form more accurate acoustic models than an
HMM.

• Context sensitivity. HMMs assume that speech frames are independent of each
other, so they examine only one frame at a time. In order to take advantage of con-
textual information in neighboring frames, HMMs must artificially absorb those
frames into the current frame (e.g., by introducing multiple streams of data in
order to exploit delta coefficients, or using LDA to transform these streams into a
single stream). By contrast, neural networks can naturally accommodate any size
input window, because the number of weights required in a network simply grows
linearly with the number of inputs. Thus a neural network is naturally more con-
text sensitive than an HMM.

• Discrimination. The standard HMM training criterion, Maximum Likelihood,
does not explicitly discriminate between acoustic models, hence the models are not
optimized for the essentially discriminative task of word recognition. It is possible
to improve discrimination in an HMM by using the Maximum Mutual Information
criterion, but this is more complex and difficult to implement properly.  By con-
trast, discrimination is a natural property of neural networks when they are trained
to perform classification. Thus a neural network can discriminate more naturally
than an HMM.

• Economy. An HMM uses its parameters to model the surface of the density func-
tion in acoustic space, in terms of the likelihoods P(input|class). By contrast, a
neural network uses its parameters to model the boundaries between acoustic
classes, in terms of the posteriors P(class|input). Either surfaces or boundaries can
be used for classifying speech, but boundaries require fewer parameters and thus
can make better use of limited training data. For example, we have achieved
90.5% accuracy using only about 67,000 parameters, while Sphinx obtained only
84.4% accuracy using 111,000 parameters (Lee 1988), and SRI’s DECIPHER
obtained only 86.0% accuracy using 125,000 parameters (Renals et al 1992). Thus
a neural network is more economical than an HMM.

HMMs are also known to be handicapped by their First-Order Assumption, i.e., the
assumption that all probabilities depend solely on the current state, independent of previous
history; this limits the HMM’s ability to model coarticulatory effects, or to model durations
accurately. Unfortunately, NN-HMM hybrids share this handicap, because the First-Order
Assumption is a property of the HMM temporal model, not of the NN acoustic model. We
believe that further research into connectionism could eventually lead to new and powerful
techniques for temporal pattern recognition based on neural networks. If and when that hap-
pens, it may become possible to design systems that are based entirely on neural networks,
potentially further advancing the state of the art in speech recognition.



155

Appendix A. Final System Design

Our best results with context independent phoneme models — 90.5% word accuracy on
the speaker independent Resource Management database — were obtained by a NN-HMM
hybrid with the following design:

• Network architecture:
• Inputs:

• 16 LDA coefficients per frame, derived from 16 melscale spec-
tral plus 16 delta-spectral coefficients.

• 9 frame window, with delays = -4...+4
• Inputs scaled to [-1,+1].

• Hidden layer:
• 100 hidden units.
• Each unit receives input from all input units.
• Unit activation = tanh (net input) = [-1,+1].

• Phoneme layer:
• 61 phoneme units.
• Each unit receives input from all hidden units.
• Unit activation = softmax (net input) = [0,1].

• DTW layer:
• 6429 units, corresponding to pronunciations of all 994 words.
• Each unit receives input from one phoneme unit.
• Unit activation = linear, equal to net input.

• Word layer:
• 994 units, one per word.
• Each unit receives input from DTW units along alignment path.
• Unit activation = linear, equal to DTW path score / duration.

• Weights:
• All weights below the DTW layer are trainable.
• Initial weights = randomized in range  1.0 / sqrt(fanin).
• Biases are initialized like the weights.

• Phoneme model:
• 61 TIMIT phonemes.
• 1 state per phoneme.



 Appendix A. Final System Design156

• Training:
• Database = Resource Management.
• Training set = 2590 sentences (male), or 1060 sentences (female).
• Cross validation set = 240 sentences (male), or 100 sentences (female).
• Labels = generated by Viterbi alignment using a well-trained NN-HMM.
• Learning rate schedule = based on search and cross validation results.
• No momentum, no derivative offset.
• Bootstrap phase:

• Frame level training (7 iterations).
• Frames presented in random order, based on random selection

with replacement from whole training set.
• Weights updated after each frame.
• Phoneme targets = 0.0 or 1.0.
• Error criterion = Cross Entropy.

• Final phase:
• Word level training (2 iterations).
• Sentences presented in random order.
• Frames presented in normal order within each sentence.
• Weights updated after each sentence.
• Word targets = 0.0 or 1.0.
• Error criterion = Classification Figure of Merit.
• Error backpropagated only if within 0.3 of correct output.

• Testing:
• Test set = 600 sentences = Feb89 & Oct89 test sets.
• Grammar = word pairs � perplexity 60.
• One pronunciation per word in the dictionary.
• Viterbi search using log (Yi /Pi), where

Yi = network output activation of phoneme i,
Pi = prior of phoneme i.

• Duration constraints:
• Minimum:

• 1/2 average duration per phoneme.
• implemented via state duplication.

• Maximum = none.
• Word transition penalty = -15 (additive penalty).
• Results: 90.5% word accuracy.



157

Appendix B.  Proof that Classifier
Networks Estimate Posterior
Probabilities

It was recently discovered that if a multilayer perceptron is asymptotically trained as a 1-
of-N classifier using the mean squared error (MSE) criterion, then its output activations will
approximate the posterior class probability P(class|input), with an accuracy that improves
with the size of the training set.  This important fact has been proven by Gish (1990), Bour-
lard & Wellekens (1990), Hampshire & Pearlmutter (1990), Richard and Lippmann (1991),
Ney (1991), and others.  The following is a proof due to Ney.

Proof.  Assume that a classifier network is trained on a vast population of training samples
(x,c) from distribution p(x,c), where x is the input and c is its correct class.  (Note that the
same input x in different training samples may belong to different classes {c}, since classes
may overlap.)  The network computes the function gk(x) = the activation of the kth output
unit.  Output targets are Tkc = 1 when  or 0 when .  Training with the squared error
criterion minimizes this error in proportion to the density of the training sample space:

(76)

(77)

(78)

where

(79)

Splitting this into two cases, i.e.,  and , we obtain

k c= k c&

E p x c,( ) Tkc gk x( )–( ) 2

k
-

c
-

x
0=

p x c,( ) Tkc gk x( )–( ) 2

c
-

k
-

x
0=

Exk
k
-

x
0=

Exk p x c,( ) Tkc gk x( )–( ) 2

c
-=

c k= c k&



 Appendix B.  Proof that Classifier Networks Estimate Posterior Probabilities158

(80)

(81)

(82)

Since , an algebraic expansion will show that the above is
equivalent to

(83)

which is minimized when gk(x) = P(k|x), i.e., when the output activation equals the posterior
class probability. �

Hampshire and Pearlmutter (1990) generalized this proof, showing that the same conclu-
sion holds for a network trained by any of the standard error criteria based on target vectors,
e.g., Mean Squared Error, Cross Entropy, McClelland Error, etc.

Exk p x k,( ) 1 gk x( )–( ) 2 p x c,( ) 0 gk x( )–( ) 2

c k&
-+=

p x k,( ) 1 2gk x( )– gk
2 x( )+¤ ¦

£ ¥ p x( ) p x k,( )–¤ ¦
£ ¥ gk

2 x( )¤ ¦
£ ¥+=

p x k,( ) 2p x k,( ) gk x( )– p x( ) gk
2 x( )+=

p x k,( ) p k x( ) p x( )u=

Exk p x( ) p k x( ) gk x( )– 2 p x k,( ) 1 p k x( )––=



159

 Bibliography

[1]  Ackley, D., Hinton, G., and Sejnowski, T. (1985). A Learning Algorithm for Boltz-
mann Machines. Cognitive Science 9, 147-169. Reprinted in Anderson and Rosenfeld
(1988).

[2]  Anderson, J. and Rosenfeld, E. (1988).  Neurocomputing: Foundations of Research.
Cambridge: MIT Press.

[3]  Austin, S., Zavaliagkos, G., Makhoul, J., and Schwartz, R. (1992). Speech Recogni-
tion Using Segmental Neural Nets. In Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1992.

[4]  Bahl, L., Bakis, R., Cohen, P., Cole, A., Jelinek, F., Lewis, B., and Mercer, R. (1981).
Speech Recognition of a Natural Text Read as Isolated Words. In Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1981.

[5]  Bahl, L., Brown, P., De Souza, P., and Mercer, R. (1988). Speech Recognition with
Continuous-Parameter Hidden Markov Models. In Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1988.

[6]  Barnard, E. (1992). Optimization for Training Neural Networks. IEEE Trans. on Neu-
ral Networks, 3(2), March 1992.

[7]  Barto, A., and Anandan, P. (1985). Pattern Recognizing Stochastic Learning Autom-
ata. IEEE Transactions on Systems, Man, and Cybernetics 15, 360-375.

[8]  Bellagarda, J. and Nahamoo, D. (1988). Tied-Mixture Continuous Parameter Models
for Large Vocabulary Isolated Speech Recognition. In Proc. IEEE International Conference
on Acoustics, Speech, and Signal Processing, 1988.

[9]  Bengio, Y., DeMori, R., Flammia, G., and Kompe, R. (1992). Global Optimization of
a Neural Network-Hidden Markov Model Hybrid. IEEE Trans. on Neural Networks,
3(2):252-9, March 1992.

[10]  Bodenhausen, U., and Manke, S. (1993). Connectionist Architectural Learning for
High Performance Character and Speech Recognition. In Proc. IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, 1993.

[11]  Bodenhausen, U. (1994).  Automatic Structuring of Neural Networks for Spatio-
Temporal Real-World Applications.  PhD Thesis, University of Karlsruhe, Germany.



 Bibliography160

[12]  Bourlard, H. and Wellekens, C. (1990). Links Between Markov Models and Multi-
layer Perceptrons. IEEE Trans. on Pattern Analysis and Machine Intelligence, 12(12),
December 1990. Originally appeared as Technical Report Manuscript M-263, Philips
Research Laboratory, Brussels, Belgium, 1988.

[13]  Bourlard, H. and Morgan, N. (1990). A Continuous Speech Recognition System
Embedding MLP into HMM. In Advances in Neural Information Processing Systems 2,
Touretzky, D. (ed.), Morgan Kaufmann Publishers.

[14]  Bourlard, H., Morgan, N., Wooters, C., and Renals, S. (1992). CDNN: A Context
Dependent Neural Network for Continuous Speech Recognition. In Proc. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 1992.

[15]  Bourlard, H. and Morgan, N. (1994). Connectionist Speech Recognition: A Hybrid
Approach. Kluwer Academic Publishers.

[16]  Bregler, C., Hild, H., Manke, S., and Waibel, A. (1993). Improving Connected Letter
Recognition by Lipreading. In Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing, 1993.

[17]  Bridle, J. (1990). Alpha-Nets: A Recurrent “Neural” Network Architecture with a
Hidden Markov Model Interpretation. Speech Communication, 9:83-92, 1990.

[18]  Brown, P. (1987). The Acoustic-Modeling Problem in Automatic Speech Recogni-
tion. PhD Thesis, Carnegie Mellon University.

[19]  Burr, D. (1988). Experiments on Neural Net Recognition of Spoken and Written
Text. In IEEE Trans. on Acoustics, Speech, and Signal Processing, 36, 1162-1168.

[20]  Burton, D., Shore, J., and Buck, J. (1985). Isolated-Word Speech Recognition Using
Multisection Vector Quantization Codebooks. In IEEE Trans. on Acoustics, Speech and Sig-
nal Processing, 33, 837-849.

[21]  Cajal, S. (1892). A New Concept of the Histology of the Central Nervous System.  In
Rottenberg and Hochberg (eds.), Neurological Classics in Modern Translation.  New York:
Hafner, 1977.

[22]  Carpenter, G. and Grossberg, S. (1988). The ART of Adaptive Pattern Recognition
by a Self-Organizing Neural Network. Computer 21(3), March 1988.

[23]  Cybenko, G. (1989). Approximation by Superpositions of a Sigmoid Function.
Mathematics of Control, Signals, and Systems, vol. 2, pp. 303-314.

[24]  De La Noue, P., Levinson, S., and Sondhi, M. (1989). Incorporating the Time Corre-
lation Between Successive Observations in an Acoustic-Phonetic Hidden Markov Model for
Continuous Speech Recognition. In Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1987.

[25]  Doddington, G. (1989). Phonetically Sensitive Discriminants for Improved Speech
Recognition. In Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, 1989.



 Bibliography 161

[26]  Duda, R. and Hart, P. (1973). Pattern Classification and Scene Analysis. New York:
Wiley.

[27]  Elman, J. and Zipser, D. (1987). Learning the Hidden Structure of Speech. ICS
Report 8701, Institute for Cognitive Science, University of California, San Diego, La Jolla,
CA.

[28]  Elman, J. (1990). Finding Structure in Time. Cognitive Science, 14(2):179-211,
1990.

[29]  Fahlman, S. (1988). An Empirical Study of Learning Speed in Back-Propagation
Networks. Technical Report CMU-CS-88-162, Carnegie Mellon University.

[30]  Fahlman, S. and Lebiere, C. (1990). The Cascade-Correlation Learning Architecture.
in Advances in Neural Information Processing Systems 2, Touretzky, D. (ed.), Morgan
Kaufmann Publishers, Los Altos CA, pp. 524-532.

[31]  Fodor, J. and Pylyshyn, Z. (1988).  Connectionism and Cognitive Architecture: A
Critical Analysis.  In Pinker and Mehler (eds.), Connections and Symbols, MIT Press, 1988.

[32]  Franzini, M., Witbrock, M., and Lee, K.F. (1989). Speaker-Independent Recognition
of Connected Utterances using Recurrent and Non-Recurrent Neural Networks. In Proc.
International Joint Conference on Neural Networks, 1989.

[33]  Franzini, M., Lee, K.F., and Waibel, A. (1990). Connectionist Viterbi Training: A
New Hybrid Method for Continuous Speech Recognition. In Proc. IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, 1990.

[34]  Furui, S. (1993). Towards Robust Speech Recognition Under Adverse Conditions. In
Proc. of the ESCA Workshop on Speech Processing and Adverse Conditions, pp. 31-41,
Cannes-Mandelieu, France.

[35]  Gish, H. (1990). A Probabilistic Approach to the Understanding and Training of
Neural Network Classifiers. In Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing, 1990.

[36]  Gold, B. (1988). A Neural Network for Isolated Word Recognition. In Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing, 1988.

[37]  Haffner, P., Franzini, M., and Waibel, A. (1991). Integrating Time Alignment and
Connectionist Networks for High Performance Continuous Speech Recognition. In Proc.
IEEE International Conference on Acoustics, Speech, and Signal Processing, 1991.

[38]  Haffner, P., and Waibel, A. (1992). Multi-State Time Delay Neural Networks for
Continuous Speech Recognition. In Advances in Neural Information Processing Systems 4,
Moody, J., Hanson, S., Lippmann, R. (eds), Morgan Kaufmann Publishers.

[39]  Hampshire, J. and Waibel, A. (1990). The Meta-Pi Network: Connectionist Rapid
Adaptation for High-Performance Multi-Speaker Phoneme Recognition. In Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing, 1990.



 Bibliography162

[40]  Hampshire, J. and Waibel, A. (1990a). A Novel Objective Function for Improved
Phoneme Recognition using Time Delay Neural Networks. IEEE Trans. on Neural Net-
works, 1(2), June 1990.

[41]  Hampshire, J. and Pearlmutter, B. (1990). Equivalence Proofs for Multi-Layer Per-
ceptron Classifiers and the Bayesian Discriminant Function. In Proc. of the 1990 Connec-
tionist Models Summer School, Morgan Kaufmann Publishers.

[42]  Hassibi, B., and Stork, D. (1993).  Second Order Derivative for Network Pruning:
Optimal Brain Surgeon. In Advances in Neural Information Processing Systems 5, Hanson,
S., Cowan, J., and Giles, C.L. (eds), Morgan Kaufmann Publishers.

[43]  Hebb, D. (1949). The Organization of Behavior. New York: Wiley. Partially
reprinted in Anderson and Rosenfeld (1988).

[44]  Hermansky, H. (1990). Perceptual Linear Predictive (PLP) Analysis of Speech.
Journal of the Acoustical Society of America, 87(4):1738-52, 1990.

[45]  Hertz, J., Krogh, A., and Palmer, R. (1991). Introduction to the Theory of Neural
Computation. Addison-Wesley.

[46]  Hild, H. and Waibel, A. (1993). Connected Letter Recognition with a Multi-State
Time Delay Neural Network. In Advances in Neural Information Processing Systems 5,
Hanson, S., Cowan, J., and Giles, C.L. (eds), Margan Kaufmann Publishers.

[47]  Hinton, G. (1989). Connectionist Learning Procedures. Artificial Intelligence
40:1(3), 185-235.

[48]  Hofstadter, D. (1979). Godel, Escher, Bach: An Eternal Golden Braid. Basic Books.

[49]  Hopfield, J. (1982). Neural Networks and Physical Systems with Emergent Collec-
tive Computational Abilities. Proc. National Academy of Sciences USA, 79:2554-58, April
1982. Reprinted in Anderson and Rosenfeld (1988).

[50]  Huang, W.M. and Lippmann, R. (1988). Neural Net and Traditional Classifiers. In
Neural Information Processing Systems, Anderson, D. (ed.), 387-396. New York: American
Institute of Physics.

[51]  Huang, X.D. (1992). Phoneme Classification using Semicontinuous Hidden Markov
Models. IEEE Trans. on Signal Processing, 40(5), May 1992.

[52]  Huang, X.D. (1992a). Speaker Normalization for Speech Recognition. In Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing, 1992.

[53]  Hwang, M.Y. and Huang, X.D. (1993). Shared-Distribution Hidden Markov Models
for Speech Recognition. IEEE Trans. on Speech and Audio Processing, vol.1, 1993, pp 414-
420.

[54]  Hwang, M.Y., Huang, X.D., and Alleva, F. (1993b). Predicting Unseen Triphones
with Senones. In Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, 1993.



 Bibliography 163

[55]  Idan, Y., Auger, J., Darbel, N., Sales, M., Chevallier, R., Dorizzi, B., and Cazuguel,
G. (1992). Comparative Study of Neural Networks and Non-Parametric Statistical Methods
for Off-Line Handwritten Character Recognition. In Proc. International Conference on Arti-
ficial Neural Networks, 1992.

[56]  Iso, K. and Watanabe, T. (1990). Speaker-Independent Word Recognition using a
Neural Prediction Model. In Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing, 1990.

[57]  Iso, K. and Watanabe, T. (1991). Large Vocabulary Speech Recognition using Neural
Prediction Model. In Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, 1991.

[58]  Itakura, F. (1975). Minimum Prediction Residual Principle Applied to Speech Rec-
ognition. IEEE Trans. on Acoustics, Speech, and Signal Processing, 23(1):67-72, February
1975. Reprinted in Waibel and Lee (1990).

[59]  Jacobs, R., Jordan, M., Nowlan, S., and Hinton, G. (1991). Adaptive Mixtures of
Local Experts. Neural Computation 3(1), 79-87.

[60]  Jain, A., Waibel, A., and Touretzky, D. (1992). PARSEC: A Structured Connectionist
Parsing System for Spoken Language. In Proc. IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 1992.

[61]  Jolliffe, I. (1986).  Principle Component Analysis.  New York: Springer-Verlag.

[62]  Jordan, M. (1986). Serial Order: A Parallel Distributed Processing Approach. ICS
Technical Report 8604, UCSD.

[63]  Kammerer, B. and Kupper, W. (1988). Experiments for Isolated-Word Recognition
with Single and Multi-Layer Perceptrons. Abstracts of 1st Annual INNS Meeting, Boston.

[64]  Kimura, S. (1990). 100,000-Word Recognition Using Acoustic-Segment Networks.
In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1990.

[65]  Kohonen, T. (1989). Self-Organization and Associative Memory (3rd edition). Ber-
lin: Springer-Verlag.

[66]  Konig, Y. and Morgan, N. (1993). Supervised and Unsupervised Clustering of the
Speaker Space for Continuous Speech Recognition. In Proc. IEEE International Conference
on Acoustics, Speech, and Signal Processing, 1993.

[67]  Krishnaiah, P. and Kanal, L., eds. (1982).  Classification, Pattern Recognition, and
Reduction of Dimensionality.  Handbook of Statistics, vol. 2.  Amsterdam: North Holland.

[68]  Krogh, A. and Hertz, J. (1992). A Simple Weight Decay Can Improve Generaliza-
tion. In Advances In Neural Information Processing Systems 4, Moody, J., Hanson, S., Lipp-
mann, R. (eds), Morgan Kaufmann Publishers.

[69]  Kubala, F. and Schwartz, R. (1991). A New Paradigm for Speaker-Independent
Training. In Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, 1991.



 Bibliography164

[70]  Lang, K. (1989). A Time-Delay Neural Network Architecture for Speech Recogni-
tion. PhD Thesis, Carnegie Mellon University.

[71]  Lang, K., Waibel, A., and Hinton, G. (1990). A Time-Delay Neural Network Archi-
tecture for Isolated Word Recognition. Neural Networks 3(1): 23-43.

[72]  Le Cun, Y., Matan, O., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard,
W., Jacket, L., and Baird, H. (1990). Handwritten ZIP Code Recognition with Multilayer
Networks. In Proc. 10th International Conference on Pattern Recognition, June 1990.

[73]  LeCun, Y., Denker, J., and Solla, S. (1990b).  Optimal Brain Damage. In Advances in
Neural Information Processing Systems 2, Touretzky, D. (ed), Morgan Kaufmann Publish-
ers.

[74]  Lee, K.F. (1988). Large Vocabulary Speaker-Independent Continuous Speech Recog-
nition: The SPHINX System. PhD Thesis, Carnegie Mellon University.

[75]  Levin, E. (1990). Word Recognition using Hidden Control Neural Architecture. In
Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1990.

[76]  Linsker, R. (1986). From Basic Network Principles to Neural Architecture. Proc.
National Academy of Sciences, USA 83, 7508-12, 8390-94, 8779-83.

[77]  Lippmann, R. and Gold, B. (1987). Neural Classifiers Useful for Speech Recogni-
tion. In 1st International Conference on Neural Networks, IEEE.

[78]  Lippmann, R. (1989). Review of Neural Networks for Speech Recognition. Neural
Computation 1(1):1-38, Spring 1989. Reprinted in Waibel and Lee (1990).

[79]  Lippmann, R. and Singer, E. (1993). Hybrid Neural Network/HMM Approaches to
Wordspotting. In Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, 1993.

[80]  McCulloch, W. and Pitts, W. (1943).  A Logical Calculus of Ideas Immanent in Nerv-
ous Activity. Bulletin of Mathematical Biophysics 5: 115-133.  Reprinted in Anderson and
Rosenfeld (1988).

[81]  McDermott, E. and Katagiri, S. (1991). LVQ-Based Shift-Tolerant Phoneme Recog-
nition. IEEE Trans. on Signal Processing, 39(6):1398-1411, June 1991.

[82]  Mellouk, A. and Gallinari, P. (1993). A Discriminative Neural Prediction System for
Speech Recognition. In Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing, 1993.

[83]  Minsky, M. (1967). Computation: Finite and Infinite Machines. Englewood Cliffs:
Prentice-Hall.

[84]  Minsky, M. and Papert, S. (1969). Perceptrons. Cambridge: MIT Press. Partially
reprinted in Anderson and Rosenfeld (1988).



 Bibliography 165

[85]  Miyatake, M., Sawai, H., and Shikano, K. (1990). Integrated Training for Spotting
Japanese Phonemes Using Large Phonemic Time-Delay Neural Networks. In Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing, 1990.

[86]  Moody, J. and Darken, C. (1989). Fast Learning in Networks of Locally-Tuned
Processing Units. Neural Computation 1(2), 281-294.

[87]  Morgan, D., Scofield, C., and Adcock, J. (1991). Multiple Neural Network Topolo-
gies Applied to Keyword Spotting. In Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1991.

[88]  Morgan, N. and Bourlard, H. (1990). Continuous Speech Recognition using Multi-
layer Perceptrons with Hidden Markov Models. In Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1990.

[89]  Munro, P. (1987). A Dual Back-Propagation Scheme for Scalar Reward Learning. In
The Ninth Annual Conference of the Cognitive Science Society (Seattle 1987), 165-176.
Hillsdale: Erlbaum.

[90]  Ney, H. (1984). The Use of a One-Stage Dynamic Programming Algorithm for Con-
nected Word Recognition. IEEE Trans. on Acoustics, Speech, and Signal Processing,
32(2):263-271, April 1984. Reprinted in Waibel and Lee (1990).

[91]  Ney, H. and Noll, A. (1988). Phoneme Modeling using Continuous Mixture Densi-
ties. In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing,
1988.

[92]  Ney, H. (1991). Speech Recognition in a Neural Network Framework: Discrimina-
tive Training of Gaussian Models and Mixture Densities as Radial Basis Functions. In Proc.
IEEE International Conference on Acoustics, Speech, and Signal Processing, 1991.

[93]  Osterholtz, L., Augustine, C., McNair, A., Rogina, I., Saito, H., Sloboda, T., Tebel-
skis, J., and Waibel, A. (1992). Testing Generality in Janus: A Multi-Lingual Speech Trans-
lation System. In Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, 1992.

[94]  Peeling, S. and Moore, R. (1987). Experiments in Isolated Digit Recognition Using
the Multi-Layer Perceptron. Technical Report 4073, Royal Speech and Radar Establish-
ment, Malvern, Worcester, Great Britain.

[95]  Petek, B., Waibel, A., and Tebelskis, J. (1991). Integrated Phoneme-Function Word
Architecture of Hidden Control Neural Networks for Continuous Speech Recognition. In
Proc. European Conference on Speech Communication and Technology, 1991.

[96]  Petek, B. and Tebelskis, J. (1992). Context-Dependent Hidden Control Neural Net-
work Architecture for Continuous Speech Recognition. In Proc. IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, 1992.

[97]  Pinker, S. and Prince, A. (1988).  On Language and Connectionism.  In Pinker and
Mehler (eds.), Connections and Symbols, MIT Press, 1988.



 Bibliography166

[98]  Pomerleau, D. (1993). Neural Network Perception for Mobile Robot Guidance. Klu-
wer Academic Publishing.

[99]  Prager, R., Harrison, T., and Fallside, F. (1986). Boltzmann Machines for Speech
Recognition. Computer Speech and Language 1, 2-27.

[100]  Price, P., Fisher, W., Bernstein, J., and Pallett, D. (1988). The DARPA 1000-Word
Resource Management Database for Continuous Speech Recognition. In Proc. IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, 1988.

[101]  Rabiner, L. (1989). A Tutorial on Hidden Markov Models and Selected Applica-
tions in Speech Recognition. Proceedings of the IEEE, 77(2), February 1989. Reprinted in
Waibel and Lee (1990).

[102]  Rabiner, L. and Juang, B.H. (1993). Fundamentals of Speech Recognition. Prentice
Hall.

[103]  Reddy, R. (1976). Speech Recognition by Machine: A Review. Proceedings of the
IEEE, 64(4):502-531, April 1976. Reprinted in Waibel and Lee (1990).

[104]  Renals, S., Morgan, N., Cohen, M., and Franco, H. (1992). Connectionist Probabil-
ity Estimation in the DECIPHER Speech Recognition System. In Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1992.

[105]  Richard, M. and Lippmann, R. (1991). Neural Network Classifiers Estimate Baye-
sian A Posteriori Probabilities. Neural Computation 3(4):461-483, Winter 1991.

[106]  Robinson, A. and Fallside, F. (1988). Static and Dynamic Error Propagation Net-
works with Application to Speech Coding. In Neural Information Processing Systems,
Anderson, D. (ed.), 632-641. New York: American Institute of Physics.

[107]  Rosenblatt, F. (1962). Principles of Neurodynamics. New York: Spartan.

[108]  Rumelhart, D., McClelland, J., and the PDP Research Group. (1986). Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition. MIT Press.

[109]  Sagisaka, Y., Takeda, K., Katagiri, S., and Kuwabara, H. (1987). Japanese Speech
Database with Fine Acoustic-Phonetic Distinctions. Technical Report, ATR Interpreting
Telephony Research Laboratory.

[110]  Sakoe, H. and Chiba, S. (1978). Dynamic Programming Algorithm Optimization
for Spoken Word Recognition. IEEE Trans. on Acoustics, Speech, and Signal Processing,
26(1):43-49, February 1978. Reprinted in Waibel and Lee (1990).

[111]  Sakoe, H., Isotani, R., Yoshida, K., and Iso, K. (1989). Speaker-Independent Word
Recognition using Dynamic Programming Neural Networks. In Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1989.

[112]  Sanger, T. (1989). Optimal Unsupervised Learning in a Single-Layer Linear Feed-
forward Neural Network. Neural Networks 2(6), 459-473.



 Bibliography 167

[113]  Schmidbauer, O. and Tebelskis, J. (1992). An LVQ Based Reference Model for
Speaker Adaptive Speech Recognition. In Proc. IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 1992.

[114]  Schwartz, R. and Chow, Y. (1990). The N-Best Algorithm: An Efficient and Exact
Procedure for Finding the N Most Likely Sentence Hypothesis. In Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1990.

[115]  Sejnowski, T. and Rosenberg, C. (1987). Parallel Networks that Learn to Pronounce
English Text. Complex Systems 1, 145-168.

[116]  Servan-Schreiber, D., Cleeremans, A., and McClelland, J. (1991). Graded State
Machines: The Representation of Temporal Contingencies in Simple Recurrent Networks.
Machine Learning, 7:2-3, 161-193.

[117]  Smolensky, P. (1990). Tensor Product Variable Binding and the Representation of
Symbolic Structures in Connectionist Systems. Artificial Intelligence 46(1-2), 159-216.

[118]  Sutton, R. (1984). Temporal Credit Assignment in Reinforcement Learning. PhD
Thesis, University of Massachusetts, Amherst.

[119]  Tank, D. and Hopfield, J. (1987). Neural Computation by Concentrating Informa-
tion in Time. Proc. National Academy of Sciences USA, 84, pp. 1896-1900, April 1987.

[120]  Tebelskis, J. and Waibel, A. (1990). Large Vocabulary Recognition using Linked
Predictive Neural Networks. In Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing, 1990.

[121]  Tebelskis, J., Waibel, A., Petek, B., and Schmidbauer, O. (1991). Continuous
Speech Recognition using Linked Predictive Neural Networks. In Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1991.

[122]  Tebelskis, J. (1993). Performance Through Consistency: Connectionist Large
Vocabulary Continuous Speech Recognition. In Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1993.

[123]  Tesauro, G. (1989). Neurogammon Wins Computer Olympiad. Neural Computa-
tion, 1(3), 321-323.

[124]  Tishby, N. (1990). A Dynamical Systems Approach to Speech Processing. In Proc.
IEEE International Conference on Acoustics, Speech, and Signal Processing, 1990.

[125]  Touretzky, D. and Hinton, G. (1988). A Distributed Connectionist Production Sys-
tem. Cognitive Science 12(3): 423-466.

[126]  Unnikrishnan, K., Hopfield, J., and Tank, D. (1988). Learning Time-Delayed Con-
nections in a Speech Recognition Circuit. Neural Networks for Computing Conference,
Snowbird, Utah.

[127]  Vintsyuk, T. (1971). Element-Wise Recognition of Continuous Speech Composed
of Words from a Specified Dictionary. Kibernetika 7:133-143, March-April 1971.



 Bibliography168

[128]  Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. (1989). Phoneme
Recognition Using Time-Delay Neural Networks. IEEE Trans. on Acoustics, Speech, and
Signal Processing, 37(3), March 1989. Originally appeared as Technical Report TR-1-0006,
ATR Interpreting Telephony Research Laboratories, Japan, 1987. Reprinted in Waibel and
Lee (1990).

[129]  Waibel, A., Sawai, H., and Shikano, K. (1989a). Modularity and Scaling in Large
Phonemic Neural Networks. IEEE Trans. Acoustics, Speech and Signal Processing, 37(12):
1888-98.

[130]  Waibel, A. and Lee, K.F., eds. (1990). Readings in Speech Recognition. Morgan
Kaufmann Publishers.

[131]  Waibel, A., Jain, A., McNair, A., Saito, H., Hauptmann, A., and Tebelskis, J.
(1991). Janus: A Speech-to-Speech Translation System using Connectionist and Symbolic
Processing Strategies. In Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing, 1991.

[132]  Watrous, R. (1988). Speech Recognition using Connectionist Networks. PhD The-
sis, University of Pennsylvania.

[133]  Wellekens, C. (1987). Explicit Time Correlation in Hidden Markov Models for
Speech Recognition. In Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing, 1987.

[134]  Witbrock, M. and Haffner, P. (1992). Rapid Connectionist Speaker Adaptation. In
Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1992.

[135]  Wood, C. (1992). Conference Registration Task for Neural Net Speech Recogni-
tion: Speech Collection and Labeling for a Speaker Independent System. Technical Reports
CMU-CS-92-197 and CMU-CS-92-198, Carnegie Mellon University.

[136]  Woodland, P., Odell, J., Valtchev, V., and Young, S. (1994). Large Vocabulary Con-
tinuous Speech Recognition using HTK. In Proc. IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 1994.

[137]  Woszczyna, M., Aoki-Waibel, N., Bu, F., Coccaro, N., Horiguchi, K., Kemp, T.,
Lavie, A., McNair, A., Polzin, T., Rogina, I., Rose, C., Schultz, T., Suhm, B., Tomita, M.,
and Waibel, A. (1994). Janus 93: Towards Spontaneous Speech Translation. In Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing, 1994.

[138]  Zeppenfeld, T. and Waibel, A. (1992). A Hybrid Neural Network, Dynamic Pro-
gramming Word Spotter. In Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing, 1992.

[139]  Zeppenfeld, T. and Waibel, A. (1993). Improving the MS-TDNN for Word Spot-
ting. In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing,
1993.Cohen, M., Franco, H., Morgan, N., Rumelhart, D., and Abrash, V. (1993). Context-
Dependent Multiple Distribution Phonetic Modeling with MLPs. In Advances in Neural
Information Processing Systems 5, Hanson, S., Cowan, J., and Giles, C.L. (eds), Morgan
Kaufmann Publishers.



Author Index

169

A
Ackley, D.  28, 39, 159
Adcock, J.  165
Alleva, F.  162
Anandan, P.  41, 159
Anderson, J.  159
Aoki-Waibel, N.  168
Auger, J.  163
Augustine, C.  165
Austin, S.  60, 159

B
Bahl, L.  3, 56, 159
Baird, H.  164
Bakis, R.  159
Barnard, E.  48, 159
Barto, A.  41, 159
Bellagarda, J.  23, 159
Bengio, Y.  62, 159
Bernstein, J.  166
Bodenhausen, U.  6, 38, 44, 159
Boser, B.  164
Bourlard, H.  59, 65, 103, 105, 157, 160, 165
Bregler, C.  38, 160
Bridle, J.  58, 160
Brown, P.  25, 159, 160
Bu, F.  168
Buck, J.  160
Burr, D.  53, 55, 160
Burton, D.  55, 160

C
Cajal, S.  27, 160
Carbonell, J.  v
Carpenter, G.  42, 160
Cazuguel, G.  163
Chevallier, R.  163

Chiba, S.  14, 15, 166
Chow, Y.  14, 84, 167
Cleeremans, A.  57, 167
Coccaro, N.  168
Cohen, M.  166
Cohen, P.  159
Cole, A.  159
Cybenko, G.  107, 160

D
Darbel, N.  163
Darken, C.  43, 165
De La Noue, P.  80, 160
De Souza, P.  159
DeMori, R.  159
Denker, J.  164
Doddington, G.  2, 160
Dorizzi, B.  163
Duda, R.  49, 161

E
Elman, J.  40, 52, 161

F
Fahlman, S.  44, 48, 161
Fallside, F.  54, 56, 166
Fisher, W.  166
Flammia, G.  159
Fodor, J.  57, 161
Franco, H.  166
Franzini, M.  6, 56, 60, 161
Furui, S.  3, 161

G
Gallinari, P.  80, 98, 164
Gish, H.  103, 157, 161
Gold, B.  56, 57, 161, 164
Grossberg, S.  42, 160



Author Index170

H
Haffner, P.  61, 68, 138, 161, 168
Hampshire, J.  66, 103, 157, 158, 161, 162
Hanazawa, T.  168
Harrison, T.  54, 56, 166
Hart, P.  49, 161
Hassibi, B.  43, 162
Hauptmann, A.  168
Hebb, D.  35, 162
Henderson, D.  164
Hermansky, H.  116, 162
Hertz, J.  42, 50, 162, 163
Hild, H.  2, 61, 62, 68, 110, 141, 160, 162
Hinton, G.  28, 57, 159, 162, 163, 164, 167,

168
Hofstadter, D.  v, vi, 162
Hopfield, J.  28, 39, 56, 162, 167
Horiguchi, K.  168
Howard, R.  164
Huang, W.M.  52, 162
Huang, X.D.  23, 69, 149, 162
Hubbard, W.  164
Hwang, M.Y.  26, 149, 162

I
Idan, Y.  38, 163
Iso, K.  80, 163, 166
Isotani, R.  166
Itakura, F.  2, 14, 163

J
Jacket, L.  164
Jacobs, R.  66, 163
Jain, A.  57, 163
Jelinek, F.  159
Jolliffe, I.  50, 163
Jordan, M.  40, 54, 163
Juang, B.H.  166

K
Kammerer, B.  55, 163
Kanal, L.  49, 163
Katagiri, S.  54, 148, 164, 166
Kemp, T.  168
Kimura, S.  2, 163
Kohonen, T.  39, 43, 163
Kompe, R.  159

Konig, Y.  69, 130, 163
Krishnaiah, P.  49, 163
Krogh, A.  42, 162, 163
Kubala, F.  67, 163
Kupper, W.  55, 163
Kuwabara, H.  166

L
Lang, K.  38, 55, 110, 111, 152, 164, 168
Lavie, A.  168
Le Cun, Y.  6, 43, 164
Lebiere, C.  44, 161
Lee, K.F.  2, 22, 56, 60, 66, 94, 149, 154,

161, 164, 168
Levin, E.  80, 90, 94, 164
Levinson, S.  160
Lewis, B.  159
Linsker, R.  42, 164
Lippmann, R.  52, 55, 57, 70, 157, 162, 164,

166

M
Makhoul, J.  159
Manke, S.  6, 38, 159, 160
Matan, O.  164
McClelland, J.  57, 92, 166, 167
McCulloch, W.  27, 164
McDermott, E.  54, 148, 164
McNair, A.  165, 168
Mellouk, A.  80, 98, 164
Mercer, R.  159
Minsky, M.  27, 28, 164
Miyatake, M.  2, 165
Moody, J.  43, 165
Moore, R.  55, 165
Morgan, D.  70, 165
Morgan, N.  59, 69, 105, 130, 160, 163, 165,

166
Munro, P.  41, 165

N
Nahamoo, D.  23, 159
Newell, A.  v, vi
Ney, H.  15, 61, 84, 86, 103, 157, 165
Noll, A.  86, 165
Nowlan, S.  163



Author Index 171

O
Odell, J.  168
Osterholtz, L.  75, 165

P
Pallett, D.  166
Palmer, R.  42, 162
Papert, S.  28, 164
Pearlmutter, B.  103, 157, 158, 162
Peeling, S.  55, 165
Petek, B.  64, 90, 165, 167
Pinker, S.  57, 165
Pitts, W.  27, 164
Polzin, T.  168
Pomerleau, D.  6, 166
Prager, R.  54, 56, 166
Price, P.  75, 166
Prince, A.  57, 165
Pylyshyn, Z.  57, 161

R
Rabiner, L.  25, 79, 166
Reddy, R.  166
Renals, S.  59, 149, 154, 160, 166
Richard, M.  157, 166
Robinson, A.  54, 166
Rogina, I.  165, 168
Rose, C.  168
Rosenberg, C.  6, 167
Rosenblatt, F.  27, 36, 37, 166
Rosenfeld, E.  159
Rumelhart, D.  6, 28, 47, 54, 92, 166

S
Sagisaka, Y.  73, 166
Saito, H.  165, 168
Sakoe, H.  14, 15, 61, 166
Sales, M.  163
Sanger, T.  42, 50, 166
Sawai, H.  165, 168
Schmidbauer, O.  66, 68, 88, 167
Schultz, T.  168
Schwartz, R. 14, 67, 84, 159, 163, 167
Scofield, C.  165
Sejnowski, T.  6, 28, 159, 167
Servan-Schreiber, D.  40, 57, 167
Shikano, K.  165, 168

Shore, J.  160
Singer, E.  70, 164
Sloboda, T.  165
Smolensky, P.  57, 167
Solla, S.  164
Sondhi, M.  160
Stork, D.  43, 162
Suhm, B.  168
Sutton, R.  41, 167

T
Takeda, K.  166
Tank, D.  56, 167
Tebelskis, J.  62, 66, 68, 165, 167, 168
Tesauro, G.  6, 167
Tishby, N.  78, 167
Tomita, M.  168
Touretzky, D.  57, 163, 167

U
Unnikrishnan, K.  56, 167

V
Valtchev, V.  168
Vintsyuk, T.  14, 167

W
Waibel, A.  2, 6, 38, 53-54, 60-62, 66, 68, 70,

75, 110-111, 138, 152, 160-168
Watanabe, T.  80, 163
Watrous, R.  6, 54, 168
Wellekens, C.  59, 80, 103, 157, 160, 168
Wilensky, R.  v
Witbrock, M.  56, 68, 161, 168
Wood, C.  74, 168
Woodland, P.  22, 168
Wooters, C.  160
Woszczyna, M.  75, 168

Y
Yoshida, K.  166
Young, S.  168

Z
Zavaliagkos, G.  159
Zeppenfeld, T.  70, 71, 168
Zipser, D.  52, 161



172



Subject Index

173

A
accents  1
accuracy

acoustic modeling  22-23, 26, 89, 154
frame vs. word  121-122
phoneme  52-56, 60, 63, 98
word  121-122, 144, 148-149
prediction  87, 89, 95
posterior probability estimation 104, 114

acoustic
analysis  10, 12
modeling  7, 11, 12, 16, 57, 151
modeling accuracy  22-23, 26, 89, 154
variability  1, 3, 4, 6

activation
functions  30-34, 106, 113-115, 155
values  28, 30-34

adverse conditions  3
algorithms.  See DTW, One-Stage DTW,

HMM, forward, forward-backward,
Baum-Welch, Viterbi, dynamic pro-
gramming, N-best search, backprop-
agation, quickprop, cascade correla-
tion, simulated annealing, neural net-
works taxonomy, LPNN, learning
rate search

alignment path  13, 15, 19, 83
alphabet recognition.  See letter recognition
AlphaNet  58
alternate phoneme models  85, 95
ALVINN  6
applications

neural network  6
speech recognition  1
speech-to-speech translation  75
TDNN  38

architectures.  See neural networks.
ART1 and ART2  42
articulation  1, 76, 94
associative reward-penalty algorithm  41
asynchronous update  30, 39
ATR  73
attractors  39
Automatic Structure Optimization  44
autoregressive HMM  79, 82
axons  27

B
backgammon  6
backpropagation  6, 28, 36, 44–48, 82, 120

through time  54
backtracing  14, 19
batch training  48, 128, 129
Baum-Welch algorithm  20
Bayes

classification  49
decision rule  49, 105
rule  25, 48, 65, 132

BBN  60
bias

unit bias  31, 114, 116
initialization  59, 155
biasing a network  68

binary outputs  32, 39, 78
bits of precision  117
Boltzmann machine  28, 39, 47, 54, 56
bootstrapping  87, 141, 142, 148
bottleneck  41, 68
boundaries

class  34, 49, 52, 106, 150, 154
word  84, 87, 141

brain. See neurobiology



Subject Index174

C
cascade correlation algorithm  44
cepstral coefficients  10, 115
chain rule  46
clamping  30, 40
classification networks  7, 42, 49, 101-145

overview  101-103
vs. predictive networks  77, 148
static vs. dynamic  51
previous work  51-71
theory  103-106
frame level training  58-60, 106-138
segment level training  60
word level training  61, 138-143
summary  143-145, 152-153

classification, statistical  48, 49
classification figure of merit  45, 141
clustering  22, 41, 42, 49, 68, 69, 92, 129
coarticulation  3, 26, 94, 154
codebook/codeword  22
cognition  27, 57
competitive learning  42, 50
complete connectivity  30
compositional structure  57
compression.  See dimensionality reduction
computation

network processing  30
requirements  23, 92, 123
universal  27, 31, 107

Conference Registration database 74-75, 86,
141, 147-148

confusability  2, 53, 55, 76, 93, 142
conjugate gradient  48
connectionism.  See neural networks
connections 29.  See also weights, topology
consistency  62, 89, 98, 123, 138-41. 148, 150
consonant classification  52, 54
constraints

architectural  38
hierarchical  9
integration  5
sequential  13, 82
task and language  3

constructive networks  43, 44
content-addressable memory  5, 39

context
dependent models  26, 63-66, 85, 92-93,

109, 119, 147, 149
independent models  147-150
sensitivity  12, 38, 63, 109, 154
units/layer  40
contextual inputs  64, 92

continuous density HMM  22-24, 26, 154
continuous outputs  32
continuous speech recognition  2, 19, 74, 86
convergence  36, 121
correlation between frames  26, 60, 78
critic  41
cross entropy  45, 103, 106
cross validation  59, 106, 108, 123, 137-138

D
databases  3, 68, 70, 73–76, 98
dead units  42
decaying memory  40
DECIPHER  131, 149, 154
decision regions.  See boundaries, class.
decision trees  26
delta inputs  23, 26, 116, 118, 153, 154
delta rule  36, 37
dendrites  27
density models  22, 26, 49, 105, 154
derivative offset  128
dictionary  13, 106, 119, 120
differentiability  32, 45
digit recognition  2, 6, 55, 56, 60, 61, 80
dimensionality reduction  10, 41-42, 50
diphones  12, 92
discontinuous speech recognition  2
discrete density HMM  22, 26, 154
discrimination

in HMMs  25, 26, 154
in predictive networks 79, 90, 94-98,

148, 152
in classifier networks 101, 103, 150, 154
frame level  106-138
word level  138-141, 148
sentence level  62, 141
basic tasks  52-54, 56
implicit vs. explicit  98

discriminant analysis  49



Subject Index 175

distortion  3, 89
division by priors  59, 104, 132, 152
DTW  4, 13-15, 61, 80, 82, 84, 104, 132, 139
duration modeling

in HMMs  24, 26
phoneme/state  106, 119, 133–136, 154
word  61, 84, 136
probabilistic  135

dynamic
classification  51, 53, 55, 56, 138
network topologies  36, 43
programming  13, 14, 18, 19
programming neural network 61

dynamics
of speech  11, 78
of network activations  29, 30, 39

E
economy of representation  106, 154
efficiency 17-18, 64-6, 92-3, 116-8, 150, 153
Elman network  40, 57, 60
emission probabilities 12, 17, 22, 59, 60, 132
encoder network  41, 50, 68
energy function  28, 39
epochs  35
error analysis  86, 93
error functions  45
E-set  2, 53
estimation-maximization (EM)  20
excerpted word recognition  90
exponential decay  24, 26

F
factorization of probabilities  65
feature detection  38, 42, 52, 53, 110
feature mapping  41, 43
feedback  29, 30, 40
feedforward networks  30, 37–39, 45, 54
FFT coefficients  9, 115, 118
figure of merit  70
first order assumption  17, 26, 154
Fisher’s linear discriminant  49
formants  52
forward algorithm  17, 19
forward propagation  30
forward-backward algorithm  17, 20, 24
frame level training  58–60, 82, 106–138

frame  11
scores  12, 82, 132

function approximation  5, 27, 31, 77, 107
function word models  94, 95, 147

G
gaussian densities.  See mixture densities
gender  1, 69
gender dependence 76, 129–30, 144, 150, 153
generalization  5, 30, 35, 38, 84, 137–138
generalized delta rule.  See backpropagation
generalized triphones  12, 89
global minimum  33, 40
global optimization 62
glue  54
gradient ascent  96
gradient descent  25, 33, 35, 47, 48, 96, 121
grammar  3, 13, 57, 74, 76, 104, 106, 147
granularity  12, 82

H
handwriting recognition  6, 38, 44
HCNN  80, 89–94, 147-148
Hebb rule  35, 39, 41
heuristics for faster learning  128
hidden control.  See HCNN.
hidden Markov models.  See HMM
hidden units

role of  28, 39, 44, 52
number of  59, 81, 93, 108, 155
layers of  38, 107

hierarchical structure
HMM  16
neural network  38, 56, 61, 140
time delays  38, 53, 110-111, 152

HMM  4, 15-26, 57
basic concepts 15–17
algorithms 17–21
variations 22–25
weaknesses 26
vs. NN-HMM  88-89, 147-150, 153-154

homophones  73, 84
Hopfield network  39
hybrid network architectures  36, 43
hybrid systems.  See NN-HMM
hyperplanes  33-35, 49
hyperspheres  33-35, 39, 42, 43



Subject Index176

I
ICSI  59, 108, 131, 149-150
identity mapping  41, 95, 96
independence assumption  26, 64, 109, 154
inputs  10, 28

number of frames  51, 109
representation  9, 103, 115-118, 153
number of coefficients  106, 115-8, 141-2
contextual  64, 92

interference between memories  39
isolated word recognition 2, 14, 17, 84–86
iterations of training  35, 142, 156

J
Janus  75
Japanese isolated words  73, 84
joint optimization  62
Jordan network  40, 54

K
k-means clustering  49, 50
k-nearest neighbor estimation  49
k-nearest neighbor rule  49
knowledge-based recognition  4
Kramer’s rule  123

L
labels  14, 131, 156
language model  3, 13, 104, 137
lateral inhibition  42
layers  28-30, 38, 62, 107
LDA  10, 24, 26, 116, 118, 144, 153-155
learning  4, 27
learning rate  35, 45, 47, 121-127, 144, 153

constant  121, 126
geometric  122, 124, 126
asymptotic  125, 126
search  122–127, 144, 150, 153
factors that affect  126–127
normalization  87

letter recognition  2, 53, 55, 61, 68
likelihoods  11, 17, 22

from posteriors  65, 104, 132, 152
vs. posteriors  105
See also maximum likelihood

linear
prediction  10, 78, 80
separability  34, 37
units  31-32, 42, 113, 141

lipreading  38
local connectivity  30, 38, 42, 86
local minima (maxima)  21, 33, 39, 47-48
logarithms  25, 132
long-term memory  29
loose word boundaries  87
LPC coefficients  10, 115
LPNN  75, 81–89, 94, 147-148

basic operation 81–82
training & testing procedures  82-84
experiments  84-87
extensions  89-94
weaknesses  94-99
vs. HMM  88–89, 147-148

LVQ  33, 36, 39, 54, 75, 88-89, 147-148

M
maximum a posteriori  25
maximum likelihood  24, 26, 49, 94, 154
maximum mutual information  25, 26, 154
McClelland error  45
mean squared error  45, 49, 103, 142, 158
mel scale coefficients  9, 74, 115
memory

implementation of  29, 39, 40, 56
requirements  13, 24, 90, 117, 149
memorization  30, 108, 137, 138

Meta-Pi network  66
microphones  3, 74
mixture densities  23, 26, 88, 147, 154
mixture of expert networks  66
MLP  28, 37-38, 102, 149, passim.

as posterior estimator  49, 103-6, 132, 157
vs. single layer perceptron  28, 107
vs. TDNN  110–112, 152

models.  See acoustic, temporal, duration,
density, speech, phoneme, word, sta-
tistical, parametric, nonparametric,
neural, predictive, classification, pro-
nunciation, accuracy



Subject Index 177

model mismatch  25, 26, 154
modeling assumptions  4, 25, 26, 59, 154
modularity  30, 54, 57, 75, 101
momentum  47, 48, 106, 128
monophones.  See phoneme models
MS-TDNN  44, 61-62, 68, 70, 138–150
multi-layer perceptrons.  See MLP
multimodal system  5, 75
multi-speaker recognition  2, 66

N
nasality  1
natural language processing  57, 75
N-best search  14, 60, 84
negative training 62, 95–98
neighborhood function  43
net input  30-34
NETtalk  6
neural networks  1-170

fundamentals  5, 28–36
properties  5, 78, 101
taxonomy  36–44
architectures  28-44, 101-102, 106-115
backpropagation  44–48
relation to statistics  48–50, 103-106
history  27–28
as acoustic models  7, 77-150, 151
for speech (review)  51-71
See also predictive, classifier, NN-HMM

neurobiology  1, 4, 27
Neurogammon  6
NN-HMM hybrids  7, 71, 147-154

survey  57-71
advantages  153-154
vs. HMM  88-89, 147-150, 153-154

noise  1, 3, 5, 48, 79
nondeterminism  32
nonlinearity  5, 31, 32, 78, 113-114
nonlocal activation functions  31-32
nonparametric models  11, 22, 49, 154
normalization

inputs  116, 117, 127, 144
outputs  112.  See also softmax
weights  42, 139

O
offsets (derivative, target)  128
One-Stage DTW  15, 84
online training  48, 59, 128, 129, 144
optimal brain damage  43
optimization

HMM criterion  24-26, 154
NN criterion  45
NN techniques  101-103, 106-145, 144,

150, 152-153
oscillation  121
output activations.  See activations
output units  28

number of  64, 106, 141-142
normalization  112.  See also softmax
transformation  132
winner-take-all  42
phoneme level  52-55, 106, 111, 113-115
word level  61-62, 138-143

overlapping distributions  129, 130

P
parallelism  5, 28, 57, 78
parameters

number of  86, 90, 91, 108, 142, 149, 154
role of  22-23, 154
sharing  26, 38, 68, 81, 89-92

parametric models  11, 22, 24, 49
Parzen windows  49
pattern

association  29, 35, 77
completion  5, 28, 29, 39
recognition  6, 9, 14, 17-19, 81, 101

PCA  50
perception  27, 30, 42, 43
perceptrons

single layer  27-28, 37, 49, 102, 107
multiple layer.  See MLP
learning rule  27, 36, 37

perplexity  3, 74, 76
Philips  59
phoneme

durations  133-136
models  12, 16, 81, 86, 90-93, 119-120
recognition  2, 38, 52-56, 60, 63, 98

pitch  1



Subject Index178

plosive recognition  63
PLP coefficients  9, 106, 116, 118
posterior probabilities  48-49

vs. likelihoods  105-106
MLP estimation  49, 59, 103-104, 114,

152, 157-158
usefulness  65, 78, 127, 128, 132, 150,

154
power coefficient  24, 116
prediction, non-network  9, 10, 79-80
predictive networks  7, 77-99, 147-148, 152

motivation and hindsight  78-79
LPNN  81-89, 147-148
extensions  89-94.
weaknesses  94-99, 152
accuracy  85, 87, 89, 91, 95, 147-148
vs. HMM  79-80, 88-89, 147-148
vs. classifier networks  77, 147-148
related work  79-80

preprocessing  9-10, 153
principal components  42, 50, 64
prior probabilities  49, 65, 106, 132, 152
probabilities

in HMM  16-26
in networks  101, 103-6, 132, 152, 157
See also emission, transition, reestima-

tion, posteriors, priors, densities,
likelihoods, MLP, accuracy

production system, connectionist  57
pronunciation  1, 13, 94, 120, 149, 156
pruning  43

Q
quantization

See vector quantization, LVQ, bits.
quantization error  22, 26, 89, 154

quickprop  48

R
radial basis functions (RBF)  33, 43, 71
random

connectivity  30
initialization  116, 155
training sequence  59, 106, 128-129, 156

rate of speech  1, 4
raw speech  9, 115

read speech  3, 75
recurrent networks  29-30

types of  39-40, 58
experiments with  54, 56
vs. feedforward networks  29-30, 56

recursive labeling  131, 144, 150
redundancy  116, 129
reinforcement learning  36, 40–41
Resource Management database  3, 75, 106,

141-145, 148-150
robustness  5

S
sampling rate  9
Sanger’s rule  42, 50
saturation  116, 128
scaling problems  51, 57
search.  See learning rates, Viterbi
second derivative information  43, 48
segment level training  60
segmentation  13, 131
self-organizing networks  41
semantic constraints  3
semi-continuous HMM  23, 24, 26, 154
semi-supervised learning  36, 40–41
senones  12, 26, 89
sentence level training  62
sentence recognition  14, 16, 57
sequences  29
sharing.  See parameters
shift invariance  38, 53, 111
shortcut connections  112–113
short-term memory  29
sigma-pi networks  30, 31, 58, 66
sigmoid  31-33, 37, 114-115, 128
signal analysis  9-10, 115
simulated annealing  32, 39, 54
softmax  32, 106, 114-115, 127, 142, 144
speaker adaptation  2, 68
Speaker Cluster Neural Network  69
speaker

dependence  2, 68, 74, 87, 147-148
independence  2, 66-69, 75, 129-130,

148-150, 153
normalization  69

Speaker Voice Code network 68



Subject Index 179

speaking manner  3
spectrogram  87, 95, 116
speech

compression  9
generation  1
models  11-12, 103, 119-120, 151
translation  75

speech recognition  1-170
introduction  1-4
fundamentals  9–14
state of the art  2, 3, 98, 149
See also DTW, HMM, neural networks,

NN-HMM, predictive networks,
classifier networks

Sphinx  61, 68, 87, 98, 149-150, 154
SPICOS  86
spontaneous speech  3, 75
spreading activation  30
SRI  59, 131, 149, 154
state

representation of speech  11-13, 16-19
density models  22, 26, 154
duplication  24, 133-136
network implementations 82, 86, 103,

119-120, 138
state of the art.  See speech recognition
static classification  51, 52, 55-57
statistical models  4, 15-26, 48-50

vs. neural networks  48-50
See also probabilities.

stochastic networks  31-33, 39, 41
streams of data  23, 24, 26, 109, 154
sum squared error.  See mean squared error
supercomputers  v, 108
supervised learning 36-40, 44-47
syllable models  12
symmetric

connections  39
inputs  114, 116
sigmoid  114

synapses  27
synchronous update  30
syntactic constraints  3

T
tanh  114-115, 117, 155
target offset  128
TDNN  38, 53

design considerations 38, 60, 110-2, 152
experiments  53-56, 147-148
and MS-TDNN  61, 102, 138-9, 147-8

telephone transmission  3, 9
temperature  32-33, 39
templates  4, 11-15
temporal

constraints  12-13, 16
dynamics  30, 78, 118
integration  38, 53, 54, 56, 111-2, 138-9
modeling  7, 12-13, 16, 56-57, 151, 154
structure  56
variability  1, 4, 56-57

tensor products  57
testing  12

conditions  106, 156
procedures  103, 132-137
vs. cross-validating  144
final results  147-150

thermometer representation  90
threshold units  27, 31-32, 37, 39, 45
tied-mixture density HMM  23
time alignment  12-15, 19
time concentration network  56
time delays.  See TDNN
TIMIT  98, 119
topology

HMM  16
phoneme  86, 93, 119-120
network  29-30, 77, 102
modification  35, 43-44

tradeoffs
# free parameters  30, 108
# mixture densities  23
amount of training data  137-8
parameter sharing  89
granularity of models  12
codebook size  22
duration modeling  24
hierarchical delays  110, 152
learning rate size  47, 126-127
weight update frequency  48, 129



Subject Index180

training  12
HMM  20-21
neural networks  35-48
amount of data  64, 73-76, 89, 110-111,

126, 137-138, 152
conditions  106, 156
procedures  103, 120-131, 138, 143
sequence  59, 106, 128-129, 156
speed  54, 107, 123

transfer functions  31-33, 113–115, 117, 127
transforming output activations  132, 152
transitions  16, 17, 24, 86, 133

word transition penalties  137
translation  75
triphones  12, 63-65, 89, 92, 109

U
undefined outputs  96
uniformity  5
units  5, 28, 141-142, 155

See also input, hidden, output
universal computer  27, 31, 107
unstructured networks  29, 30, 39
unsupervised learning  36, 41–43

V
variability.  See acoustic, temporal.
variable binding  57
vector quantization  22, 41, 42.

See also LVQ
visual processing  30, 42, 43
Viterbi net  57
Viterbi search algorithm  13, 17, 19, 106
vocabulary independence  73, 84
vocabulary size  2, 3, 73-76
vocal tract  1
voiced/unvoiced discrimination  6
volume  1, 3
vowel classification  52, 54

W
warping  4, 14-15
weights  29-31

decay  42
initialization  116, 155
range  29, 117, 128
tied  38, 110
training  35-48
update frequency  48, 82, 106, 128-9, 144

Widrow-Hoff rule  36
window of speech  51, 63-64, 77, 106, 109,

153, 154
winner-take-all networks  42
word

boundaries  84, 87, 141
models  11, 16, 61, 80, 94, 138-143
recognition  14-19, 55-56, 61, 84-6, 138,

143-144, 148-149
spotting  69-71
transition penalties  137
-pair grammar  76

word level training  61, 98, 107, 138–145, 153
vs. frame level training 142–143

X
XOR function 37


