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Abstract

In this paper we investigate the automatic detection of phoneme
boundaries in audio recordings of an unknown language. This
work is motivated by the needs of the project BULB which aims
to support linguists in documenting unwritten languages. The
automatic phonemic transcription of recordings of the unwritten
language is part of this. We cannot use multilingual phoneme
recognizers as their phoneme inventory might not completely
cover that of the new language. Thus we opted for pursuing
a two step approach which is inspired by work from speech
synthesis for previously unknown languages. First, we detect
boundaries for phonemes, and then we classify the detected seg-
ments into phoneme units. In this paper we address the first
step, i.e. the detection of the phoneme boundaries. For this we
again used multilingual and crosslingual phoneme recognizers
but were only interested in the phoneme boundaries detected by
them and not the phoneme identities. We measured the qual-
ity of the segmentations obtained this way using precision, re-
call and F-measure. We compared the performance of different
configurations of mono- and multilingual phoneme recognizers
among each other and against a monolingual gold standard. Fi-
nally we applied the technique to Basaa, a Bantu language.
Index Terms: Automatic phoneme transcription, multilingual
speech recognition, language documentation

1. Introduction
There currently exist over 7,000 living languages in the world
[1]. A large number of these are only spoken by a small group
of speakers and are being threatened by extinction [2, 3]. While
Natural Language Processing (NLP) systems have been suc-
cessfully built for many languages with a large speaker base or
great economic value, they are not available for the vast ma-
jority of smaller, under-resourced languages. The need for ex-
tensive, annotated training corpora usually makes building such
systems costly and time-consuming. Additionally, many small
languages and regional dialects of major languages do not fea-
ture a standardized writing system, complicating the creation of
NLP systems for them.

The number of endangered languages is so large that their
comprehensive documentation by the community of documen-
tary linguists will only be possible if supported by NLP technol-
ogy. Therefore it is the goal of the French-German ANR-DFG
project Breaking the Unwritten Language Barrier (BULB) to
develop tools to enable the efficient automatic processing of un-
written languages. Initial targets will be three mostly unwritten

African languages of the Bantu family (Basaa, Myene and Em-
bosi) [4].

One of BULB’s goals is to automatically segment record-
ings of new languages into phonemes. As no prior knowledge of
the target language is available, the use of multilingual phoneme
recognizers for this task is not possible, since their phoneme in-
ventory might not sufficiently cover the target phoneme inven-
tory. We therefore decided to pursue the two step approach of
first detecting phoneme boundaries, followed by classifying the
detected segments into phonemes.

In this paper we address the first step, i.e. phoneme segmen-
tation, by using crosslingual and multilingual phoneme recog-
nizers. For this we will exclusively focus on the positions of
detected phoneme boundaries, disregarding the identity of the
phonemes detected. We compare the performance of different
cross- and multilingual phoneme recognizers among each other
and, where available, against a monolingual gold standard con-
sisting of a phoneme recognizer trained on the target language
in a traditional supervised manner.

2. Related Work
Significant work has been done on the topic of building speech
recognition systems for unwritten and under-resourced lan-
guages. [5] tried to estimate phoneme boundaries by analyz-
ing the acoustic change of audio signals. They proposed a two
step method where the information derived from the speech sig-
nal is expanded by additional cues. [6] presents an approach
to discovering a proper set of subword-like units. In addition
to segmenting the audio, they also train a Dirichlet process
mixture model for representing individual acoustic units. [7]
has investigated algorithms and metrics for the task of unsu-
pervised phoneme segmentation. In [8] the authors presented
an HMM/SVM approach for automatic phoneme segmentation
that imitates the human phoneme segmentation process.

Recent work has been done in the context of the Zero
Speech Challenge [9]. This challenge focuses on the unsuper-
vised discovery of subword units from raw speech. The orga-
nizers provide a unified and open suite of evaluation metrics.

3. Unsupervised Segmentation
Our approach to unsupervised segmentation of speech record-
ings into phonemes in a new, unknown language is inspired by
work for speech synthesis in [10, 11]. In this work an English
phoneme recognizer was used to segment various languages.
However, the authors did not evaluate the quality of the seg-



mentation directly. Instead they only considered the extrinsic
quality of the resulting speech synthesis system. For our task,
i.e. the accurate phonetic transcription of a language for docu-
mentation purposes, the quality of the resulting segmentation is
much more important than for the task of finding segments suit-
able for speech synthesis. We therefore carefully measure the
quality of the segmentation of speech into phonemes using F-
measure, disregarding the identity of the recognized phonemes.

Furthermore, [10, 11] only used an English monolingual
phoneme recognizer. However from previous experience we
know that when working across languages, multilingual acous-
tic models usually outperform monolingual ones. We there-
fore extend the approach to using multilingual acoustic models
whose modeling units have been trained on multiple languages
using a common phoneme set [12].

4. Experimental Setup
The recognizers for the experiments presented in this paper
were built using the Janus Recognition Toolkit (JRTk) [13],
which features the IBIS single-pass decoder [14]. For the cre-
ation of the pronunciation dictionaries we used MaryTTS [15].

A significant parameter used for decoding the target audio
is the word penalty (LP) which is added to the score of a hypoth-
esis for every word in the hypothesis. Higher LP values result in
fewer hypothesized boundaries, and vice versa. Comparing the
resulting number of segments to the number of segments to be
expected according to the reference we can calculate an over-
or under-segmentation ratio as defined in [5].

4.1. Basaa data

Basaa is one of the three Bantu languages of the BULB
project. It is spoken by approximately 300 000 speakers (SIL
2005, [16]) from the Centre and Littoral regions in southern
Cameroon.

The Basaa data used in the present experiment consists of
≈2 hours of re-spoken radio broadcasts. The original audio files
were obtained from the radio station CRTV-Centre and feature
a male native speaker of the language. His speech was phonet-
ically transcribed by a linguist and later carefully re-spoken by
a female native speaker of Basaa in a quiet environment.

4.2. English Data

For the sake of comparison, considering the absence of a us-
able baseline system for Basaa, we also used English as a faux
unseen target language. This allows us to automatically cre-
ate labels to use as a ground truth, even when using data that
does not feature phoneme-level annotations. For this purpose
the target data’s orthographic annotations were converted to a
phonetic representation via the G2P component of MARY [15]
and then matched to the audio via a forced alignment performed
by a pre-trained English language ASR system.

As source languages we chose German, French, Italian,
Russian and Turkish. Both target and source audio were taken
from the Euronews Corpus [17]. Euronews data is composed
of news recordings originally broadcast on the channel of the
same name. Recordings consist of read and planned speech, of-
ten spoken over news footage with separate audio running in the
background, making the collected data noisy.

Individual source language systems were trained on 68-77
hours of training data each. Since Euronews does not provide
manual annotations on a phonetic level, we also trained a recog-
nizer on the same amount of English Euronews training audio

in order to create phoneme annotations against which to com-
pare our cross- and multilingual segmentations. The multilin-
gual system (denoted as M5 throughout this paper) was trained
on a combined 360 hours of audio, with equal parts taken from
each of the five source languages. For details on the distribution
of the source language training data also see Table 1. For test-
ing, we used two sets of English audio files: a longer one with
≈29minutes of speech across 29 news reports, and a shorter
one, consisting of ≈24minutes of speech across a subset of 28
news reports.

Language Length #Phonemes Cov. EN Cov. BA

EN 72.8h 40 – –
DE 73.2h 56 82.5% 80.6%
FR 68.1h 33 57.8% 61.3%
IT 77.2h 59 60.0% 74.2%
TR 70.4h 26 55.0% 54.8%
RU 72.2h 25 37.5% 45.2%
M5 361.3h 99 85.0% 96.8%

Table 1: Amount of audio data used for training mono- and
multilingual recognizers (in hours), number of phonemes used
in training and phoneme coverage on English and Basaa

It should be noted that the individual systems trained on the
data for the source languages listed above feature vastly differ-
ent phonetic coverage on the target language with regard to their
acoustic model, as presented in Table A baseline for our experi-
ments on English will be provided via segmentations generated
by an ASR system trained on the English Euronews training
data. To measure performance on clean speech we also used
English speech taken from the TIMIT corpus as target audio.
TIMIT [18] provides recordings from 630 native speakers of
eight dialects of American English recorded in a controlled stu-
dio environment. The audio is therefore quite clean, with no
background noise whatsoever, and thus differs significantly in
nature from the Euronews data used for training the systems.

5. Experiments and Results
Before discussing results, section 5.1 will briefly introduce the
employed metrics and how they were applied. Initial experi-
ments on English were conducted without a language model;
the results are presented in sections 5.2 (for noisy speech) and
5.3 (for clean speech). In addition, we ran experiments with
special language models estimated on the phoneme sequences
of the training data in order to see if this information is bene-
ficial, and compared the results to those obtained without lan-
guage models (section 5.4). Finally, we attempted to segment
Basaa speech with both mono- and multilingual systems (sec-
tion 5.5).

5.1. Performance metrics

To evaluate the accuracy of the phoneme segmentation gener-
ated by our systems we use precision, recall and F1 scores of the
detected phoneme boundaries. In previous work on the subject
of segmentation, such as [5], [6] and [7], researchers have opted
to allow for a certain inaccuracy when determining whether a
predicted boundary matches the reference. This is reasonable,
as requiring matches to be exact to a single frame is a very strict
standard that is hard to meet and does not account for the am-
biguous nature of speech signals. A commonly chosen value
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Figure 1: F1 scores for different silence penalties on English
Euronews audio (no language model)

for this tolerance is 20 ms, as larger windows quickly escalate
scores and therefore are not particularly useful for evaluation.

5.2. Results on noisy English speech

During the experiments presented in this section and in sec-
tion 5.3, we tagged all words (i.e. phonemes) as noise models.
Hence we ran the experiments by varying the silence penalty
(SP), which in this scenario corresponds to changes of LP in the
second set of experiments where we introduced language mod-
els. In our experiments the number of segments produced was
most accurate (i.e. resulted in minimal over- or undersegmen-
tation) for a penalty value of 0. This is also where the baseline
segmentation performed best according to the F1 score, as can
be seen in Figure 1.

System Precision Recall F-Score

EN (baseline) 0.7623 0.7715 0.7669
M5 0.6299 0.6984 0.6624
DE 0.5881 0.6440 0.6130
FR 0.6706 0.6791 0.6748
IT 0.6286 0.7016 0.6631
RU 0.5559 0.7372 0.6338
TR 0.6208 0.6709 0.6449

Table 2: Comparison of segmentation quality on English Eu-
ronews audio without language models

All monolingual systems perform significantly worse then
the English baseline, our gold standard. As for comparison
among the cross-lingual recognizers themselves, French per-
formed best while German performed worst. Apparently the
phoneme coverage shown in table 1 does not seem to have a
strong influence on the quality of the segmentation. This is also
reflected in a Pearson coefficient of 0.562 for the correlation
between a language’s coverage and the respective monolingual
system’s F1 score. We can also see in table 2 that while individ-
ual systems may perform slightly higher than the multilingual
one, the latter does outperform the majority of them (see dis-
cussion in section 5.6).

5.3. Results on clean English speech

We also applied our systems to audio taken from the TIMIT cor-
pus. The speech samples provided by TIMIT differ in two major
ways from the English audio in Euronews. Firstly, TIMIT con-
sists of individual sentences recorded in a studio environment
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Figure 2: F1 scores for different silence penalties on English
TIMIT audio (no language model)
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Figure 3: Precision scores for different silence penalties on En-
glish TIMIT audio (no language model)

specifically for the purpose of building the corpus. The audio is
therefore free of any background noise. Secondly, TIMIT fea-
tures speakers of American English, whereas Euronews broad-
casts feature British English.

Results indicate that the system does not seem to generalize
sufficiently to be used on this data. As can be seen in Figure
2, the F-Score steadily decreases as the number of boundaries
predicted by the system decreases. This is the case even for the
phoneme recognizers trained on the English Euronews audio.
The behaviour of the F1 curves seems to stem from a quasi-
random precision in predicting phoneme boundaries. Figure 3
shows the precision curves of three recognizers, compared to
a baseline representing the expected precision when guessing
borders randomly. Since the behaviour of the precision curve is
near-flat, the F1 curve is dominated by recall, which naturally
converges towards 1 with an increasing number of generated
boundaries.

There seems to be an acoustic mismatch here which indi-
cates that the recording environment for similar experiments, as
well as practical application, must be carefully chosen such that
source and target data constitute a good fit.

5.4. Results on English speech using language models

After these initial experiments, we trained a phoneme level lan-
guage model using the annotations provided by the Euronews
corpus for our five source languages. For this purpose we first
converted the orthographic transcriptions using the G2P com-
ponent of MARY [15], then estimated a language model on the
resulting phoneme strings.

Substituting the uniform LMs for these new models with-



out further adjustments resulted in considerably slower decod-
ings on the English Euronews audio. For the multilingual recog-
nizer this meant decoding at a factor of approximately 200 times
real time. This is most likely caused by the significantly larger
search space introduced by the length of the phoneme sequences
per utterance. Unfortunately there was very little improvement
in performance gained in return, in both cross- and multilingual
application. It should be noted that due to the above-mentioned
decrease in speed, experiments using estimated language mod-
els were only run on a subset of the training data used in 5.2,
featuring approximately 17% less audio, so that scores are not
directly comparable. We therefore provide scores derived from
experiments on the same subset in Table 3.

System without LM with LM

EN (baseline) 0.7769 0.7484
M5 0.6624 0.6708
DE 0.6130 0.6446
M5* n/a 0.5908

Table 3: Results with and without language models

When reducing the search space by narrowing the search
beams, decoding became significantly faster, but this also no-
ticeably impacted the performance indicated by the F-score (in-
dicated as M5* in Table 3). Therefore we must assume that the
manner in which the phoneme language models were trained is
not suitable for crosslingual application.

5.5. Results on Basaa speech

Finally we ran our experiments on the Basaa language data de-
scribed in section 4.1. The results are displayed in table 4. Un-
like with our experiments on English, there is no Basaa lan-
guage recognizer the authors of this paper are aware of that
could serve as a baseline. However, absolute performance, as
indicated by F-Scores, is lower than that on English audio, as
seen in Table 2.

It should be noted that the Basaa audio used here is also free
of noise, just as the TIMIT audio. Unlike with TIMIT though,
performance as indicated by Precision, Recall and F-Score is
not random but behaves largely as expected across different SP
values. This suggests that the behaviour on TIMIT data can’t
originate from the absence of noise in those recordings alone
(see section 5.3).

System Precision Recall F-Score

M5 0.4730 0.5385 0.5036
DE 0.4658 0.5170 0.4900
FR 0.5166 0.5149 0.5158
IT 0.4808 0.5209 0.5000
RU 0.4710 0.6504 0.5463
TR 0.4891 0.5538 0.5195

Table 4: Comparison of segmentation quality on Basaa audio

5.6. Discussion

The results presented in this paper are encouraging regard-
ing the use of multilingual recognizers for the given task of

phoneme segmentation on a previously unseen language. The
multilingual recognizer in all cases performed about as well as
any of the monolingual systems. While there are monolingual
systems that perform better on English or Basaa audio, the per-
formance is not consistent across target languages. For exam-
ple, while Russian performed best on Basaa, it also showed the
second-worst performance on English. Since in practical ap-
plication there is no way of predicting which source language
might perform best individually, using a multilingual system in-
stead will very likely lead to a more consistent expected result.
Further experiments with more source/target pairs could con-
firm this assumption with higher certainty.

6. Conclusion
In this paper we have evaluated the cross- and multilingual use
of phoneme recognition systems for phoneme segmentation of
previously unseen languages. To this end we trained regular
mono- and multilingual recognizers on noisy television news
audio. We then evaluated the segmentations produced by these
systems on English and Basaa audio, pretending we had no in-
formation about English as a faux unseen target language. We
have presented our results, which show that the monolingual
recognizer was able to predict segmentation boundaries with
some reliability. Our results also indicate that the additional
information gained from adding languages to the training data
for the acoustic model of a multilingual recognizer can posi-
tively influence performance, while at least making it more ro-
bust across multiple target languages. In any case, while a mul-
tilingual acoustic model did contribute positively in this man-
ner, adding a multilingual phoneme language model estimated
on training data taken from the same source languages did not
noticeably do so.

In our experiments we used noisy audio with pervasive
background noise accompanying the actual speech as training
data. In a real-life scenario of exploring and documenting pre-
viously unknown languages it stands to reason that recordings
of target audio would be performed in a controlled environ-
ment with negligible noise. As we have shown the systems we
trained did not generalize well in some cases of clean target au-
dio (TIMIT), but did so in others (Basaa). Therefore further ex-
periments are required to investigate if the same approach using
clean training audio could potentially yield better results. Alter-
natively, additional filtering steps during training may improve
performance without restricting the process to using acousti-
cally clean data.

As for the influence of phoneme coverage on performance,
a failure analysis could determine if there is a correlation be-
tween incorrectly predicted boundaries and whether the specific
phoneme to which they belong was covered by the source lan-
guage(s) or not.

While it cannot be stated with certainty yet whether the
performance of the chosen approach is sufficient for the in-
tended use case of documenting unseen languages, the results
presented here can serve as a baseline for future experiments
and refinement. For example, one could compare performance
with a system that uses voting on boundaries among multiple
monolingual decoders instead of mixed multilingual models.
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