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In this paperl we show that neural networks for speech recognition can be constructed in 
a modular fashion by exploiting the hidden structure of previously trained phonetic 
subcategory networks. The performance of resulting larger phonetic nets was found to be 
as good as the performance of the subcomponent nets by themselves. This approach 
avoids the excessive learning times that would be necessary to train larger networks and 
allows for incremental learning. Large time-delay neural networks constructed 
incrementally by applying these modular training techniques achieved a recognition 
performance of 96.0% for all consonants. 

1. Introduction 
Recently we have demonstrated that connectionist architectures capable of capturing 
some critical aspects of the dynamic nature of speech, can achieve superior recognition 
performance for difficult but small phonemic discrimination tasks such as discrimination 
of the voiced consonants B,D and G [Waibel 89, Waibel 88a]. Encouraged by these 
results we wanted to explore the question, how we might expand on these models to 
make them useful for the design of speech recognition systems. A problem that emerges 
as we attempt to apply neural network models to the full speech recognition problem is 
the problem of scaling. Simply extending neural networks to ever larger structures and 
retraining them as one monolithic net quickly exceeds the capabilities of the fastest and 
largest supercomputers. The search complexity of finding a good solutions in a huge 
space of possible network configurations also soon assumes unmanageable proportions. 
Moreover, having to decide on all possible classes for recognition ahead of time as well 
as collecting sufficient data to train such a large monolithic network is impractical to say 
the least. In an effort to extend our models from small recognition tasks to large scale 
speech recognition systems, we must therefore explore modularity and incremental 
learning as design strategies to break up a large learning task into smaller subtasks. 
Breaking up a large task into subtasks to be tackled by individual black boxes 
interconnected in ad hoc arrangements, on the other hand, would mean to abandon one of 
the most attractive aspects of connectionism: the ability to perform complex constraint 
satisfaction in a massively parallel and interconnected fashion, in view of an overall 
optimal perfonnance goal. In this paper we demonstrate based on a set of experiments 
aimed at phoneme recognition that it is indeed possible to construct large neural networks 
incrementally by exploiting the hidden structure of smaller pretrained subcomponent 

1 An extended version of this paper will also appear in the Proceedings of the 1989 International Conference 
on Acoustics, Speech and Signal Processing. Copyright: IEEE. Reprinted with pennission. 
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networks. 

2. Small Phonemic Classes by Time-Delay Neural Networks 
In our previous work, we have proposed a Time-Delay Neural Network architecture (as 
shown on the left of Fig. 1 for B,D,G) as an approach to phoneme discrimination that 
achieves very high recognition scores [Waibel 89, Waibel 88a]. Its multilayer 
architecture, its shift-invariance and the time delayed connections of its units all 
contributed to its performance by allowing the net to develop complex, non-linear 
decision surfaces and insensitivity to misalignments and by incorporating contextual 
information into decision making (see [Waibel 89, Waibel 88a] for detailed analysis and 
discussion). It is trained by the back-propagation procedure [Rurnelhart 86] using shared 
weights for different time shifted positions of the net [Waibel 89 , Waibel 88a]. In spirit it 
has similarities to other models recently proposed [Watrous 88, Tank 87]. This network, 
however, had only been trained for the voiced stops B,D,G and we began our extensions 
by training similar networks for the other phonemic classes in our database. 
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Figure 1. The TDNN architecture: BOO-net (left), BooPTK-net (right) 

All phoneme tokens in our experiments were extracted using phonetic handlabels from a 
large vocabulary database of 5240 common Japanese words. Each word in the database 
was spoken in isolation by one male native Japanese speaker. All utterances were 
recorded in a sound proof booth and digitized at a 12 kHz sampling rate. The database 
was then split into a training set and a testing set of 2620 utterances each. A 150 msec 
range around a phoneme boundary was excised for each phoneme token and 16 mel scale 
fllterbank coefficients computed every 10 msec [Waibel 89, Waibel 88a]. The 
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preprocessed training and testing data was then used to train or to evaluate our TDNNs' 
performance for various phoneme classes. For each class, TDNNs with an architecture 
similar to the BOO-net in Fig.l were trained. A total of seven nets aimed at the major 
coarse phonetic classes in Japanese were trained, including voiced stops B, D. G, 
voiceless stops P,T,I(, the nasals M, N and syllabic nasals, fricatives S, SR, R and Z, 
affricates CR, TS,liquids and glides R, W, Y and fmally the set of vowels A, I, U, E and 
O. Each of these nets was given between two and five phonemes to distinguish and the 
pertinent input data was presented for learning. Note, that each net was trained only 
within each respective coarse class and has no notion of phonemes from other classes yet. 
Evaluation of each net on test data within each of these subcategories revealed that an 
average rate of9S.S% can be achieved (see [WaibeISSb] for a more detailed tabulation of 
results). 

3. Scaling TDNNs to Larger Phonemic Classes 
We have seen that TDNNs achieve superior recognition performance on difficult but 
small recognition tasks. To train these networlcs substantial computational resources 
were needed. This raises the question of how our networks could be extended to 
encompass all phonemes or handle speech recognition in general. To shed light on this 
question of scaling, we consider first the problem of extending our networks from the 
task of voiced stop consonant recognition (hence the BOO-task) to the task of 
distinguishing among all stop consonants (the BOOPTK-task). 
For a network aimed at the discrimination of the voiced stops (a BOO-net), 
approximately 6000 connections had to be trained over about SOO training tokens. An 
identical net (also with approximately 6000 connections2) can achieve discrimination 
among the voiceless stops ("P", "T" and "K"). To extend our networks to the recognition 
of all stops, i.e., the voiced and the unvoiced stops (B,D,G,P,T,K), a larger net is 
required. We have trained such a network for experimental purposes. To allow for the 
necessary number of features to develop we have given this net 20 units in the first 
hidden layer, 6 units in hidden layer 2 and 6 output units. On the right of Fig. 1 we show 
this net in actual operation with a "G" presented at its input. Eventually a high 
performance network was obtained that achieves 9S.3% correct recognition over a 1613-
token BDGPTK-test database, but it took inordinate amounts of learning to arrive at the 
trained net (IS days on a 4 processor Alliant!). Although going from voiced stops to all 
stops is only a modest increase in task size, about IS,OOO connections had to be trained. 
To make matters worse, not only the number of connections should be increased with 
task size, but in general the amount of training data required for good generalization of a 
larger net has to be increased as well. Naturally, there are practical limits to the size of a 
training database, and more training data translates into even more learning time. 
Learning is further complicated by the increased complexity of the higher dimensional 
weightspace in large nets as well as the limited preciSion of our simulators. Despite 
progress towards faster learning algorithms [Haffner 88, Fahlman 88], it is clear that we 
cannot hope for one single monolithic network to be trained within reasonable time as we 

2Note. that these are connettions over which a back-propagation pass is performed during each iteration. 
Since many of them share the same weights, only a small fraction (about SOO) of them are actually free 
pararneten. 
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increase size to handle larger and larger tasks. Moreover, requiring that all classes be 
considered and samples of each class be presented during training, is undesirable for 
practical reasons as we contemplate the design of large neural systems. Alternative ways 
to modularly construct and incrementally train such large neural systems must therefore 
be explored. 

3.1. Experiments with Modularity 
Four experiments were performed to explore methodologies for constructing phonetic 
neural nets from smaller component subnets. As a task we used again stop consonant 
recognition (BooPTK) although other tasks have recently been explored with similar 
success (BOO and MNsN) [Waibel 88c]. As in the previous section we used a large 
database of 5240 common Japanese words spoken in isolation from which the testing an 
training tokens for the voiced stops (the BOO-set) and for the voiceless stops (the PTK
set) was extracted. 
Two separate TDNNs have been trained. On testing data the BOO-net used here 
performed 98.3% correct for the BDG-set and the PTK-net achieved 98.7% correct 
recognition for the PTK-set As a fIrst naive attempt we have now simply run a speech 
token from either set (i.e., B,D,G,P,T or K) through both a BOO-net and a PTK-net and 
selected the class with the highest activation from either net as the recognition result. As 
might have been expected (the component nets had only been trained for their respective 
classes), poor recognition performance (60.5%) resulted from the 6 class experiment. 
This is partially due to the inhibitory property of the TDNN that we have observed 
elsewhere [Waibel 89]. To combine the two networks more effectively, therefore, 
portions of the net had to be retrained. 
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Figure 2. BDGPTK-net trained from hidden units from a Boo- and a PTK-net. 

We start by assuming that the fIrst hidden layer in either net already contains all the lower 
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level acoustic phonetic features we need for proper identification of the stops and freeze 
the connections from the input layer (the speech data) to the first hidden layer's 8 units in 
the BOO-net and the 8 units in the PTK-neL Back-propagation learning is then 
performed only on the connections between these 16 (= 2 X 8) units in hidden layer 1 and 
hidden layer 2 and between hidden layer 2 and the combined BooPTK-net's output. 
This network is shown in Fig.2 with a "G" token presented as input. Only the higher 
layer connections had to be retrained (for about one day) in this case and the resulting 
network achieved a recognition performance of 98.1 % over the testing data. 
Combination of the two subnets has therefore yielded a good net although a slight 
performance degradation compared to the subnets was observed. This degradation could 
be explained by the increased complexity of the task. but also by the inability of this net 
to develop lower level acoustic-phonetic features in hidden layer 1. Such features may in 
fact be needed for discrimination between the two stop classes. in addition to the within
class features. 
In a third experiment. we therefore flrst train a separate fiNN to perform the 
voiced/unvoiced (V /UV) distinction between the Boo- and the PTK-task. The network 
has a very similar structure as the BOO-net. except that only four hidden units were used 
in hidden layer 1 and two in hidden layer 2 and at the output. This V/UV-net achieved 
better than 99% voiCed/unvoiced classification on the test data and its hidden units 
developed in the process are now used as additional features for the BooPTK-task. The 
connections from the input to the flrst hidden layer of the Boo-. the PTK- and the V/UV 
nets are frozen and only the connections that combine the 20 units in hidden layer 1 to the 
higher layers are retrained. Training of the V /UV -net and subsequent combination 
training took between one and two days. The resulting net was evaluated as before on 
our testing database and achieved a recognition score of 98.4% correct. 

i ~, ! ' " ~t.g'''lan 

OutDut llyt' 

' ... -. ..... ' .. __ .. . 
Frtt Fr .. 

; \ .. ~ ___ ~_~_ MtddtnUl,." 

Freel ',....... .:~: : :. : : . • • • , , 

Figure 3. Combination of a BDG-net and a PTK-net using 
4 additional units in hidden layer 1 as free "Connectionist Glue". 

In the previous experiment, good results could be obtained by adding units that we 
believed to be the useful class distinctive features that were missing in our second 
experiment. In a fourth experiment. we have now examined an approach that allows for 
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the network to be free to discover any additional features that might be useful to merge 
the two component networks. In stead of previously training a class distinctive network. 
we now add four units to hidden layer 1. whose connections to the input are free to learn 
any missing discriminatory features to supplement the 16 frozen BOO and PTK features. 
We call these units the "connectionist glue" that we apply to merge two distinct networks 
into a new combined net. This network is shown in Fig.3. The hidden units of hidden 
layer 1 from the BOO-net are shown on the left and those from the PTK-net on the right. 
The connections from the moving input window to these units have been trained 
individually on Boo- and PTK-data. respectively. and -as before- remain fIxed during 
combination learning. In the middle on hidden layer 1 we show the 4 free "Glue" units. 
Combination learning now searches for an optimal combination of the existing Boo- and 
PTK-features and also supplements these by learning additional interclass discriminatory 
features. Combination retraining with "glue" required a two day training run. 
Performance evaluation of this network over the BDGPTK test database yielded a 
recognition rate of 98.4%. 
In addition to the techniques described so far. it may be useful to free all connections in a 
large modularly constructed network for an additional small amount of fine tuning. This 
has been done for the BooPTK-net shown in Fig.3 yielding some additional 
performance improvements. Each iteration of the full network is indeed very slow. but 
convergence is reached after only few additional tuning iterations. The resulting network 
fmally achieved (over testing data) a recognition score of 98.6%. 

3.2. Steps for the Design of Large Scale Neural Nets 

Method bdg ptk bdgptk 

Individual TDNNs 98 .3~ 98.7 % 

TDNN:Max. ActlvatlOn GO .5~ 

Reb-aiD BDGPTK 98.3 ~ 

Reb-aiD Combined 
Higher Layers 98.1 % 

Reb-aiD with VIUV-units 98.4~ 

Reb-aiD with Glue 98 .4~ 

All-Net Fine Tuning 98.6~ 

Table 3-1: From BOO to BDGPTK; Modular Scaling Methods. 

Table 3-1 summarizes the major results from our experiments. In the fIrst row it shows 
the recognition performance of the two initial TDNNs trained individually to perform the 
Boo- and the PTK-tasks. respectively. Underneath. we show the results from the 
various experiments described in the previous section. The results indicate, that larger 
TDNNs can indeed be trained incrementally. without requiring excessive amounts of 
training and without loss in performance. The total incremental training time was 
between one third and one half of a full monolithically trained net and the resulting 
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networks appear to perform slightly better. Even more astonishingly, they appear to 
achieve performance as high as the subcomponent BDG- and PTK-nets alone. As a 
strategy for the efficient construction of larger networks we have found the following 
concepts to be extremely effective: modular,incremental learning, class distinctive 
learning, connectionist glue, partial and selective learning and all-netfine tuning. 

4. Recognition of all Consonants 
The incremental learning techniques explored so far can now be applied to the design of 
networks capable of recognizing all consonants. 

4.1. Network Architecture 
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Figure 4. Modular Construction of an All Consonant Network 

Our consonant TDNN (shown in Fig.4.1) was constructed modularly froHi networks 
aimed at the consonant subcategories, i.e., the BDG-, PTK-, MNsN-, SShHZ-, TsCh- and 
the RWY -tasks. Each of these nets had been trained before to discriminate between the 
consonants within each class. Hidden layers 1 and 2 were then extracted from these nets, 
i.e. their weights copied and frozen in a new combined consonant TDNN. In addition, an 
interclass discrimination net was trained that distinguishes between the consonant 
subclasses and thus hopefully provides missing featural information for interclass 
discrimination much like the V /UV network described in the previous section. The 
structure of this network was very similar to other subcategory TDNN s, except that we 
have allowed for 20 units in hidden layer 1 and 6 hidden units (one for each coarse 
consonant class) in hidden layer 2. The weights leading into hidden layers 1 and 2 were 
then also copied from this interclass discrimination net into the consonant network and 
frozen. Three connections were then established to each of the 18 consonant output 
categories (B,D,G,P,T,K,M,N,sN,S, Sh.H,Z,Ch,Ts,R,W and Y): one to connect an output 
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unit with the appropriate interclass discrimination unit in hidden layer 2, one with the 
appropriate intra class discrimination unit from hidden layer 2 of the corresponding 
subcategory net and one with the always activated threshold unit (not shown in Fig.4.1) 
The overall network architecture is shown in Fig.4.1 for the case of an incoming test 
token (e.g., a "G"). For simplicity, Fig.4.1 shows only the hidden layers from the 
BDG-,PTK,SShHZ- and the inter-class discrimination nets. At the output, only the two 
connections leading to the correctly activated "G" -output unit are shown. Units and 
connections pertaining to the other subcategories as well as connections leading to the 17 
other output units are omitted for clarity in Fig.4.1. All free weights were initialized with 
small random weights and then trained. 

4.2. Results 
Consonants 

Task Recognition Rate (%) 

bdg 98.6 

ptk 98.7 

mnN 96.6 

sshhz 99.3 

chts 100.0 

rwy 99.9 

cons. class 96.7 

All consonant TDNN 95.0 

All-Net Fine Tuning 95.9 

Table 4-1: Consonant Recognition Performance Results. 

Table 4.2 summarizes our results for the consonant recognition task. In the first 6 rows 
the recognition results (measured over the available test data in their respective sublasses) 
are given. The entry "cons.class" shows the performance of the interclass discrimination 
net in identifying the coarse phonemic subclass of an unknown token. 96.7% of all 
tokens were correctly categorized into one of the six consonant subclasses. Mter 
completion of combination learning the entire net was evaluated over 3061 consonant test 
tokens, and achieved a 95.0% recognition accuracy. All-net fme tuning was then 
performed by freeing up all connections in the network to allow for small additional 
adjustments in the interest of better overall performance. Mter completion of all-net fine 
tuning, the performance of the network then improved to 96.0% correct. To put these 
recognition results into perspective, we have compared these results with several other 
competing recognition techniques and found that our incrementally trained net compares 
favorably [Waibel 88b). 
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5. Conclusion 
The serious problems associated with scaling smaller phonemic subcomponent networks 
to larger phonemic tasks are overcome by careful modular design. Modular design is 
achieved by several important strategies: selective and incremental learning of 
subcomponent tasks, exploitation of previously learned hidden structure, the application 
of connectionist glue or class distinctive features to allow for separate networks to 
"grow" together, partial training of portions of a larger net and finally, all-net fine tuning 
for making small additional adjustments in a large net Our findings suggest, that 
judicious application of a number of connectionist design techniques could lead to the 
successful design of high performance large scale connectionist speech recognition 
systems. 
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