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1. INTRODUCTION

In the light of three decades of activity aimed at systems capable of under-
standing natural human speech, one might wonder if the problem has been
solved and, if not, what might be required to achieve this challenging goal.
To be sure, the field has seen impressive advances and several very impor-
tant lessons have been learned. Despite these inroads, however, present-day
systems still fall short of the ease and reliability with which humans can com-
municate with each other by speech. This gap has indeed led to a continuing
search for new models and techniques that might bring us closer to machines
that have this ability, but also to a better understanding of cognitive processes
such as speech perception and understanding.

Neural networks are the most recent development in this search for new
models of speech understanding. Most of what will be described is relatively
recent work and only experiments on parts of the problem have been com-
pleted to date. Although very promising work in this direction has begun, no
fully integrated speaker-independent large-vocabulary speech understanding
systems based on neural networks alone yet exist. What fuels the excite-
ment and what is the promise behind “neural networks,” “connectionism,”
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or “parallel distributed processing,” as these models have often been termed
interchangeably?

A partial list of attractive properties of connectionism is given in the fol-
lowing. Note that some of these properties are not necessarily unique to the
connectionist approach. Indeed, some of the important ones are shared with
other recognition schemes and are partially responsible for their success.

©  Massive parallelism: A connectionist net is composed of many sim-
ple computing units, and computation is performed in parallel and in
a distributed fashion by many interconnected computing elements.
Potential advantages resulting from this are speed, regularity (for
hardware implementation), and fault tolerance.

¢ Constraint satisfaction: Processing in connectionist nets is not per-
formed sequentially and does not depend on the performance of any
one single computing element, but on many processing elements’
joint evaluation of numerous interrelated constraints.

© Learning: Massively parallel architectures cannot be easily pro-
grammed and parallel distributed processing models must rely on
automatic learning algorithms. A number of such algorithms now
exist, including training techniques for multilayer perceptrons (back
propagation), Boltzmann machines, learning vector quantization,
and associative nets (for reviews see Lippmann, 1987; Rumelhart and
McClelland, 1986; Hinton, 1987; Kohonen, 1988). These learning al-
gorithms optimize local computing elements to jointly improve some
more global overall objective.

o Stochastic modeling, uncertainty, variability, fuzziness: Connectionist
models deal with variability and noise by finding suitable probabilistic
generalizations. Probabilities are encoded in such a network predom-
inantly as patterns of activity across its elements, instead of single
scalar values. Connectionist networks do not assume any particular
statistical distributions, and hence no parametric assumptions need
to be made.

e  Nonlinear modeling: Connectionist networks are nonlinear mod-
els that can implement nonlinear classifiers and mapping functions
and represent multimodel distributions and complex relationships.
This may lead to better performance than linear models in various
classification, mapping, and interpolation tasks.

o Discovery of "hidden” knowledge: Connectionist networks generate
hidden knowledge, abstractions, and generalizations in the process of
solving a more complex problem. In multilayer perceptrons, this hid-
den knowledge is often encoded in the connection weights learned
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by so-called hidden units (Rumelhart and McClelland, 1986). If
knowledge can be extracted from or encoded into these networks ef-
fectively, this may provide mechanisms for bridging the gap between
knowledge-based approaches and stochastic models.

¢ Uniformity: Computation in connectionist nets is performed by sim-
ple underlying computing elements and the interaction between
them. The computing steps performed by a particular unit (usually
simple multiplications and additions) are generally independent of
the task that the network is trying to solve. This is very useful for hard-
ware implementations as the units are simple (cheap) and the same
units can be used for a variety of tasks. Uniformity is also attractive
as ameans of achieving sensory fusion, i.e., the potential combinatio:-
of different signals or input information (in speech, for example, pho-
netic and visual cues, or syntactic, semantic, and prosodic cues, etc.},
possibly at varying levels of processing.

®  Speed—learning vs. recognition: By virtue of massive parallel compu-
tation, connectionist nets can run very efficiently. Some connectionist
models, however, do require considerable training to be performed.

®  Brain-style computation (?): Connectionist models attempt to simu-
late the style of computation as it is performed in the nervous system.
Although similarities do exist, this analogy should not be carried too
far. Our understanding of “brain-style computation” is still too frag-
mentary and our present engineering efforts too limited to warrant
such comparisons. It is also necessary toreplicate the brain accurately
to build useful computer speech understanding systems. The human
brain is, however, an existence proof that intelligent communication
viaspeech is possible and insights and intuitions gleaned from its com-
putational mechanisms could* usefully inspire new models and ideas
for practical design.

Our goal in the following is to present a review of connectionist speech
recognition models to date. We will omit a general introduction and as-
sume that the reader is familiar with some of the more common neural
network models. For more detailed introductions to neural networks in
general, we recommend tutorial papers by Lippmann (1987) and Hinton
(1987). Fundamentals of connectionist models and learning algorithms (e.g.,
back propagation, Boltzmann machines, associative nets, LVQ) will also not

* Along with many other scientific disciplines, of course.



Waibel

w
0
3

be covered here. Important background material may be found in Rumel-
hart and McClelland (1986), Rumelhart et al. (1986), Hinton and Sejnowski
(1986), and Kohonen (1988). We will limit our discussion to a review of
connectionist advances specifically applied to speech recognition and under-
standing. So much has been written on this subject recently that we cannot
hope to review all the activity in this area. We will limit ourselves therefore
to a representative subset of important current activity, along with presenta-
tion of some of our own recent work. Three important levels of the speech
understanding problem will be addressed:

® The phonemic level
Temporally static networks
Temporally dynamic networks
Modularity, scaling
Phoneme spotting
Speaker independence

e The word level
Static full-word models
Dynamic full-word models
Dynamic large-vocabulary models
Word model enhancements

* The Janguage level
Word category prediction and disambiguation
Recurrent networks
Parsing

2. THE PHONEMIC LEVEL

Much of the earliest work in connectionist speech recognition has focused
on phoneme recognition. This choice is motivated largely by the fact that
phoneme recognition is (compared to the full-speech understanding prob-
lem) a tractable subproblem, difficult enough to be interesting, and also a
useful focus, as large-vocabulary systems need to make use of atomic subunits
or submodels of speech. Phoneme classification networks can be divided into
wo groups: (1) those that require precise temporal alignment of input to-
xens for accurate recognition performance (making them temporally static
fiers) and (2) those that do not (making them temporally dynamic or
invariant).

shift
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2.1. Temporally Static Networks

In a static model, a speech pattern or feature vector centered around some
boundary or target point is used as input to a neural network used as a
classifier with outputs representing each of the phoneme categories in a
language.

Figure 1 serves as an illustrative example of an early static application of
neural networks to phoneme recognition tasks. Here, Huang and Lippmann
(1988; Lippmann and Gold, 1987), apply a three-layer back-propagation net-
work to vowel classification. The back-propagation training procedure was
used and successfully learned to form nonlinear classification regions around
vowel classes. For input features formant frequencies Fy and F,, as measured
by Peterson and Barney (1952) in studies of adult and child male and female
subjects, were used. The network has 50 units in its hidden layer and was
trained for 50,000 trials, resulting in interformant boundaries comparable to
those one would draw by hand and those formed by more traditional non-
linear classification techniques such as k-nearest neighbor classifiers (Duda
and Hart, 1973; Makhoul et al., 1985). No parametric assumptions needed
to be made, and the network provided a good and early demonstration of
the usefulness of such networks as nonparametric nonlinear classifiers. The
input features, however, were obtained by a human experimenter measuring
formants from actual speech spectrograms, indeed a cognitive task in itself.

One-hi %U?’UE n of DECISION REGIONS
ne-Node for Each o 4000
Ten Vowels) o HOD
HOD WHO'D HAD HEED 4WHO'D
2 +HAWED
x HEED
O HID
v HEAD
© HAD
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» HUD
. INPUT ) ~ HEARD
(First and Second Formants) 5000 = T 5360
F1 (Hz)

Figure 1 A three-layer back-propagation network used to form classification
boundaries on the formants F; and F, for vowels.
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Elman and Zipser (1987) reported phoneme classification based on ex-
periments using actual speech patterns for the voiced-stop consonants /b, d, g/
(followed by the vowels /a, i, u/). 505 tokens of the nine discrete voiced-
stop syllables were parsed from recordings of a single male speaker using a
10-kHz sampling rate applied to 3.5-kHz low-pass filtered speech. Twenty 16-
coefficient discrete Fourier transforms (DFTs) are computed at overlapping
3.2-ms intervals to form the input of a three-layer back-propagation network.
In a series of experiments, hidden layer and output layer node counts were
varied. In one case, nine output nodes corresponding to the nine possible
syllables were used; in two other cases an output node count of three corre-
sponding to the three voiced-stop phonemes /b, d, g/ was used. More than
100,000 training passes were run for each experiment, using approximately
half of the tokens as training exemplars. Recognition rates for the disjoint
test data set were 84% for whole syllables, 98.5% for vowels, and 92.1% for
voiced-stop consonants. Elman and Zipser found that introducing uniformly
distributed white noise to training tokens at the input layer improved recogni-
tion rates to 90%, 99.7%, and 95%, respectively. The noise source tended to
obscure idiosyncrasies of the training data and improve the networks’ ability
to generalize to unseen test data.

Both of these models used the back-propagation training procedure, but
other methods have been proposed with similar success. Among them, good
results were reported by Niranjan and Fallside (1988) using radial basis func-
tions, by Kohonen and colleagues using phonotopic maps and learning vector
quantization (LVQ) (Kohonen, 1988; Kohonen et al., 1988), and by Prager
et al. (1986) using Boltzmann machines.

2.2. Temporally Dynamic Networks

The experiments reported above achieved successful classification for pat-
terns that were presegmented and extracted from the signal by hand or by
some presegmentation procedure. In a full system design, however, such seg-
mentation would eventually have to be performed automatically, and even
the best automatic segmentation schemes are prone to make.errors. These
errors, in turn, generally result in higher error rates further along in the recog-
nition process. A robust speech recognition system should therefore scan the
speech signal for useful cues without relying on presegmentation, basing its
overall recognition decision on the sequence and co-occurrence of a sufficient
set of those cues. Neural networks, therefore, should be temporally dynamic
or shift invariant (i.e., classification that is unaffected by temporal shifts of the
input speech train). The experiments reported in the following all employed
techniques aimed at yielding shift-invariant phoneme recognition.
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2.2.1. The Time Delay Neural Network (TDNN)

One of the earlier models that demonstrated successfully that this can be done
in a connectionist framework was reported by Waibel (1989), Waibel et al.
(1989a,b), and Lang et al. (1990). Their time delay neural network (TDNN)
architecture was aimed at high-accuracy phoneme recognition under varying
conditions of phoneme duration and temporal location within the speech sig-
nal. Figure 2 illustrates the TDNN architecture. It consists of neural units
that use time-delayed connections at each layer to capture varying amounts
of contexts at the layer below. The sizes of the resulting temporal input win-
dows increase with increasing layers to learn increasingly coarser abstractions
at progressively higher layers. As lower layers produce firing patterns, higher
layers observe the resulting patterns of activations. During training shift in-
variance was achieved by making time-shifted copies of the net and linking
their corresponding weights. Thus, knowledge of position in time was re-
moved and the network had to spot relevant features anywhere in the input
range to assemble sufficient evidence in favor of one of the output phoneme
classes. A set of /b, d, g/ tokens was extracted independent of context from
a large-vocabulary data base of 5240 Japanese words (Sagisaka et al., 1987)
spoken by three male speakers, resulting in approximately 200 training and
200 test tokens per speaker. Recognition results on test data yielded an av-
erage recognition rate of 98.5% across all speakers.* Cursory studies of the
effects of temporal shifts of the test data input spectra with respect to vowel
onset suggested that nominal shifts had little appreciable effect on recogni-
tion rates. Comparisons to a variety of hidden Markov models (HMMs) also
showed that significantly higher recognition rates could by obtained using
the TDNN for this discrimination task (Waibel et al., 1987, 1989a). Using
the same speech data, the HMMs tried achieved an average recognition rate
of 92.7%. Detailed analysis of the internal representations formed by the
network also showed that a number of interesting, linguistically plausible fea-
tures were “discovered.” Hidden layer activations showed specific response
to acoustic-phonetic features such as detectors for unvoiced speech, vowel
onsets, and rising or falling formants.

2.2.2.  Recurrent Nets

A recurrent architecture aimed at shift-invariant phoneme recognition was
developed by Watrous (1988). His temporal flow model was evaluated on

*Higher recognition rates than those reported here have been observed in later
training runs.
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Figure2 A time-delay neural network (TDNN) for stop consonants /b, d, g/. Eight
hidden units in hidden layer 1 are fully interconnected with a set of 16 spectral coef-
ficients and two delayed versions illustrated by the window over 48 input units. Each
of these eight units in hidden layer 1 produces patterns of activation as the window
moves throughinput speech. A five-frame window scanning these activation patterns
over time then activates each of three units in hidden layer 2. These activations over
time in turn are integrated into one single output decision. Note that the final deci-
sion is based on the combined acoustic evidence, independent of where in the given
input interval (15 [rames or 150 ms) the /b, d, or g/ actually occurred.
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consonant (/b, d, g/) and vowel (/i, a, u/) tasks and achieved similarly good
performance figures. It employed recurrent connections, nonbinary output
targets (the network is trained to produce a Gaussian-distributed activation
across its output nodes), and time-delayed connections. The model was
applied to hand-segmented speech from a single male speaker, yielding recog-
nition rates of 99.2% for the /b, d, g/ task and 100% for the /i, a, u/ task.
Extensions of these ideas to connected multispeaker recognition of four En-
glish letters, B, D, E, and V, have also been successfully carried out by Kuhn
et al. (1989).

2.2.3.  Learning Vecior Quann:zazion (LVQ)

McDermott and Katagiri (1989; McDermott et al., 1990) applied LVQ, pro-
posed by Kohonen and collaborators (Kohonen 1988; Kohonen et al,, 1988b),
to the same Japanese consonant recognition tasks used by Waibel et al. The
input layer structure and the shift-tolerant design were motivated by expe-
rience with the TDNN and allowed for comparisons (Waibel et al., 1989a).
Figure 3 illustrates the moving spectral window used as input features to
the LVQ classifier and its extension LVQ2. Hidden layer connections were
initialized using a traditional k-means clustering algorithm (Makhoul et al.,
1985). The network achieved a 99.2% recognition rate'for the voiced-stop
consonants /b, d, g/ excised from spoken isolated word utterances from a sin-
gle male speaker. Performance for all stops, fricatives, and affricates for the
same speaker, using a larger LVQ2 network, was 97.1 and 97.7%.* Network
training time was somewhat less than training time for a comparable TDNN
on the same task, at the cost of a three-fold increase in the total number of
connections required in the network and an increase in the time required
for posttraining recognition. Unlike feedforward multilayer networks, LVQ
networks do not readily generate hidden abstractions of knowledge. On the
other side, vectors are produced that provide an efficient encoding of speech
that can be incorporated into traditional stochastic models. The potential
advantage is that LVQ is a supervised training procedure and LVQ-trained
vectors provide an encoding that possibly better represents phonetically rel-
evant featural distinctions. The resulting encoding could therefore replace
traditional (unsupervised) vector quantization and yield a crisper representa-
tion of speech for improved hidden Markov modeling. Work in this direction
is in progress. (Iwamida et al., 1990; McDermott et al., 1990).

—_———
*Depending on the amount of training data used.
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Figure 3 An LVQ network used for the /b, d, g/ recognition task.

2.3. Extensions

Several remaining problems, however, need to be addressed. The first
is the problem of scaling and incremental learning, which plagues many
neural network discriminant classifiers and can lead to prohibitively large
amounts of training time and inflexible classifiers. It would be prefer-
able if larger networks could be gradually built from smaller previously
trained subcomponents. Second, can such networks be used to reliably
spot phonemes in running speech, rather than to discriminate among them?
Finally, how do these networks perform when faced with multispeaker or
speaker-independent tasks? A number of extensions have been studied to
answer these questions.
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2.3.1. Scaling

Back-propagation training of large phonemic networks is an example of a
training task that can require considerable computational resources. One
approach to alleviating this training problem is the introduction of specially
designed fast simulators [Haffner 88, Haffner 89]. Beyond speed improve-
ments, however, it is clear that the full complexity of cognitive tasks requires
incremental learning of new information and categories. Modular, incremen-
tal training was explored based on TDNNS to allow for more flexible, efficient,
structured design of large neural network-based systems (Waibel, 1988, 1989,
Waibel et al., 1989b). In doing so, one would certainly not want to lose the
distributed, globally optimizing nature of connectionist learning. The under-
lying idea here is a compromise between these two extremes, namely to reuse
the featural abstractions encoded in the hidden units. Hidden units from net-
works trained to perform smaller subtasks are linked into larger nets aiming
at more complex tasks. A number of architectural schemes aimed at increas.
ing the scale of phoneme recognition networks through an arrangement of
interconnected modules were evaluated and found to yield performance as
good as or better than that of monolithically trained nets. Figure 4 is an illus-
tration of a modular stop-consonant TDNN that was trained by merging two
submodules using “connectionist glue.” Here connections to hidden units at
the first hidden layer of a /b, d, g/-discriminating net and to the first hidden
layer of a /p, t, k/ are frozen, while connections from these units to common
higher layers are trained to join the two nets. The “connectionist glue” units
are additional units that are free to learn missing features when these sepa-
rate networks are merged (Waibel et al., 1989b). Figure 5 shows a network
that was constructed in a modular fashion from subnetworks to recognize all
phonemes in a Japanese large-vocabulary isolated word data base. Conso-
nant discrimination results well in excess of 96% were achieved using such
networks,

2.3.2.  Phoneme Spotting

A related problem here is whether a network is able to spot phonemes in
running speech rather than discriminate among them if a range of suitable
input data is provided. Various experiments that enhance a TDNN's ability
to model shift-invariant features of speech have shown that this can indeed be
done. By introducing training patterns with varying time shifts around a par-
ticular phoneme boundary and counterexamples, Lang (1989) and Miyatake
etal. (1990) showed that excellent letter- and phoneme-spotting performance
can be achieved. The latter study reported 98% phoneme-spotting perfor-
mance over running Japanese isolated word utterances. Word recognition
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Figure 4 Incremental training: from /b, d, g/to /b, d, g, p, t, k/.

based on these results can indeed be carried out, as we shall see in the next
section.

2.3.3. Speaker-Independent/Multispeaker Recognition

Multispeaker and speaker-independent recognition has also been attempted
by a number of investigators. As with other recognition techniques, speaker
independence can be achieved by training a connectionist network using
training data from many different speakers. This has been demonstrated by
Leung (1988) and Leung and Zue (1988) for phoneme recognition in contin-
uous English speech from the TIMIT speech data base. Phoneme recognition
performance of up to 64% was achieved for a 16-vowel discrimination task,
given excised frames of speech. If other sources of information (both numeric
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and symbolic), such as durational and contextual information, are provided
to the network, performance improves to up to 77%. The study illustrates
how connectionist models lend themselves to fusing heterogeneous sources
of information and knowledge gracefully.

Another model aimed at multispeaker and speaker-independent recog:
nition was proposed by Hampshire and Waibel. It was motivated by the
desire to mimic humans’ ability to adapt rapidly within a syllable or two (Kaiw
and Kakehi, 1987) to a speaker’s voice. Their model seeks to represe:
speaker differences explicitly and provide the ne il & mechan
s on 2 suitable speaker or set of sts. The Meta-Pi
mechanisni by which this was done. It is a hierarchi-
cal connectionist phoneme classifier that performs multispeaker phoneme
discrimination at speaker-dependent rates. The overall network is com-
posed of speaker-dependent submodules (i.., TDNNs trained to classify
the phonemes of a particular speaker) that are linked together by an inte-
grating superstructure. The Meata-Pi superstructure is itself a TDNN. The
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outputs of the superstructure act as connection weights, gating the speaker-
dependent classification decisions of all the modules to a global classification
decision. Thus, the global classification decision is a linear combination of
the constituent speaker-dependent classification decisions. The connections
of the Meta-Pi superstructure are trained so that the resulting combination
of speaker-conditional module outputs produces a correct global classifica-
tion. Individual speaker-dependent nets are trained individually, as before,
as regular TDNN’s. Figure 6 shows how the error signal obtained from the
global classification output then back-propagates through multiplicative con-
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Figure 6 Error back propagation in a Meta-Pi architecture.

Figure 7 ‘Typical activations in a Meta-Pi network for multispeaker phoneme discrimination.
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nections into the Meta-Pi superstructure to optimize the integrating Meta-
Pi net. Figure 7 illustrates the fully trained Meta-Pi architecture performing
the /b, d, g/ recognition task on speech from six speakers (four male, two fe-
male). Here a /d/ token from speaker MHET is input. The Meta-Pi structure
gates a mixture of classification decisions from three male speakers’ sub-
networks to produce the correct overall classification decision. A Bayesian
analysis of the Meta-Pi architecture indicates that the classifier performs ro-
bust multispeaker phoneme discrimination (98.4%) by learning to identify
and separate relevant speaker types associated with particular signal patterns.
This result approaches the mean speaker-dependent rate of 98.7% and sig-
nificantly improves the discrimination rate of 95.9% obtained for a single
TDNN trained on all six speakers’ training data. This unconstrained form
of rapid speaker adaptation could be extensible to speaker independence,
where speaker-specific subnetworks could be replaced by nets responsible for
groups o ers or where new prototypical speaker (group) specific nets
are incrementally added only if this should help to improve performance.

Many other improvements in phoneme level recognition, particularly in
view of speaker independence, have been attempted, including the use of im-
proved objective functions (Hampshire and Waibel, 1990), phonetic features
motivated by speech knowledge (Bengio et al., 1989), and different input
representations (Kamm, 1989).

3. THE WORD LEVEL

Although good results have been achieved using neural networks for phone-
mic patterns, the question remains whether this technology can be used
effectively for word recognition as well. An early set of experiments simply
extended the classification capabilities of these networks by applying an en-
tire word’s coefficient matrix to the inputs of static full-word networks with
output units for each word to be classified. Good resulis were achieved,
but time alignment and word end point detection are problems that limit
this approach. Similarly limiting is the fact that on vczbularies
can be handled in this fashion, because network size and training time be-
come prohibitively large with increasing vocabulary size. To overcome the
former limitations, networks that mode] time alignment and/or shift invari-
ance internally have been developed for small-vocabulary recognition. For
large-vocabulary recognition, subword units such as phonemes or syllables
must be emplioyed. A number of novel techniques are emerging that attempt
integration of connectionist subword modéls into words and sentences. A
majority of them could be characterized as hybrid techniques, that is, tech-
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niques that seek to combine the perceived strengths of neural networks at the
pattern recognition level with the strengths at modeling stochastic sequence:
of conventional methods such as hidden Markov models, Viterbi decoding
or dynamic programming.

3.1. Static Full-Word Models

Among the early static full-word models, Lippmann and Gold studied a num-
ber of back-propagation network architectures applied to the task of isolated
digit recognition (Lippmann and Gold, 1987). Seven isolated monosyllabic
digits were obtained from the TI Isolated Word Database representing speech
from 16 different speakers. The speech data were sampled at 12 kHz, win-
dowed, and a discrete Fourier transform performed; preprocessing produced
15-coefficient Mel-scale spectra at 10-ms intervals. These spectra were used
to develop two 11-point cepstra offset by 30 ms in time; the cepstrum was
taken from the maximum acoustic energy segment of each digit. These cep-
stra served as input to a series of networks all having 22 input layer nodes
and 7 output layer nodes (corresponding to the 7 digits). Seventy training
and 112 testing tokens were obtained for each speaker, and networks were
trained and tested for single speakers only. A three-layer network yielded
the best connectionist recognition performance of 92.3%, averaged over all
16 speakers.

Peeling and Moore (1987) also ran experiments with isolated digit recog-
nition. They used a three-layer network with 50 hidden-layer nodes. Sixty
19-coefficient spectra taken at 20-ms intervals were used as input in order to
capture the longest duration utterances. Shorter utterances were zero padded
and time shifted randomly in the network input “window.” Isolated digit
speech data were taken from the 40-speaker Royal Speech and Radar Es-
tablishment (RSRE) data base. Speaker-dependent recognition under these
conditions was 99.7%.

Burr (1988a) conducted a series of experiments in isolated E-set and
polysyllabic word recognition using a single-layer perceptron. The network
input comprised twenty 64-coefficient spectra; in separate experiments these
spectra were computed using smoothed DFT and linear predictive coding
(LPC) techniques. Input tokens were temporally aligned in the spectral “win-
dow” using a DP time alignment procedure. Five tokens of 20 polysyllabic
words containing three (0 five syllables were recorded from a single male
speaker. Training tokens were also used as testing tokens in this experiment—
under these conditions, recognition rates Were, not surprisingly, nearly 100%.
Burr also ran recognition experiments on single-syllable words recorded from
a single male speaker. Twenty tokens of each of the nine single-syllable E-set
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words were obtained. Half of the tokens were reserved for training and half
for testing. Recognition accuracy under these conditiox;xs was 91.4%. Wor:j
recognition was increased to 98.2% following modifications to the yetwqu s
input layer structure and spectral estimation methods; these modifications
focused network activity on the first 40% of each word.

3.2. Dynamic Full-Word Models

Word recognition of static classifiers is sensitive to time alignment anfi needs
to rely on end point detection, as each connection represents a specific por-
tion of an utterance. During fast and slow speech the relative position of
acoustic features will generally be distorted, and a static net would only be
able to blur its internal representation to compensate for such distortim}s.
Word end points cannot always be determined reliably (particularly in noise
and in continuous speech). Several connectionist models described here seek
to overcome some of these problems.

3.2.1. A Word Level TDNN

Bottou (1988) used a large TDNN for recognition of small vocabularies and
a novel time-warping approach to increase the temporal variance of isolated
words and achieve shift-invariant speaker-independent word recognition on
five consonant-vowel French words (Bottou et al., 1989). Single exemplars

of each word were obtained from six speakers. Speech from four speakers

was used for training and speech from the remaining two speakers consti-
tuted testing data. The data were sampled at 10 kHz and used to compute
256-point DFTs at 12.8-ms intervals. These spectra were reduced to 16 spec-
tral mel-scale coefficients covering a frequency range of 100 Hz to 5 kHz.
These formed the input to a 65-time-frame TDNN input Jayer. The TDNN
architecture was in principle similar to the one described above except that
the higher-layer units undersampled (skipped every other) activations from
lower-layer outputs for greater efficiency. Bottou took the original 20-token
training set and created a total of 400 additional training tokens by timewafp-
ing the original set independent of phonetic structure. The extent of warping
ranged from warping 80% of the word into 50% of the TDNN input spec-
tra to warping 50% of the word into 80% of the input spectra. Occasionally,
warping was so extreme that it eliminated consonant portions of words. The
TDNN was trained on the original 20 tokens, plus these 400 “synthesized”
versions. After training, Bottou achieved 100% recognition on all 20 original
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training tokens and 94% recognition on the 400 warped tokens.* The recogni-
tion rate on test data was 90% using this technique of artificially expanding the
training set by means of temporal warping. Ina separate experiment involving
word recognition on the TI 20-word data base, Kammerer and Kupper (1988)
realized a 30% reduction in the number of classification errors on test data
by using a similar time-warping technique to artificially increase the size and
variance of their training token set. Their recognition results were 99.6% for
speaker-dependent experiments and 97.3% for a speaker-independent trial.

3.2.2.  Tank-Hopfield Time Delays

Tank and Hopfield (1987) developed an analog neural network model for
recognizing particular stimulus sequences (comprising letters of a word) that
were slightly distorted and embedded in larger sequences. The network
employed a series of detectors D4 ... Dy for single elements of a stimulus
sequence; each of these detectors was replicated over a series of time delays,
allowing the network to detect a single element of the sequence of interest
across a range of time segments fi(¢)...fi(t). Appropriate combinations of
these time-shifted detectors fed a recognition unit ¥ corresponding to the
precise sequence to be detected. Inhibitory connections between recognition
units minimized network output for stimulus sequences not closely matching
the desired sequence. The network was very effective in locating distorted let-
ter sequences embedded in larger sequences. In follow-on work, Unikrishnan
etal. (1988) used this same network paradigm to achieve a 99.3% recognition
rate on random sequences of digits.

3.23.  The Dynamic Neural Net

Sakoe (1987) and Sakoe et al. (1989) developed a dynamic programming neu-
ral network (DNN) for speaker-independent word recognition. This network
employed a three-layer back-propagation architecture capable of dynamically
warping its input. The input layer consisted of a series of 10-coefficient Mel-
scale spectra taken at 16-ms intervals. These spectra were linked in groups of
two frames to single groups of four hidden units; each hidden unit group rep-
resented a temporal shift from its predecessor. All hidden layer unit groups
were fully connected to a decision output unit corresponding to one of ten
spoken digits. Speech from 50 speakers was used to train the networks in

*The relatively low rate for the warped training set was due to the extreme warping
performed on a small number of those tokens.
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two ways. In a temporally prewarped training method called “fixed time
alignment,” all training tokens for a particular word were time warped to a
standard pattern prior to training. In an alternative training procedure called
“adaptive time alignment,” each token of a word was interactively warped in
order to produce the maximum output activation of the network. Once the
adaptive alignment was complete, the back-propagation iteration for that to-
ken was performed. Recognition performance was tested on tokens cbtained
from 57 speakers (none of whom were used for training). Recognition rates
were 97.5% for networks trained with the fixed time alignment procedure
and 99.3% for networks trained using the adaptive time alignment procedure.
The added computational cost of the recognition improvement afforded by
the adaptive time alignment training procedure was substantial.

3.2.4. Predictive Neural Nets

Most connectionist models that we have discussed so far apply neural nets as
classifiers of either word patterns or subpatterns. For classification, the input
usually consists of a coefficient matrix and the output approximates a bit pat-
tern representing the classification results. In addition to learning discrete
classifications, however, neural networks can also learn nonlinear mapping
functions between real-valued inputs and outputs. This can be exploited in
speech for various signal mapping and coding applications, including noise
suppression (Tamura and Waibel, 1988) and nonlinear predictive coding (La-
pedes and Farber, 1987). The neural networks have been used successfully in
the neural prediction model proposed by Iso and Watanabe (1990) and the
hidden control neural network proposed by Levin (1990). Both of these mod-
els have so far been limited to small-vocabulary recognition tasks (i.e., digits),
but they appear to yield high speaker-independent recognition performance.
Extensions are also possible, as we shall see later.

The basic idea is illustrated in Fig. 8. A two-frame window of input co-
efficients is input into a multilayer feedforward net trained to produce at its
output a frame of coefficients that is as close as possible to the next (future)
speech frame. The distance between this predicted frame and the actual next
speech can be measured as a prediction error or distortion, and this distor-
tion is used as an error criterion for back-propagation training. Given a set of
predictor networks, one can imagine training each predictor for a separate re-
gion of an utterance. Each predictor net becomes specialized to best predict
this portion of an utterance, so that the prediction error is likely to be lowest
in these regions. A word is then represented by the sequence of predictor nets
that best predicts the actual observed speech. Dynamic programming is used
as a mechanism to apply each predictor sequentially over time to best ap-
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proximate the actual signal. Figure 9 shows this alignment step based on the
matrix of distances between actual speech frames and predicted frames. Dur-
ing training an alignment path is determined by dynamic programming. Each
predictor is then trained to minimize the error between its output and the
speech frames that it was assigned to predict by the DP alignment path. Dur-
ing recognition the word whose sequence of predictors minimizes the error
between predicted frames and actual signal frames is chosen. Iso and Watan-
abe (1990) used 10-mel-scale cepstral coefficients and amplitude change as
inputs to their networks. The number of predictors used depended on the
utterance and ranged (for Japanese digits) between 9 and 14. Each predictor
net has three layers, an input layer of two 11-coefficient frames, 9 hidden
units, and 11 predicted output coefficients, Excellent performance (0.2%
error) was reported for a Japanese speaker-independent isolated digit recog-
nition task uttered over telephone lines. This result compared favorably with
other techniques—a0.7% for the DNN (Sakoe, 1987; Sakoe et al., 1989) and
1.1% for DP matching (Sakoe and Chiba, 1978) tested on the same data.
The model proposed by Levin is similar to the one described above and is
illustrated in Fig. 10. As before, it uses nonlinear prediction by neural nets to
measure a model’s fit to the input data. Unlike the neural prediction model,
however, it uses only one single predictor for an entire word and a sequence of
varying input flags or “control units” that switch the predictor into alternate

Prediction errors

Control

T

Speech Inpu

HCNN

Figure 10 The hidden control neural network.
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modes of operation as time progresses. Similar to “counter nodes”* (Kukich,
1988), these units are used to control the sequential state of the network,
The predictor network used by Levin had 24 speech inputs (12 cepstral and
12 deltacepstal parameters), 30 hidden units, 24 predicted outputs, and 8 con-
trol input units. The control units turn on sequentially when appropriate and
remain on as additional bits are activated (“thermometer” representation).
The correspondence between an input speech frame and a control transition
(when a new bit is turned on) is determined by Viterbi alignment. During
training, the Viterbi algorithm determines the state of control unit settings
for each speech input frame given a trained predictor net. Based on this state,
then, the prediction error produced by the predictor net is reduced by back-
propagation learning, given each frame of input speech and its corresponding
control unit setting. The network was tested on connected digits from the TI-
digit data base (using male speakers only). Using independent test data but
from the same speakers used in training, a word recognition rate of 99.3%
was achieved.

3.3. Dynamic Large-Vocabulary Models

Given the encouraging results for the connectionist models reviewed in the
previous section, we would now like to explore possible extensions to large-
vocabulary recognition. The most significant difference here is that large-
vocabulary word recognition models must rely on units smaller than the word
(such as syllables or phonemes) to decompose the large number of words into
a limited set of atomic subunits that can be trained and optimized for use in
(ideally) any vocabulary. How can connectionist models contribute usefuliy
to this problem?

Most popular at present are so-called hybrid models, which seek to com-
bine the perceived strengths of connectionist models with those of more
classical recognition techniques such as dynamic programming or hidden
Markov modeling. In this approach, connectionist models are viewed as high-
performance nonlinear classifiers or predictors that could replace distance
metrics, or vector quantization steps commonly found at the front end of
most typical recognizers. Dynamic programming, Viterbi alignment, and/or
hidden Markov models are then viewed as mechanisms for providing the ad-
ditional constraints that phonemes must be of acceptable order, duration,
and likelihood to produce a legal word.

TP T
*Proposed to control state information in networks used for spelling correction.
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3.3.1. TDNN-LR-DF

Based on the Japanese large-vocabulary isolated word data base described
before (Sagisaka et al., 1987; Waibel et al., 1987, 1989a), a number of exper-
iments were carried out to extend TDNNs to large-vocabulary recognition.
In this approach a TDNN is trained as before to classify input speech into
one of several phoneme output categories over running speech (in this case
entire words spoken in isolation). As the original TDNNs were trained on
excised phoneme tokens only, several enhancements were introduced. First,
the original excised phoneme training patterns were artificially misaligned in
time by various offsets. This was particularly effective for phoneme spotting as
opposed to discrimination, as it enforced shift-invariant phoneme classifica-
tion even in transitory regions between phonemes. In doing so, the phoneme
spotting rate was improved from 95.8 to 98.0% and, more important, the false
alarm rate* decreased from 62.2 to 23.2%." For word recognition a silence
category was necessary, which was added by modular design to the existing
aet (Miyatake et al., 1990).

A total of 24 phonemes (5 vowels, 18 consonants, and silence) were spot-
+zd in this fashion by TDNNs shifted across time providing the front end for
~honeme-based word recognition (Fig. 11 shows typical phoneme output unit
firings over time). To do so, the output categories were considered to be out-
put probability estimates of the likelihood of each phoneme occurring in a
particular position in time. An LR parser provided top-down predictions of
the set of phonemes that are legal under a given dictionary. The likelihood
of a given phoneme predicted by the LR parser is evaluated at the outputs of
the TDNNs at each time frame. Dynamic time warning (DTW) is then ap-
plied to find an optimal alignment between TDNN outputs and the predicted
phoneme states. For duration control, each phoneme state was expanded
to the average number of frames of that phoneme before DTW was carried
out. Recognition experiments on various vocabularies were carried out with
this system. All experiments were independent of vocabulary? and were per-
formed on independent test data (phonemes not used for training). For a
500-word test vocabulary, first choice accuracy of 98% was achieved. For a
large vocabulary of 5000 words, recognition rates as high as 92.6% were ob-

tained. Second and fifth choice rates for the latter vocabulary were 97.6 and .

* Presumably due to previously undefined transitory regions.

! All recognition tests were run on independent test data from the same speaker.

' The phonemes used for training were extracted from words of a different vocabulary
than the one used for testing.
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99.1%, respectively, indicating that most confusions occurred among a small
group of acoustically similar words (e.g., “itai” — “ittai”).

3.3.2.  Neural Nets and Hidden Markov Models

Some of the earliest attempts to combine the strengths of neural net classi-
fiers with traditional word modeling techniques were developed by Bourlarf:l
and Wellekens (1988, 1989) and Morgan and Bourlard (1990). In theoreti-
cal and experimental work they have shown that the outputs 9f a multilayer
perceptron (feedforward network) trained by back propagat.xon of a mean
square error may be considered to be estimates of the maximum a pOStf‘:-
riori probabilities of a corresponding class. They have since built on .th]S
notion to construct hidden Markov model chains where the output activa-
tions of a local multilayer perceptron (MLP) are used as output probabilities
for the states in a traditional HMM. Viterbi alignment is performed to
assign the framewise MLP firings to corresponding states and to compute
an overall word output probability. Not unlike HMM systems, an 1tera.t1ve
optimization procedure was then introduced [Bourlard 90] that combines
Viterbi alignment with back-propagation learning. This procedure perforn!s
a forward pass on the MLPs over time and assigns these outputs to their
respective best matching states by way of Viterbi alignment. Back prop-
agation of errors is then performed to improve the outputs of th'e MLPs
given this assignment and the procedure iterates. In many of thcu: exper-
iments the MLP consisted of a three-layer feedforward network with nine
binary 132-bit input vectors encoding the input spectrum over nine frz'lmes,
and 50 outputs representing each phoneme. A variable number of hidden
units was used. Several additional modifications have been added to achieve
good performance (Morgan and Bourlard, 1990). First, the output a poste-
riori probability estimates produced by the MLPs were normahz.ed 'by t'hen'
respective prior probabilities to eliminate a bias due to uneven dlsmbuno_ns
in number of tokens per phoneme. Second, extra word transition penalties
were introduced to reduce insertion errors. Third, a cross-validation learn-
ing scheme was applied that improved generalization considerably. HFre .the
performance of the trained networks was checked against a cross-validation
“test” set during each iteration to determine at what point test performance
started to degrade (i.e., overfitting to the training data). Training was t.hen
halted. Inspeaker-dependent German large-vocabulary (918 words) continu-
ous speech recognition experiments, word recognition performance currently
approaches 60%. In the absence of a language model, this qupared fayor-
ably with an HMM evaluated over the same data under similar conditions
(Morgan and Bourlard, 1990).
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Franzini et al. (1989) have investigated two similar methods for combin-
ing neural nets with hidden Markov models to perform continuous speech
recognition. These methods were applied to speaker-independent recogni-
tion of continuous digit strings. In the first method, a network is trained to
identify the word and phone to which a given frame of speech belongs. A four-
layer recurrent network is used with LPC cepstrum coefficients over 70 ms of
speech as input and one output unit corresponding to each word and each
phone. In order to generate word and phone labels to use in training the
network, a conventional discrete HMM is trained on the task, and a forced
Viterbi alignment is performed with the HMM. The network is then trained
on the labels generated by the alignment. During recognition, the network’s
input window is shifted, frame-by-frame, across an entire sentence, generat-
ing a vector of outputs for each input frame. Subsequently, an HMM is used
to combine these output values into a final sentence hypothesis. The output
values are treated as output probabilities associated with transitions in the
HMM, and the recognition is performed as in conventional HMM systems,
using a Viterbi search.

The second method (Franzinj et al., 1990) also used a four-layer neural
net with HMM postprocessing, but optimization of the two components is
more tightly coupled. This method, connectionist Viterbi training (CVT), is
a variant of the Viterbi training (or segmental k-means) method for training
HMMs. As before, a discrete HMM is trained and an initial force alignment
performed using this HMM. The network is then iteratively optimized by
repeated application of back-propagation training, Viterbi alignment, and
reestimation of transition probabilities. A cross-validation set was also used
as a halting criterion. A second important difference from the previous
method is that the network’s output nodes model output probabilities cor-
responding to states in an HMM phone model. Such phone models can
therefore be used to construct different words, and the system is extensible to
large-vocabulary recognition. Both of the methods described, although still
being investigated, have produced good results. The first method achieved
97% word accﬁracy on the Texas Instruments continuous digits data base,
and the CVT procedure has reached 99% word accuracy on the TI digits.

3.3.3. Linked Predictive Neural Networks

Another word level model is an extension of work discussed in the previous
section for small-vocabulary recognition, i.e., the use of neural nets as nonlin-
ear predictors of speech. For use in large-vocabulary recognition, words must
here again be decomposed into subword units such as phonemes or syllables
and an optimal model for these units must be trained. Work by Tebelskis and
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Waibel (1990) has demonstrated that this can be done without the neec.j for
segmentation by jointly optimizing time alignment and connection weights
and by linking the weights (as in Waibel et al., 1989a) of sets of netwm:k pre-
dictors corresponding to the same phoneme symbols. Expen‘mem§ fwth the
linked predictive neural network (LPNN) resulted in 94% recognition per-
formance for speaker-dependent isolated word recognition over a data base
of 234 confusable Japanese words and 90% over a confusable 1000-word
vocabulary.* )

The operation and training of the LPNN are shown in Fig. 12. As in the
neural prediction model, a set of predictors are assigned to different portions
of a word. Here these portions are defined to be phonemes and each oc-

B | W°fd BAB pet

A S |

: - "M
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Word "ABA"‘ -

'/ Alignment path’

999 S Wil inmmmmiin

Figure 12 LPNN training.

*The data in this evaluation were a confusable subset from the Japanese large-
vocabulary isolated word data base used in other experiments discussed above.
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currence of the same phoneme is modeled by the same set of predictors. In
Fig. 12, for example, two words “BAB” and “ABA” may consist of the same
phonemes in different order and position. Time alignment over the sequence
of predictors is done as before, but all prediction errors assigned to the same
phoneme (or portion thereof) train the same predictor net by way of a linkage
pattern that defines the legal phoneme sequence of a word. A number of en-
hancements of this basic scheme have been found effective. A set of parallel
predictors was added to each phoneme model to allow the LPNN to better
represent alternate pronunciations and context dependences. An assignment
of each alternate was not predetermined, but the system decided itself which
alternate to use based on the prediction errors produced by each alternate.
Significant improvements were also obtained when phoneme pairs that are
distinguishable only on the basis of duration (e.g., in Japanese: “k” vs. “kk™)
were represented by different sets of predictors. Figure 13 shows an exam-
ple of processing in the LPNN. Here the prediction errors obtained by each
phoneme state predictor during the word “shikisai” and the corresponding
alignment path are shown.

3.4. Connectionist Word Level Enhancements

In addition to the connectionist word models described so far, other connec-
tionist solutions to the word recognition problem and enhancements have
been reported. These include connectionist alignment strategies and con-
nectionist postprocessors (to enhance discrimination performance at the
word level). Further advances are likely to emerge from theoretical work
(in progress) aiming at finding unified formulations for connectionist and
stochastic models of speech (Bridle, 1990; Young, 1990).

3.4.1.  Viterbi Net

A connectionist solution to the problem of alignment and sequential control
was proposed by Lippmann and Gold (1989) and is called the Viterbi net. Fig-
ure 14 shows this network. The triangular nodes of the network corresponded
to single nodes in an HMM word model; each of these nodes performed a
thresholding and time delay function. Input layer nodes accepted mel and
differential mel cepstra updated at 10-ms intervals. Connection strengths
between input and HMM nodes were set to values obtained by conven-
tional HMMs. The small subnetworks feeding input to the HMM nodes
were used to select the maximum of two competing inputs. This network
achieved a 99.4% word recognition rate—virtually identical to that achieved
by nonconnectionist HMM recognizers. The network might, however, be of



584 Waibel Neural Network Approaches 585

SAMPLE = 2001 shikisal $shikisai$ 6,075758.08.009.089.013.06.0

RO L L L e T T T T T —
voonpiaiieeneEnn LLLTEEY] L R LTI EE TR R R AT AN

oo n g ERRERRRRRRRR AR e R R RN NRRRERRERAR RN Rt R RN RN RN RRRRAREND
,\-ll::::l::h“::llllll"""““ R R T T TR T R TR T RN
o rn QRRERREB RN RER RN Rt N RRRERRRR AR
corornegranpsrnneRE oo nnn s RRRERRE O e vt o R ORRRRRRRRRRNRRERRRARRRR RN
e O e e e T T A LT T T TR TERRRNRR
nn RO R R LT TETEREY A BRRERELENRR oo
RN RN R AR AR AN AANNARY] BRERBRERR I e
g R R TUTTLINIEEEE
R LT ERT NI R TARNRNN i [T TETRRET
TR LR LR R LR R RN A AR AR 1A T i Mo it :
coonmmmnn g e i RRER e v e R REERRRER BB TR IR RN 0 o .
SO .-uullllllllllum-|lmmmi““mmmm::::u. INPUT
vevornnnenrnrkrnernrgeon st R ERRBRERE vess e e n RN [ ) o )
I:Illll:llllnlllllIIIlllIlII"I"""IllIIIlll""|||"|""|||""|"IIIIIIII| Figure 14 Lippmann and Gold’s Viterbi net.

Ish '\ 'k lt It Ia Il I

interest for hardware implementations as well as provide a basis for trainable

DISTANCE MATRIX FOR shikisai (SCORE = 3.9) connectionist extensions of Viterbi decoding.

3.4.2.  Connectionist Postprocessing

Another enhancement employed successfully by several investigators is to use
connectionist models as postprocessors. In this approach recognition is first
carried out by DTW or HMMs. A connectionist classifier is then applied
to discriminate between potentially confusable pairs before a final recogni-
tion decision is made. The study previously reported by Burr (1988b) is one
example. Prealignment was done by DTW before a connectionist classifier
was applied. In a similar vein, (sometimes considerable) improvements were
achieved by connectionist postprocessors (multilayer perceptrons or LVQs)
following a hidden Markov model-based recognition pass (Huang et al., 1988;
Katagiri and Lee, 1990).
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}?ilgukm 13 Prediction errors for different phoneme predictors during the word 4. THE LANGUAGE LEVEL
“shikisai.”
Beyond recognition of words, connectionist models have also been applied to
language models and natural language processing. The attempts are driven
by the desire to develop more robust and perhaps cognitively plausible models
of language. Indeed, some recent work that we review here suggests produc-
tive uses for the development of spoken language systems. Of interest in this
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regard are the possibility of representing complex syntactic and semantic re-
lationships stochastically and the hope to learn them automatically from text
(or speech). Moreover, the uniformity of connectionist processing may allow
for complex codes that include nonsyntactic information that may be difficult
to incorporate by traditional means (e.g., pragmatic or prosodic information).

4.1. Word Prediction, Coding, and Disambiguation

A very direct approach to language modeling which has been explored is
connectionist N -gram modeling. Straightforward statistical approaches to
N-gram models become intractable quickly as N grows large. The num-
ber of parameters to estimate grows exponentially, and the requirements for
sample data grow excessive. Nakamura and Shikano (1989) have proposed
the NETgram, a connectionist network architecture which learns N-gram
models efficiently. The basic bigram network had a localist input-output
representation for word category, and the network was trained to predict
the category of the next word given the current word by using error back
propagation. A NETgram architecture for a particular value of N words is
constructed by augmenting a trained NETgram for N — 1 words. In tests on
the Brown corpus, the architecture had comparable performance to the tradi-
tional statistical method, but the number of parameters in a NETgram does
not increase exponentially with N. ]
Rather then predicting the next word given a sequence of previous words
(or word categories), networks have also been used as autoassociators or
disambiguators to learn suitable codes for language. An example of the
former is PARSNIP (Hanson and Kegl, 1987), a three-layer feedforward
back-propagation network that was trained to reproduce an input word cat-
egory sequence at its outputs by way of a set of hidden units. The units
develop during training a code for language that can usefully incorporate
information that extends beyond the first one or two previous words. An ex-
tension of this idea that could perhaps be applied more directly to speech
was proposed by Benello et al. (1989). Here a multilayer feedforward net
was trained to produce an unambiguous word category as output, given an
input that consisted of current ambiguous word categories and several un-
ambiguous (known) preceding word categories. After training, the network
could correctly disambiguate 95% of the words in previously unanalyzed text.

4.2. Recurrent Networks

Recursive network architectures have also been shown to learn fairly difficult
syntactic relationships. The explicit purpose for their recurrent connections
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was to provide a network with state sequence information. Early connec-
tionist research focusing on the design and training of recurrent networks
to do this was done by Jordan (1986) (see Fig. 15), and his work spawned
several other papers on the subject. Various forms of recurrence were used
to achieve temporal sequencing and shift invariance for time-varying signals
including robotic control, speech production, and phoneme and word recog-
nition, but several applications to modeling syntax now also exist. Elman
and Zipser (1988) developed a three-layer network with “context” units that
formed a feedback mechanism between the hidden and input layers of the
network. Using this structure (very similar to that illustrated in Fig. 16),
they ran a series of experiments to assess the network’s ability to represent
temporally sequential relationships in the input data. Network performance
was judged on its ability to predict future input states, given present input
state and former internal (hidden) state. In effect, the network was tasked
with learning discrete state-space trajectories. They successfully trained the
network to predict follow-on states for a set of three discrete trajectories in
one experiment. In a more complex task they trained a similar network with
200 variable-length sentences generated from a 15-word lexicon. The train-
ing was conducted with the objective of correctly predicting the next letter
of the sequence representing a given word in the lexicon. The trained net-
work performed the task consistently; prediction errors were typically high for
the first letter of each word and dropped rapidly (indicating high-confidence
predictions) as the Jetter stream corresponding to the word was processed.

Figure 15 Recurrent network used by Jordan (1986) to gencrate an unfolding
Output sequence given a static input plan.
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Figure 16 The recurrent network form used by Elman and Servan-Schreiber in
their word recognition experiments.

Servan-Schreiber et al. (1988a,b) expanded on Elman’s work using the
same recurrent connection paradigm. They trained a recurrent network
with 200,000 strings of varying length drawn from a finite-state grammar.
After training, the network was tested with 20,000 strings drawn randomly
from the 200,000-string training set. Since substrings of different full strings
could be identical—thereby leading to different predictions for next state—-
performance measures accounted for multiple predictions of follow-on states.
Under these criteria, the network predicted next states flawlessly for all
20,000 “test” strings. When tested with 130,000 strings, only 0.2% of which
were consistent with the finite-state grammar, the network rejected all 99.8%
nongrammatical strings while it correctly processed all grammatical strings.

The results of Elman and Zipser and Servan-Schreiber et al. illustrated
the effectiveness of capturing temporal context with representations of se-
quential state. Extensions to continuous outputs have also been proposed
for control systems application (Pearlmutter, 1988). These networks follow
continuous state space trajectories, in contrast to sequences of discrete states,
and might be useful for speech applications as well.

4.3, Parsing

Another approach to the problem of temporal context has been taken by
Jain (1989) and Jain and Waibel (1990a) in work on connectionist parsing.
Instead of requiring networks to learn to capture arbitrarily complex and
distant temporal context information through recurrence, the process of cap-
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turing context is explicitly built into the task to be learned. This work extends
the standard back-propagation paradigm to allow the construction of well-
behaved storage buffers within networks which operate on sequential input.
The parsing networks are constructed in a hierarchical fashion from sep-
arately trained modules. Each module performs some transformation of
either input data or substructures built by other modules. Arbitrarily com-
plex information structures can be built up over time in this manner. Jain
and Waibel have successfully trained a network to parse grammatically com-
plex sentences including passive constructions and center embedded clauses.
The dynamic parsing behavior is predictive; the trained network produces
hypotheses about sentence structure at every moment in time and confirms
or revises hypotheses as input words are processed. In Fig. 17, the temporal
activation patterns corresponding to the semantic role description for a sin-
gle clause unit are plotted for a passive sentence. The initial hypothesis of

CLAUSEL_PHRASEL CLAUSE]_PHRASEL
The dog wes glven o bone by  Jon T dog was glven a boe by

. | HNIIMIHN

CQLAUSELPHRASE2
The dog was given o bone by  Jan

[

The dog wes glven o bone by Jan

AT

CLAUSEL_PHRASE4
Te dop we given & be by Jom

B el

Figure 17 Dynamic role assignment behavior for “The dog was given a bone by
John.” The phrase numbers correspond to the following phrases: “[The dog] [was
given] [a bone] [by John).” The network begins with an agent/action/patient assign-
ment and finishes with the correct recipient/action/patient/agent assignment. Al
roles are predicted before their respective phrases are processed.
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the common agent/action/patient role structure is quickly revised when the
passive construction is detected.

The parser has the advantage that its structure is learned automatically
from text data and not programmed. This should allow extensions to parsers
that compensate for word recognizer confusions and syntactically ill-formed
spontaneous speech. In preliminary evaluations the present version of the
parser was found to be tolerant of ungrammatical sentences and various other
types of degradations (Jain and Waibel, 1990a,b). A trainable parser may
also easily incorporate other nonsymbolic information, such as prosodic cues,
intonation, stress, intensity, and rhythm, that have so far been ignored in most
language models of speech.

5. CONCLUSION

In this chapter we have provided areview of recent research on applying neu-
ral networks to speech recognition. At this writing, research in the field is
rapidly expanding and new models for phoneme, word, and language model-
ing continue to emerge. This creative search for novel solutions to the speech
recognition problem is likely to stimulate new insights and intuitions beyond
the connectionist approach that should Jead to a better understanding of
speech recognition system design.
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