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I Overview

Research in the feld of connectionist speech processing 35 moving &t 2 Uremenadous
pace: the advent of incxpensive supercomputing has provided the computational
resources necessary for larpe scabe nevral necwork simulations in many disciphines.
Those involving complex paticm classificatian tasks have sponsered some of the
mest vigorous connectonist msearch; speech processing — one of e mast notable
of such disciplines — has been panicularly scuve in connecnonist dewelepments
ower the past three vears. 1a this chapier we provide a sumemary of this research, W
categorize neural network speech processing effonts in the following manner:

» Phonems Recognition Nemworks
~ Temporally Siatic Networks
= Temporally Dynamic Networks
+ Exiensions
= Mecelanty and Scaling
- CFM chiective funciion for backpropagaian
» Word Rzcogniuen Neteorks
= Termporaiv Stabie Full-Word Neewoiks
- Temporally Dynamic Full-Word Nerworks
= Hybrid Nemworks
o Nerworks with Onher Applicatons se Speech Processing
— Moase Suppressian
- Speech Codting

= Text-to-speech Transcrpton
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Mazy of the studizs 1hat we reyview proffer significant reszlts for different Levels of
the speech recegation tusk. For this reason the seader will occasionally s2e the sane
work mzationed 1 a few sections of this chapter. Much of the research presented
is based on the Backpropagmion neural petwork model of Rumelbart, McClelland.
and e POP Rescarch proup — the reader interested in a detailed fosmutation of
this parsdigm shosid refer 1o [1,2]. Finally, our sim 15 10 provide tha seader with a
genzral and reprasemative pwerasw of connectionist speech processing tonlay, W
canmot hope 1o cover all the impornant msulls within the bounds el a single chapler.
We reoemmend the works by Richard Lippmann [3] and [4] as additional, detailed
referenses fo lhose seeking an allemative perspective. Throughaul the chapler recog-
niton raes apply Lo speaker-dopendent expeoments uniess specifically sted.

2 Introduction

Human speech presents a formidable pattern classificasion tzsk 0 secognition sys-
1zms. Indeed speech recognition research hus been active for mere than three decadas,
yel ke very best systems today have recognition capahalities well below thase of @
c=0d. This 35 because the speech signal is extracnlinarily complex In very gen-
eral terms, hurans recognize speech by mcognizing several types of cues — the
predominznt cues are acoustic, bul there are many nOn-acoustic Cues {C.g2., visual
and contextual} as well, Chief among the acoustic cues afe e frequency content
of the speech waveform, and the iime-dependent changes m tha frequency content,
Thus, in its most simplistic form speech can be viewed as a stochastic proccss m-
volving two principal dimensions — time and frequency. The complaxity of the
specch recognition task kes i the fact that a mven wierance can be rcprescaled by
an efizctively infinite mumber of ime-freguency patierns. A kaman speech s:gnal is
prodused by moving the votal-tract aficutaiers towards target pesitions tha char-
acteries A paricular sound. Since these arnculatory metions are subject 12 Fhivsical
consuminis thal vary frem subject 10 subject and since they are siochastic in namre
{ie. the motoss do not follow precisely the same Lrajeciory cach time they are
pesformed) they do not produce consistenddy clean idzntifiable phosetic 1agels in
the wrzin of speech. Instead these aniculaions form acoustic-phonctic rajecionies
thet have a high depree of variabidity @ both the time and fieguency domains. Ef-
fective recopnilion sysierms must therefoe capture the dynamic “motion” of thes
pocusuc-phonctic rajedtorics, scanning them for scquencss and co-occumences of
cues nesossary £ar robest recognition. Conpectonst speech processing and recog-
pation sysems 2r2 well suited o this task because they s panicelarly efieciive @
learning oml subsequestly representing the salient fzatmes of spesch.

0
b




oUTPUT DECISION REGIONS

O woe
& WD
* HAWED
® HEED
© reg

¥ HEAD
© HAD

{ Hooo
10

~ pEARD

Fesl wre Secord Formans) L

Fuguee LA 3-laves backpropagation netwozk wsed 1o form classificatian boundznies
01 the feomants £ and Fa for voweis?,

3 Phoneme recognition

In this section we mvicw connectionist archilectures that have been developad o
mecognize the acoustic-phonetic building blocks of speech: phonemes. Thesc net-
works can be divided mnto 1wo major proups: 1) those that require precise temporal
alignment of input tokens for acourate recognition performance (making them mpo-
rally siatie, shift-variant classifiers) and 2) those thar do nol reguire precise Lemporal
alignment of input 1okens {making them lemporally dyaamic or shifi-invariant clas-
sifiers)

3.1 Temporally static networks

Figure 1 serves as za dllustrative inroduction to the application of neural netwarks to
speech recognition tasks. Huang and Lippmann [5) applied & 3-layer backpropagation
notwask to the task of formaing non-linear classification boundaries for the formants
Fy and Fy using dalz obained by Peterson and Bamey [6] in studies of adull and
child maie and female subjecis®. The network had SO units in the hidden layer, end
was trained for 50,000 trals, resuliing 0 inter-formant boundaries comparable o
those one would dras by hand and those formed by mere traditonal classification
techniques such as k-nearest neighbor classifiess [8,9). The netweork provides a
pamticularly good example of the nor-linear classification power of the neural netwerk
structure applied 10 a highly non-linear classification task.

Elmzn and Zipser performed phoneme classification experiments for the voiced-
step consonants /b, d, gf (followed by the vowels fa, i, ufy [10L 505 tockens of
the nine discrete voiced-slop syllables were parsed from recordings of a single male

'Figwr from Hueng and Lippriaa [5)
"Rabiner wnd Schaier [7] slio provide a detailed snaly s of thoy data,
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Figure 2; Niranjan and Fallside's RBF net®,

speaker wsing a 10 kiz sampling raie applied to 3.5 kHz low-pass filtered speech,
Tweaty 16-cocfiiciont DFTs were computed at overlapping 3.2 mses intervals to farma
the inpot of a 3-layer backpropagation nctwork. In a saries of caperiments, hidden
tayer and putput layer node counts were vared. In one case, nine outputl nodes
comesponding 1o the rine passible syllahles were used; in two other cases an qupat
node counl of 3 comespanding 1o the three voiced-stop phonemes /b d, g/ was used,
Mare than 100,000 training passes were run for cach experiment, using approximately
hadf of the tokens as training exemplars. Recogrition rales for the disjoint test data
sel were 84% for whole syllables, 98.3% for vowels, and 92.1% for voiced-stop
consonants. Elman and Zipser found thal inroducing wniformly distributed white
npise io training tokens at the input layer impreved wecognition rates ta 90%, 99.7%,
and 95%, respectively. They drew the important conclusion that the noise source
tended to obscure features of the waining tokens that were “iliveyncratic™ and no
representztive of all tokens for & given syliable or phoneme.

Miranjan and Fallsice [11] employed 2 connectionist implementation of the Ra-
dial Basis Function (RBF} classifier [12] to the task of speeker-independent vowel
recognition.  The REF nerwork was based upon nodes called Sphesically Graded
Units [[3). It used a perceptron-like architecters emploving SGUs a1 the input layer.
Instead of performing the usual \kresholding function, these input units wy... o,
compuied RI3Ts which were fed o an oufput weit implementing the RBF intempe-
lation function g(X). The network is luswated in Fipure 2. In their experiment
sinple uiterances of 5 vowels wes2 obftasned from 20 speakers {10 male, 10 femate),
Speech data was 5 kHz low-pass fillered, sampled ot 10 kHz, and used as infat to a

IFigues from Nir amgen and Falladz|12).




1Zeh-grder LI special estimator using the awtocemelation methed. Ten lesaribnic
spectrid paramerers wene ohiained from the LPC reflection coeflicienis, pre-processed
teeugh a sigmeid and used as input to a standand 3-laver buckpropagation network
as well us the RBF netwerk. 70 of the 100 tekens wese used for taining and 30
were reserved for tesung The backpropagation neiwork achicved an 809 (24M
secognition e, while the REF nerwork achizved a 93% (28500 recognition rate,

32 Temperally dynamic networks

As mentoned in the intreduction, the principal goal of an eFeouve speech recog-
nillen sysiem is 1o capiere the dyramic nowre of the acoustic-phanelic trajeclory
of the speach signal. The tempoeal aspect of this tasc 15 panicaiarly chalienging,
Seme speech mecognition systems atiempt 90 parse or sepmenl speech info discrete
wnits reughly coresponding 1o phonemes. Howsever, the hest segmeniation schemes
are highly suscepible 1o emors; these srrors, in wm, result in higher error rates
further along in Ihe recogmition process. As a result, a robust speech recopnition
sysiem should simply scan the speech signal for wseful cocs wirhour relving on
pre-stpmentabon, basing ms over-all recognition decision on the sequence gnd Co-
occwmence of 4 sufficient set of these tues. This, in m, Sappesis a sysiom Lthat
is emporally dyramic or “shifi-invarant” {Le., a system whoss rezognibion perfor-
mance s unaffected by 12mporal shifts of the input speech rain). The experimenls
detailed above used vilerances thal were pracisaly pursed from the speech signal, ob-
viating the need for shifi-mvariant performance in the network, The following senmes
of experiments ail employed technigues aimed at yiclding skift-fnvaram phoneme
recognition.

Waibel and colleagues [14,15] and Lang and Hinlon [1&] developed vanams of the
Time-Detay Nearal Nepwork (TDNN) — an aschitaciure desipred w0 perfosm high
acturacy phoneme recogrition under varying conditions of phoneme duratien and
temporal location withan ihe speech stgnal. Figure 3 illustrates the TDNN srchitectare
of [14] i bleck diagram form, and helps to explain the way in which it achieves
shifi-invarianl recegnition. The inpot laver of the network was fed bv L5 16-point
Melscale frequency spectra, representing the speech wavelom sampled a1 10 msec
imervals. These input spectra were fully connected in groups of 3 16 reduced ahsiract
spectnum-like node sinccrares in the firs hidden laver, The concection sirenpibs
between the group of 3 inpul specita and s fisst hidden fuyer coumierpan were
Weriaca) among all groups. Thus, the TRNN focused oo 30 mies “windows” of
speech, lecking for the zame fatures ineach 30 msec wandow, The abstracl spectra
of tie firs) hidden layer wore bound in greups of 5 mapped 10 comresponding
pheneme clessification nnde structures in the second hidden laver, Again, conrection
srengths were dentical e prowp 1o proun, so the network booked for the same
abstract leatures across each § nme-slice sepment of @wimcied speech in the first
hidder 1 Finnally, all seeond Bidaen laver classificstion nodes conesnasuling 10
the same phesems weee knked with equal comection strengihs to a single phonerne
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Figure 3: & Time-Delay Newal Network (TDNN) for the thiree voiced Sop phonemcs
b, d, gl

classification wode at the ourpet Javer. Figure 4 shows scoal acuvanon states for
@ TDNN tramed 10 recogmize the veiced step consonants /o, d, &L In e diagram,
e background is whie {ndicaing no sctivarien), tepwive activation finput laver
oniyl i depicted a5 oy, and posilive activalion is dopicied 25 Mack. The love] pf
activation for & gven node is propomional to the size of its carespending rectangle
iy the figure, The TDNN vanats developed by Lang and Hnion {16] had shightly
mod:fied stroctumes, bt wers comcepleally idenical to the moded deserbwel ahove
Waibel andd colleagues perfarmed the /b, 4. Bf recopnitian msk with the TONN
ing 2 large vecahalire dalzbase of $240 Japanese words [17] Appreaimiately

np and 200 disioiu tesung tokens were abtained for each weEed- sLan




Fipurz 4: A Time-Delay Newrzl Nerwork,

consonant lrom rhe 5240-word database produced by each of (hree mala SpEEKETs.
AS 2 resull, the tokens contpined a high degree of phonetic variability. These tokens
wire parsed from the speech signals of entire words, and 150 msee spectzal windows
were centered about vowe! onset. Recognition resuhis en test dat vielded an averape
recognition raie of 98.5% for all phonemes across all speakers. Cursory studies of
the effects of temporal shifis of 12 test data input spectra with respect 1o vowel onsed
suggested that nominal shifis had litte appreciable effzct on Tecognition rates. Waibe]
and colleagues also Tound that the TDNN achieved significantly hipher recopmition
faizs thar the best Hidden Markow Medels curmenily used for the same task [15).
Using the same speech data, they found that HNVBS achioved an aveTEpe recogmition
ratz of 92.7%. Thus, the TDNN roduced by more than a factor of four the HMvIN
recognilion emer rate (e, 6.3% mduced 1o L5%). They also described in derai]
the internal nepresentations formed by the netwark, corresponding 1o a nussber of
dynamic feamres of the speech signal. Hidden laver activations showed specific
1esponses o lemures such as unvoiced speech, vowel cnset and nising formants.
Lang and Hinton ran & senes of TRONN developmental expsnments an the four
syllabic words “bee™, “dec”™, “ee™, and “vee" (B, D, E. V) [16). The 800 tokens for
these tesls were oblained from speech originally recoedad by the IBM Speech procp.
1) male speikers were wsed to penerare the data compnsing k42 msec sepmens
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{5 Woset the antlial cormection sirsnaths of 2 wide frie-window
TONN - 1wreased weoenilion performance 0 $9%. When the ralio of wsting 10
trimeg dita was seduced 10 122, recogration raes averaped 9.4 Lang aml lincon
also man 4 series 9f experunens aimed at larger soale shift-invaniance wheremn the
TDMNN was used e stan enliz2 words. This involved Lratning with 216 mseg peech
segments as weil as some adjustments to the tamporal soale of the TDN™, Following
Lmining iwolving these changes, te use of multi-10s clutipe technigues, and “counter-
examples™ 1 suppeess false classifications, they achisved a 95.1% ecoonilion 1ate
en TRNN-scanned ensegmented speech for the (B, D, E, V7 so0.

Rosser and collearses took a modular approach w tempoeral sheft-invarianca [18].
Thear setwork used a senes of five input modeles which fed a single hudden layer
mesduls. This hidéer layes module then fod ar oulput laver module, 510 jokens afl
speech data obtaned from diree make speakers Tepressnling the six siops /b, d, g, p,
1. & followed by the three vowels A a, wf (1§ possible combinanons) were obtained
from discrete syliabic uterances This dats was bandpass ilierzd (70 Hz - 9.6 kHz)
and sampled a1 20 kHz. Log DFT specira were computed at 5§ mses mtervals from
Hamming windowed speech signals, These Spectma were smoethed 1o produce 32-
cocilicicnt spectra evenly spaced berween 0 and 99 kHz A series of these smoathed
spectra formed the inpet 1o four of thie five input modules. The speciral sequences
of modules 2 — £ were time shified by -5, <10, and -15 msec respectively from
the spectral sequence of module one. The fifts inpul medule contatnied cepstral
information af the speech sipnal. Cuatpet layer nodes could have amio-associalive
conneclions {i.e. feedback connections te their own inpuis), and larget output patlems
weze mulli-node (as cppesed to 1-of-n) binary actrveation pattemns equidistantly spaced
in aclivity space. This architeciure achieved a 94% recognition rate for consonants
and & 93% recognition mte for vowels when trained and tested on 2-speaker data,
The network achieved an 80% recognition rale for consorants cblained from the
third speaker no! used 10 Dain the network

Watrous parsued shifl-invariani phoreme recognition for the /b, d, g' and §,
a, uf tasks wsing a conneclicnist siuctare called Lhe Temporal Flow Model [19].
This archilccture had many sumilarities to Gie model described above, It employed
ITCWITERl connections at the oulpul layer, nen-FEnary ouipul largets (ie. the network
wis tamed 10 produce & Ganssian-distribuled activation across its cutpul nodes) and
emporal epresentations threugh the use of detay links betweoen processing sub-units,
The Temporal Flow Model archileciure was applisé 1o fand-segmented speech from
2 single male speaker, viclding recopnition mies of 99.2% for (he M d, pForask, and
100¢% for the b, a. uf task,
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Figure 5: an LVQ nstwork ased for the b, d, B/ recognition task’.

MeDemzon znd Katagin applied the LVQ network of Kuhonen and colleagues ta
the consensnt recognition task (20]. Their expenments used & single speaker from
the same Japanese dutsbase used by Waibel wnd callzagues, and the mpeat laver stric-
ture of e LV network was adentical 1o that of [14], Figure 5 dlustmaies the mowing
spectral window used 10 faad the hidden layer that effected a cannection st L plemen-
taticn of Kehanen's LVQ2 alporitim [21]. Hidoen laver connectons were initialized
using A Itadilicnal k-means eluslering algerilnm (9], This nerwork achieved & 05.6%.
recegnilion rate Tor &l step consonants obtaired from hond-seemented dala taken
e 2 single mule speuker, Performance for ail s20ps, fricatives and efiricaws far
the same speaker, wsing 2 medular version of the LVQ network®, was 97 3%, Nat
woek Wrainieg time was semewher loss than traiEing time for a compeealle TDNN

and Kadagin [0
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4 Extensions

In relative terms, all of the nevworks described m Sections 2.1 amd 3.2 were applicd
ta highly restsiceed speech recognition lasks. A matural question that fellows from
positive resulls cn a Emited 1ask is how ene might adipt the expenmental apparzius
to handle larger. more generul tasks,

Waihel, Sawa, and Shikano addressod. the issue af scal ing the speaker-dependen
M. 4, gf TDNN 1o the Targer prebiem of recognizing a combination of stops. frica-
tves, affricales, snd nasals for a single speaker [22.2324) They began by inwves-
t:gating an expundsd version of the TDNN in Figure 3. The expanded TDNN had
tweaty nodes per shslract spectnum in the first hidden layer, 6 phoneme class node
groups in the second hidien laver, and & puiput nodes, cormespanding (o the voiced
and envoiced steps /b 4. g, p, L k. This network eventwally achieved a 98,39
recognition rate on 2 1613 roken test ser, but the amourd of wraizing required (o
achizve this performance level was extracrdinarily high. As a result, Washel, Sawai
and Shikano mvestigated a number of architectural schemes aimed at increasing
the scale of phoneme recognition networks through an imerconrected series of sub-
medules consimning a considesatly larper rotal network, Figure 6 is an illustration
of the modular all-consonant TDNN they develeped. As in Figere 3, nepative nada
activations are shown in gray against a backgronnd of white and positive activations
are black. Individaal TDNN3 were trained for consanant sub-groups, and a TDNN
designed fo identify the type of aniculation was trained — the training of all medules
was done vsing the same training ser After all the sub-modules were wained they
were essentally connecled in pasallel. Initially connections from the common input
layer to all the modules’ first hidden layers and connections between the modules'
first and second hidden layers were constrained to their individually-trained valges,
bul connections betwesn second hidden layers and the outpat layer were se-rzined
using backpropagation. In (he final phase of training, all connechions wers “Heed
(ie., allowed to be so-trained o the contest of the entire network architcciuse). This
fine-tuning resuiied in an all-comsoaant recopnstion rate of 96%. Ammong thasr con-
clusions Waikel, Sawai. and Shikano found 1hat sob-nelworks developed msemal (e
hidden luayes) sbetructions that were valuublz in forming distribuled representations
of morez comples recegnition tasks across e entige vetwork, To gonrasy, 1 was not
clear whether sulbnetwork cutput layers could be combingd as eifectively — evi-
dence suggesied thal shese ouiputs simply contained insefficient infermanion for high
acouraty recogmition wilin a medular system, These findings supported the notion
of coenectionist laming straiepis hased on distributed modular sepreseniatons of
knowledee,

Humpshine ard Waikel invest gsed ihe wse of coplicaind TN trainad on jilons
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Figure 6: Waibel, Sawai and Shikano's modular all-consonant TONMN,

tical dala using different objective fiunctions for the backpropagation gradient scarch,
In addition 0 the Mean-squared-error (MSE) shjcctive functica typically used in
backpropagation leaming, they developed an allemative objective function which
they termed the Classification Figure-of-Merit {CFM) [25Y. The CFM was devel-
oped as a more effective objzctive function for networks employed as classifiers.
In the:r expenments, they found that the CFM classifier did not exhibit the gver-
leaming tendency ofien displayed by its MSE counterpart. Additonally they found
that & simple conbination of both classificrs typically recuced by 24% the number
of misclassifications made by the MSE classifier alons, while it “flagped™ T0% per-
cent of the remairing errors as probable misclassifications. This kad the effect of
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5 Word Recognition

Section 3 highlights & number of coanectionist sructires applied 1o the task of
phonems recapnition. In this section we review a numler of CAPSEIMCNIS iEvole-
mg word recopmibion. W stan by citing developments of wempocally siaic word
recoprition networks, and fallow this with a Giscussion of temparally dynamic word
recopration archaectures. As is the case for phemems ecoprLiion netvworks, fem-

Poraly SaUC word EeEniian nIwarks require precise temposal alignment af the
word, while lemperally dvnamic eetaotks do nog

51 Temporally Static Full-word networks

Lappmann and Geld stwdied 2 number of backpropapation netwerk architeciures
applied to the task of jsclatsd digit recopnition [26]. Seven isolated monosyllabic
digns were obtained from the T1 solated Ward Datzhase mpesening speech from 14
different speakers. The speech datz was sampled at 12 kHz, windowsd, and discrele
Fourer transformed; post-processing produced 15 -cocficient Melscele spectra af 10
mser intervals. These specra wers used 1o develep wwo 11-point czpstra offset
by 30 msec in time: the latter cepstrum was taken from the maximum zcoustic
energy segment of eack digit. These cepsira served as inpul to a series of networks
all having 22 input layer nodes and 7 output laver nodes {corresponding to the 7
digns). Seventy training and 112 testing tokens were obtained for each speeker, and
networks were trained and tesied for single speakers enly. A 2-layer network (ie, a
2-layer perzeptron] ywelded the best connectionist recognition perfoomance of 92,315,
averaged over all 16 speakers.

Peeling and Maore also ran expsriments with izolated digit recogniton [27].
They wsed & 3-laver network wilh 590 hidden-layer nodes. §0 19-coefficient specra
tzken a1 20 msec intervals formed the nevwark Input i crder to capiare the lomgest
duralica utizrancas. Shorter utlerances were zero-padded and time-shified tandemly
in the network input “window". Tsclazed dipn speech data was taken from the 49.
speaker Royal Speech and Radar Estahlishment (RSEE) database. Speaker-dependent
recognition under these condnions was 99,75,

Bur cenducied a serizs of experiments in isolated E-sat and polvsyllzbic word
recopnition using a sinple-lager percepiron [28]. The network i cemprised 20
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62.Coeffivien spectrs 0 sepanilc experments thase spesa were computed usung
smohsd DFT and LPC techrigues. Speech signals were sampled ot 10 &4z For
DFT pracessing, 64 speciral coetfficients were computed from Hamming windowed
time senes transfonmed (o 128 poinl speetry; these spectm wer mesing-average
{MAS filiezed 1o form the smesthed 64-point specira, For LPC processing, 300-
sample Hamming windowed data formead the sapur 10 a tenth-grder auineomelanos
LPC estimator employing Levinson-Durkin recursion. Input tokens were temporathy
aligned in the speciral “window™ using a DP time aligament procedars. Five 1okens
of 20 polysy labic words contzizing three 1o five sylables were reconded from a singhe
make speaker. Trmning tokens wer also wsed as wsung 1okens ia this expenment
— under lhese condibons, recopnition ralcs wem. no surpnsiagly, nearly |00,
Barr alsa ran recopnition cxperiments on sinele-syllable words recorded from a
single male speaker. Twenly tokens of cach of ke nine single-syllahle E-set words
were obtumed. Half of the wkens were reserved for training and half for testing.
Recognilion accsracy undsr these condiions was 91.4%. Ward FECOfmItion was
increased 1 9825 foltowing medifications to the network's input layer strugture
and speciral estimanion methods: these modifieations fecused nerwark activiry on the
first 40% of each word.

5.2 Temporally Dynamic Full-word networks

The preceding word recogrition results sugpest that recognition accuracy gt the word
level 15 quite sensitive to temporal alignment of the word within the processing "win-
dow” of the classifier — as was true for the phoneme recognition task, The foll owing
expernments ssed a number of novel technigoes to achieve shift-invariant recogniien
at the woed level. Some of these experiments were not, stricthy speaking, spsech
recegnition rzsearch; neventheless, they were all speech related, and they illustrate a
number of connecionist paadigms that may prove useful in future research al the
word recognizon Jevel

Bottou used a large TDNN {see Figure 1) and 2 novel time-warping spproach to
inzrease the temparal variance of isolated words and achisve shift-invariant speaker-
independent word recognition en five Consonant-Vowel French words [29]. Single
exemplirs of each word were obtained from § speakens. Speech from four speakers
was used for training and speech from the remaznmng two speakers consiituled teshing
dma. The data was sampled & 10 kH2 and used to corepue 255-point DFTs at 128
meee inigrvals. These spectra were zeduced 1o 18 speewnal eoefiicients coverag 4
frequency range of 100 Hz 1o § kM — apmn separaied by 1 2.8 mser wmervals. Low
frecuency cocficienis wese linearly spaced, while high-frequency coefiicions were
lerantimizally spaced. These formed the inpot 1o a 65 time-frame TONN input
Tayer. Three wpat spectra connecied to 3 anls in the firs hideen layer; the 3 spoctra
“window™ of the input layes wus shifted 2 nme defavs for each first hidden layer
Xnodz greup. Seven first hiddea layer 3-nnds groups were combined 1o form anput
ta dnode second hidden taver groups. Thess, in wm, were fully cenmzcted 1o the

LET

Sonode owipan Lver, correspoedicg 1o the § wards to be recopmized Bopow wng he
anginal I lokon taining sel and created 2 tolal of 400 additenal Im@ining tekens
by time-waiping ihe engial set independent of pliseetic struclure. The extenst of
warping ranged from warping 82% of the word mio $0% of the TDRN inpat specira
16 warping S0% ef he word into 804 of the input spectr Occasionalle, warping
Was a0 extrenw (hat it eliminated consonant nonions of words. The TDNN was
trained ea the eriginal 20 wokens, plus these 400 “svnthesized” versions.  Afier
trzining, Bowow achieved IS0% recognition on all 20 onginal zaming rokens and
S recognition an the 400 warped tokens (he surmsed that this refatvely fow rate
for the warpad Iraining s21 was due 4o he exteme warping performed on a small
number of those tekensl. The recognizion sale on test dalz was 905 using this
technique of amificinlly expanding the training sef by megns of lemporal waming.
In a separate expenment involving word recegnilion on the T1 20-word daizhase,
Kammeser and Kuper ezalized a 30% reduction o the number of classificalion emors
00 25t datd by using 2 sumilar lime-warping lechnigue 1o anificially increase the size
and varianze of thew training when set [30). Thewr wcomition resu’ts were 99 69
for speaker-dependenl cxpenments and 97.3% fora spegker-independent trial.

Sokoe, lsotani, and Ise developed a Dynamic Programming Neura) Netwark
(DN} for speaker-independent word recognuion [31]. This network emploved a
3-layer backpropagation architecture capable of dynamically warping its inpuz. The
input bayer comprised a series of 10-coefficient Melscale spectra taken at 16 msac
intervals. These spectra were linked in groups of 2 to single groups of 4 hidden units;
each hidden unit growp represeated a temporal shift from its predecessor. All hidden
layer unit groups were fully connected o a decision oulps unit comrespanding to one
of ten spoken digits. Speech fram 50 speakers was used 1o rain the networks in tao
ways. Ina lemporally pre-warped training methad called “fixed time alignment”,
all runing wkens for a particular word were tme warped o 2 standard t2mporal
pattemn pnor ie vaining. In an alternzuve waining procedure called “adaptive lime
alignmenl”, each token of a word was interactively warped in erder 10 produce
the maximum output activatien of the nerwork. Once the adaptive alignment was
complzie, the back-propagation iteration for that token was performed. Recopnition
performance was tested on tokens obtained from 57 speckers (none of whom wers
wsed for rainingd. Recognition rates wese 97.5% for mztworks ained with the fxed
tme ghgnment procedure and 99.3% for networks trained using the adaptive time
alignment procedure. The added camputatienz! cost of the TECORRINGN UTPIOVETCHL
alforded by the adaptive lime alignmenl training procedure was subsiansal,

Tank and Hopfield developed an znalop sevial nevwork moel for recogmzing
pasticular stmules sequences {comprizing leners of a word) thal were slightiy dis-
terted and embedded in larger saquences [32]. The network, itiustrated in Figure 7,
employed a senies of dewectors Dy .. Dy for single ciements of a stimuelus seluence;
each ef lhese desectors was repliczted nver a series of Lime Gelays, allowing the
nsiwork e detect 2 sinple efememt of the sequence of inlerest pcross a range of
time segments )., 2{7). Appeprian combinations of these time-shiflod detec-




Figure 70 Tank & Hopheld's asalog metwerk for deiecung nom=aliy distongd se-
quences embedcéed in larger sequences”

ters fed a recognition umt ¥ cortesponding 1o the precise sequence o ke detecled.
Tahibilory conneciions between recognition units minimized netwaork autpul foe stim-
ulus sequences not closely matching the desired sequence, ‘The network was very
effective in locating distonted letter sequenzes embedded in larger sequences. In
follow-on work, Unnikrishaan, Hophield, znd Tank used this same nelwork paradigm
lo achicve a $9.3% recopnztion mte on mndam sequences of digis [33].

Another imeresting gpproach 10 emporally dynamic ward recognition has in-
volved the use of recurrent {ie, feedback) connections in networks caplure the
sequential fealures of speech. Secticn 3.2 mentioned 2 number of phaneme fecogmi-
tion networks employing recurment connections: Wetrous, Shastri, and Waibel used
recurrent connactions in the output Layer of a J-laver network used to recogrized the
vaiced stops /b, d, gh; similarly, Rossea and colleagues employed recurrence in their
phoneme recognition network [18]. Prager, Harrison, and Fallside wsed recerrent
Bokzmann maching architzctures besed on a first-onder Markov model [35]). The
explicit purpose of al thase recurrent conrectonist stciumes was (o provide the
network wilh state sequence information. The first connectionis! research primar-
ily focusing en the design and training of recurent notworks was done by Jordan
[36], and that work spawned several other papers on the subjoct. The following
networks employved various forms of recumrence to achieve tempaoral shifi-invarant
word recognition. The networis described bhelow emploved recurrence a5 a means
of capturing higher-level sequential features of specch invalvicg symiax,

Elman developed a 3-layer network with “conlexmal™ units that fomed a feed-
back mecharism berween the hidden and input layers of the network {37]. Using
this stucture (very similar to that illustraled in Figore £), he ran a serog of exper-
iments 10 assess the network's ehility 10 form general temporal representations of
gt data, Netwerk performance was judged on its ability to predict fulure inpat

*Figure from Tark and Hopheld [32)

6%

TS ]

COMTEXT l IE|EEZ|E]|T HE] ]

Fipure & The racumenl netwms faim usad by Elman and Servin-Scheeiher in their
word racogriton experiments’

slares, gven present wipat state and fermer intersal (idden) state. Tn effect, the nai-
work was tasked with lzaming discrete state-space trageciones. Elman successfully
trained the neiwork to predicied follow-on siazes for a sot of 3 discrete Lrajeclo-
ries in one experiment. In a more complex task he wained a similar network with
200 variable word-Jength sentences gencrated from a 15-word lexicon, The tran-
ing was cenducted with the cbjective of corrsetlly predicting the next fetize of the
sequeance representing a given wosd 1 the lexicon. The trained network perfomed
the task consesiently; prediction errors were typically high for the frst input etles
of a word, and dropped rapidly (indicating high-confidence prediciions) 2s the letter
stream comesponding 10 the werd was processed,

Servan-Schreiber, Cleermans, and MoClielland expancdad upon Elman's wark us-
ing the same recuwenl connection paradigm [38] In thewr work they wained a
recurrent network with 200,000 stnngs of varying fength (v = 6. o = T) drawn from
a finite-slate grammar. After training, the network was tested with 20,000 strings
drawn randomly from the 200,000 string raining sel. Since sub-stnngs of different
full strings cowid be idzntical — thereby Jeading to differem predictions for next stae
— performance measures eccounted for multiple predictions of follow-on states. Un-
der these crilena, the notwork predicted next states Rawdessly for all 20,000 “rest™
sinngs, When tested witk 1300000 strings, only 0.2% of which wer consistant with
the finile sisle grammar, Lhe network rejected all 99.8% non-grammatical SLONES
while il comectly processed all grammatical strings,

Both Elman’s and Servan-Schreiber, Clezrmans, and MoClelland's research re-
sults illostrated the effectivencss of capturing temposal context with RpUEsenlations
of sequential state. The parallels of these works with classical linear aulo-Iegressive
[AR) signal processing theory are chear, and promise farther developments of cannec-
tipnist syssems empleying rocurcenl aschitectures. Pearlmisiter is particulacly aclive

TEgure from Servan-Schoeiber, Cleermans, and MeTiclend (38}
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Figure & Lippmann and Gold’s Viterki net®,

in developing first-ooder recurrenm nepwerks for control sysiems [29] These net-
works follow contnuoous {i.e., non-discrete} state Space trajectones o condzast 1o the
systemg described above, which follow discrete “clocked" rajeciones, His research
will, no dewbt, prove valuable in speech-related apphications of recerrent nerworks.

5.3 Hybrid Networks

A number of rescarchers have used connectionism io perform compulations pencr-
ally associaled with mors traditional forms of lempocaily dvnamic word recognition,
Lippmann and Gold developed a hybrid netwoek calied the Viterhi net [26] to per-
form the Viterbi algorithm [40] in 4 connectionist struciuze, Figure® illustrates this
network, The mangular-sheped nedes of the netwerk coresponded to single nodes
an HMM word model; each of these nodes parformed a threshelding and time-delay
fonction. Inpul layer nodes represenmd mel and diffarential mal cepstra {updaisd
al 10 msec i

S5k Cormecnen swengihs beiween inprt and TIMM nadies were
st 1o vaiuss obiained by conventional 1AM competnal echnigues, The smadl
sub-nctworks feeding inpat to e HMM nedes were verd 13 select the T AR
of two competing inpuls. This netsork achisved 2 99.4% wond recopEniton sae —
virtaally iderzical 1o that achisved by non-connectionist HAVM eCOETRTS,
Bourland and Wellskens developed a Haver petwork to sompute distance scorss
beraeer input allephones and tarpet pheneme models thess scores wers fod 10 & tra-
ditional dynamic tme warpang (DTWS phonemefwand recopnizer [41). Hecorniuen
perfoonance of this system on 10 German

digits ebaned frem a suigie speaker was

"Fapwrz fvr Lippamaane avd e

L. These syme rescarchens wiole exiensively on connsctionist imrementaions
of Hilden Markav Models [42]. These impiementations included the nse of recurrent
connzobons and contex] sensiliviny.

6 Networks with Other Applications to Speech Pro-
cessing

The nerwerks we have reviewed so far have all wien a purely cornectionist approach
to spesch recogmition — & the phoneme, word and seanterce levels. In this section
we review a nuwher of differeny actworks that have proven effccuve in more diverse
spocch processing applications.

6.1 Noise Suppression

Tamura and Waibel used a 4-layer backpropagation nerwork 1o pecfomn noise ra-
duction en Japanese speech [17] that kad been comupred with both slationary whate
neise and nen-stationarny “colored” [compuier room ) naise. 216 words were cormupled
with compuler soom noise and used & training apul to a 4-layer feed-forward net-
waork with £0 nodes in cach layer. All succossive lapers were fally interconnected,
Actual speech time series formed network input and auiput — noisy spoech was pre-
sented at the wput and naise-free speech wes prasenied at the output. The network
scanned successive 60-point szmples of the speech waveform comprising each of
the 216 words processed. Traming encompassed approximalely 200 passes throagh
the taining werd set. Noise reduction results for words aot included in the rain-
ing sct were evaluated subjectvely against results ebtained with traditional speciral
subtraction noise seduction technigues. Subjects asked to evaluats the superior noise
limized speech signal chose the connectionist processed versions over spectral sub-
traction processed versions by @ masgin of 57% 10 5%, Tamura and Waibel found
that although their connechionist nodse reduction sechrique vielded higher signal-to-
noise ratios than spectral subiraction, it did not result in & more intelligible speech
signal (2gain, this finding was based on subjective evaluation). They suggzested that
inteNligibility might be enhanced by focusing retwork learming on more im:parant
acoustic-phenel:c features of the sprech sipnal,

.2 Speech Coding

Tamura and Waibcl's research was, i 4 sense, an experiment mvalving the absirace
coding of speech in onder (o map a noisy inpul signal 1o 2 neise-frae gurout srenal,
Elman and Zipser [ 19 conducted a series of experiments on contimuous spegch sig-
nals specidically aimed at developng absiract sepresentations of the speech signal,
wiih an eve towands passible apphcations w speach encoding, The ipeech darz used
comprised 305 tokens of consenant-vewel sylables {the same data described in Sec-
an 3,11 Fificen mumates of cominueus spesch daia cenbaining the digis 0 tErnugh
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cally Paianced words amd 500 freguerby-used words

cihiamed free i s wRer wmler powseless corditions was also pses. A

senes of nerwaonk a

ectanes wene ancd inogn Videolly mapping” mode, wi ;
mnput i eput paners were wdentizal, amd hidde TS W LRSS 1o [aom
teduced abstraciions of the icpmiorpa speech ¢ nd Zipser madde & ruci-
mehings Inoqne case, consananl-vowsl (V) svllahles wesg passed

ber of intezesting
through a network mrained on e continueus speech corpus; B
vatians produced by the CV inputs were used as npul 33 & Soparass netwo
ACTROTE was raimed 10 caizporie the ahstiact epaesentanons of OV il anie one of
vine possible caregones. Recognition reselts for tes second metwark vaned bomween
E6.3% and 94.2%. In anothor case, a network was trained with a tre-domain wp-
rsentaton of 4 minues of gpeech taken from the compas {all previous networks el
been trained wil frequency domais represemtations of speech). Following exlensive
training, the network was preseniad with a senience comprsed from words on wlinch
 had mot been trained. The netwerk eutpa: was a reasomably inteiligibie vorsion of
the mput semence despire the fact that the petwork had never beon tuined on the
utterance. Among their many conclusions the suthors suggested ha: mulliplk net-
warks trained on the same data might provide 2 mose rabuest representation of speech
than any single neatwork — & conclusion later supported in work by Hampshire and
Waitel [25] (see Section £,

6.3  Text-to-speech transcription

Sejmowsil and Rosenberg developed a hackpropagetion network named “NETialk”
io peotuce acoustic-phonslic transcriptions of & corpus of 1000 inpul words [44),
They used a 3-laver nerwork. The input Layer of the netwark compased seven node
groups: each of the seven groups representzd 2 single letter of the alphabel or one
of thres punctuation markers. Twenty-six owsput units mpresented 21 aniculatory
{eatures and five siress and syBable boundary condidons — all of which were psed
tomodz] the varicus phonemes represeried in the word corpus. The nerwork had 120
hidden Jayer units fully connected to input and cutput Jayers. During training, lexl
was sizpped across the mput Jayer's seven groups letier-by-lotter, while the network
culpul was maiched against the ideal representaiion of the phonsme cormesponding
ler the central clement of the input letier seguence. Connections were medifisd using
backpropagmion o minimize the nersork outpul error, A correct transcraption rate
of 9% was achieved on ke 1000 word corpus,

7 Epilogue

In this chapier we have provided a review of many of the recemt significant resezsch
results in neural network applications o speech processing. Al the writing of this
chapier research in the field is burgeoning and the fndings of many groups are ot
fescmating and encouraging. Cleardy there is temeadous power in connectonisi

classitizes. Much of k2 chailen
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SIGNALYIMAGE PROCESSING AND LNDERSTANDING
WITH NEURAL NETWORKS

L

v Sehaod af Elocsricad wrang, Mesiue niveesine

L. INTRODUCTION

arbwurks $ANN'S) are
standing.

i

Eao¥ appications of
ignal processing
Bexity aud cost ol
parallel archites-
ane up wieh new fearning teehniques,

g ANNS o sfgnal procuesing proble The
cal processing probicen 5= aie of cptimiration
which matches the epergy i va ol a particular wearal pet-
i . Processicg with Lhe ANN leads 1o the salutior of the problem by
minimizing the energy fucction. An exciling seabization in t approack is that analeg
eomiputations witk binary stable culpuls can be used (o solve such probiems, simiiar 1o
the way biclogical neural nelworks do Skeir compesations. This is ome tessen why ke
input and the cotpat vignals iz ANX's sre oflen represented in bzary codes.

The second trend s e application of ANMN's to sgaal recogrition problems, espe-
rially speech Immage recoznition and visien |4, 30 16 Blosh supervised pod unsapar-
vised learning lechniques sueh as backpropagation and tompetitive learaing bave been
used for this parpose

tures. lax ¢ L=tier general

These are twz

£

In this chapter, we wiil discuss & number of special and imporiant topics in Lhe
icteractizn belwere ANN'S and signal/image processing funderstanding problems zad
metlhodologies. See. 8 will cover Tlapfeld-like seural neiworks, relaled signal represes-
tations, amaleg implementzticos and mappiag of inverse probiems, whkich often oocor in
sigual processicg as well zs aliied felds, to Hopficld-like peura! neiworks, Sec 3
izcusses special msues of newral nefworks based on the delta rule, such as autoassocia
{ive end hetercassociative memory, and delta rule for fnding projection ecefficients.
See. 4 doscrives the imteraction bebween fast transforms and pewsral setworks; the topics
ef learning of fast tracelorms and spectral-demain aeesal computing, ooakoear
matched-filter-based peural networks, hierasehical rewral petworks icvolving noslinesr
spectral processing and a oumber of spplicatioas sre Ciscussed in detail, Section 5 s
ilie conchisinns.

?. HOPFIELD-LIKE NEURAL NETWORKS

A Hoplebl-like peuzal network {ITNN] will B defned as a nelwosk with n state
vecior N azd {ae Bsllowiag propeeties:
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