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1. Introduction 

With the appearance of low-cost commercial large vocabulary dictation software for personal 
computers, speech recognition has truly come of age. Spoken language applications are 
transferred ever more rapidly into practical use and are beginning to affect our everyday lives. 
With these successes it is all too natural that there is a growing interest in expanding the reach of 
speech and language systems to international markets and bringing these technologies to 
consumers worldwide. 
 
Unfortunately, such expansion is still associated with considerable effort. Modern speech and 
language systems increasingly employ automatic learning algorithms. While these algorithms 
reduce the painstaking development work, they do require large data resources such as texts, 
voice recordings, pronunciation lexicons, morphological decomposition information, and parsers. 
At present, adequate language resources have only been accumulated for a relatively small 
number of languages, particularly the more dominant languages of the world.  
 
In the following sections, we will first discuss differences between languages and the resulting 
challenges for speech recognition.  We introduce approaches to efficiently deal with the 
enormous task of even covering a small percentage of the word’s languages by building speech 
recognition systems for multiple languages through model combination, bootstrapping, and 
adaptation techniques. Foreign accents, which present their very own challenge to speech 
recognition engines for all languages, are covered in section 3. Then, we will present an approach 
that allows speech recognition with virtually unlimited dictionary sizes, which is important for 
languages that are highly inflected or allow the generation of long compound nouns. The 
challenges of multilingual speech translation will be reviewed in the final section and conclude 
our overview of Multilinguality in Speech and Spoken Language systems. 
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2. Language Differences 
In this section, we will highlight some of the differences between languages and the resulting 
challenges for speech recognition. Language differences that affect meaning, interpretation, and 
reference and the problems they present for speech understanding applications will be addressed 
in a section about Multilingual Speech Translation. 
 
2.1 Scripts and Fonts 
Many different character types are used in the world's languages (see figure 1). Writing systems 
fall into two major categories: ideographic and the phonologic. In ideographic scripts, the 
characters reflect the meaning rather than the pronunciation of a word. Examples for ideographic 
scripts are the Chinese Hanzi and the Japanese Kanji. Phonological scripts can be further divided 
into syllable-based scripts, like Japanese Kana or Korean Hangul, and alphabetic scripts which 
are used for most Indo-European languages, such as Greek script for Greek, or Latin script for 
English and German. In syllable-based scripts each grapheme reflects one syllable, whereas in 
alphabetic scripts graphemes correspond roughly to one phoneme. 
 
Phonologic scripts are often easier to handle than ideographic scripts in the speech recognition 
framework, as in many cases rule-based grapheme-to-phoneme tools can be used to generate the 
pronunciation dictionary needed to guide recognition, while this is usually not possible for 
ideographic scripts. However, among the languages using alphabetic scripts, the grapheme-to-
phoneme relationship varies considerably. It ranges from a nearly one-to-one relationship such as 
for Slavic languages like Russian and Serbian as well as some Romance languages like Spanish, 
up to languages like English and Gaelic that require complex rules and have many exceptions. 
Furthermore, in some languages the written script reflects only a part of the spoken phonemes. In 
Arabic, for example, only consonants are written out; vowels have to be filled in by scanning the 
context and understanding the meaning. 

Figure 1: Scripts for languages: Arabic, Bulgarian, Catalan, Chinese, Croatian, Czech, English, 
Greek, Hebrew, Hindi, Italien, Japanese, Korean, Rumanian, Russian, Serbian, Thai 

 
Usually, alphabetic scripts do not have more than 30 different characters. In this case, 8-bit 
character codes are sufficient to store all characters of this script. For ideographic scripts, 
however, 16-bit codes are required, since thousands of unique characters occur in written text, as 
in Chinese Hanzi and Japanese Kanji. For these languages multi-byte characters have to be used. 
Another issue, especially in case of multilingual text processing, is the direction in which text is 
written. Languages like Arabic are written from the right to the left, Indo-European languages are 
written from left to right, and for some languages the preferred direction is top to bottom. 
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2.2 Segmentation  

English has a natural segmentation into words that can conveniently be used as dictionary units 
for speech recognition. The words are long enough to differ from each other in a sufficient 
number of phonemes, but short enough to be able to cover most material with a reasonable 
number of different word forms that occur frequently. This is important for the statistical analysis 
required by the automatic learning processes that modern speech recognition systems rely on. But 
other languages lack an adequate segmentation. In Japanese and Chinese, whole sentences are 
written in strings of characters without any spacing. In order to determine appropriate dictionary 
units, the transcribed speech data has to be segmented manually or by morphological analysis 
programs. Another group of languages, including Turkish and Korean, does have some 
segmentation within a sentence, but their morphology provides for agglutination and suffixing. 
The inflection, derivation, and other relationships between words in a sentence are expressed by 
concatenating multiple suffixes to the word stem. This results in rapid growth of the number of 
word-forms occurring in a given text.  As a consequence, poor recognition results are achieved 
when using a certain set of word-forms as dictionary entries for speech recognition, and many 
new word forms are encountered in unseen speech material.  The following example illustrates 
the morphological structure of the Turkish language (hyphens have been added to mark 
morphology. see [OGB94]). 

 
2.3 Morphology 

For agglutinative and highly inflected languages, splitting up the words into several morphemes 
provides a first solution to curb the rapid vocabulary growth and reduce the Out-of-Vocabulary 
rate (OOV) for speech recognition. This, however, reduces the effective reach of the language 
model, which can partly be counteracted by using higher-order n-gram language models. In 
general, a lower OOV-rate does not always reflect a better recognition performance, since the 
smaller units also suffer from a higher acoustic confusability.  
 
Another possibility to reduce the OOV-rate is to allow a virtually unlimited recognition 
dictionary. This technique will be discussed in detail in section 4. 
 
2.4 Prosodic Structure 

Across the world's languages, the prosodic structure of words varies considerably [Cut97]. More 
than half of all languages belong to the group of tonal languages, in which the lexical items are 
distinguished by contrasts in pitch contour or pitch level on a single syllable. Simple tonal 
systems have only two different classes (high versus low pitch level), others have four our five 
tones like Mandarin Chinese and Thai, or even more, like Cantonese, with 6 tones.  
 

Turkish: Osman-l•-laç-t•r-ama-yabil-ecek-ler-imiz-den-mi•-siniz 
 
English: behaving as if you were of those whom we might consider not converting into 
Ottoman. 
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The tone variations can affect either the semantics of a word, or its grammatical function. 
Mandarin is an example of a language in which tone changes the meaning. In the East-African 
language Twi, for example, tone variations are used to signal variations in tense (grammar). 
 
In pitch accent languages like Japanese, pitch contrasts are drawn not between syllables but 
between polysyllabic words. In stress languages individual syllables in a polysyllabic word are 
stressed. In fixed stress languages the stress pattern always occur in the same position within a 
word, like in the Czech and the Finnish languages, where the first syllable is always stressed, or 
in Turkish, where it is the last syllable within a word. Fixed stress languages are easier to model 
than lexical stress languages like English and German, where the stress position varies across 
words. 
 
 
3. Multilingual Speech Recognition  
Multilingual speech recognition is required for tasks that use several languages in one speech 
recognition application. A very basic approach is to integrate several monolingual recognizers 
with a front end for language identification. Since storage requirements put a limit on this 
approach, we propose to combine individual recognizers into one multilingual engine, which can 
handle several different languages at a time. This concept requires a combined acoustic model 
that represents the sounds of all the languages involved. In this section we present several 
approaches that we developed in the framework of the multilingual speech recognition project 
GlobalPhone. 
 
3.1 Portability 
A number of recognition systems developed initially for one language have been successfully 
extended to several languages, including systems developed by IBM [CDG97], Dragon 
[BCG96], Philips [DAK95], LIMSI [LAG95], CMU [OAM92], Karlsruhe [SW98], MIT 
[GFG95] and many more. The extension of English systems to such varied languages as German, 
French, Italian, Spanish, Dutch, Greek, and Mandarin Chinese illustrates that speech technology 
generalizes across languages, provided large transcribed speech databases are available. Results 
show that similar modeling assumptions hold for most languages, but there are some exceptions 
due to language differences highlighted above.  
  
In general, however, the assumption that large speech databases are available for a given 
language does not hold for several reasons. About 400 of the world’s languages are spoken by at 
least 100,000 native speakers. Which of these languages are of interest for speech recognition 
applications can change very quickly with the political and economic situation. Since the 
collection of large databases requires a significant amount of time and considerable resources, it 
is difficult to provide databases on demand and impractical and wasteful to preemptively try to 
collect them for all languages. Finally, for combinatorial reasons, it is not possible to collect 
enough large databases to solve the problem of non-native speech recognition. As a result, our 
research must focus on the most effective and parsimonious ways to adapt existing recognition 
engines to new tasks and new languages with only very limited data. 
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3.2 Speech Recognition in multiple languages 
The multilingual speech recognition project GlobalPhone at the Interactive Systems Labs 
[SW97, SW98a-c, SW99] investigates large vocabulary continuous speech recognition (LVCSR) 
systems in many languages.  Data used for our investigations currently consists of read speech 
data for the languages Arabic, Chinese (Mandarin and Shanghai dialects), Croatian, Czech, 
English, French, German, Italian, Japanese, Korean, Portuguese, Russian, Spanish, Swedish, 
Tamil, and Turkish. Put together with the English WSJ and French BREF databases, this covers 
9 of the 12 most widespread languages of the world. In each of the languages about 15 hours of 
read speech was collected, spoken by 100 native speakers per language [SW98c]. 
  
Based on this data, we developed monolingual LVCSR systems in ten languages using the Janus 
Recognition Toolkit described below.  For each language, the acoustic model of the baseline 
recognizer consists of a fully continuous 3-state HMM system with 3000 triphone models. A 
mixture of 32 Gaussians models each HMM-state. The preprocessing is based on 13 Mel-scale 
cepstral coefficients with first and second order derivatives, power, and zero crossing rates. After 
cepstral mean subtraction a linear discriminate analysis reduces the input vector to 32 
dimensions. 
 
In table 1 we present the word error rates (ER), vocabulary sizes (vocab) and trigram perplexities 
(PP) for the ten monolingual recognizers. Though the core engines are the same across 
languages, differences in the recognition performance are not only due to inherent language-
specific difficulties.  They strongly depend on differences in quality and quantity of the data used, 
and on the expertise of the language experts.  Moreover, the concept of a word is difficult to 
define for some languages (Chinese, Japanese, and Korean) as discussed above, making the 
comparison of word error rates awkward.  In our opinion it is therefore misleading to infer 
language difficulties from the given word error rates. 
 
In order to give a more reliable measure of the acoustic difficulties of the ten languages, table 1 
presents the phoneme error rates, based on a phoneme recognizer without any phonotactic 
constraints. The results indicate significant differences in acoustic confusability between 
languages, ranging from 33.8% to 46.4% phoneme error rate. The Japanese language seems to be 
one of the easier languages with respect to acoustic confusability. This can be explained by its 
mora structure, and the resulting low phoneme trigram perplexity. Among the „easier“ languages 
we also find French, Korean, and Croatian. The low phoneme error rate for French stems from 
the frequent usage of a set of mono-phonemic words that correspond to the same phoneme.  For 
example, the phoneme /¡/ can stand for ai, aie, aies, ait, aient, hais, hait, haie, haies, es, or est 
[LAG95].  It is important to note, however, that precisely this property also increases word error 
rate, as all these words become indistinguishable on acoustic grounds.  The good phone 
recognition results for the Croatian language reflect the near one-to-one relationship between 
graphemes and phonemes.  In contrast to that, English seems to be the most difficult task, which 
is a result of the well-known weak grapheme to phoneme relation, as well as reductions and 
strong allophonic variations. Other „hard“ tasks are the Mandarin language, German, and 
Turkish.  The Mandarin phoneme accuracy in this experiment is low because we chose a  tone-
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dependent phoneme set with 141 rather than 48 phonemes.  For German, frequent consonant 
clusters result in higher confusion rates.  Overall, however, one should treat comparisons across 
languages cautiously as individual results also depend considerably on the condition and 
availability of appropriate training data and on the general maturity of development in any given 
language’s recognizer. 
 

Language Word- based Phoneme-based 
 ER Vocab PP ER Vocab PP 
Ch-Mandarin 14.5 45K 207 45.2 137 12.5 
Croatian 20.0 15K 280 36.7 30 9.6 
English 14.0 64K 150 46.4 43 9.2 
French 18.0 30K 240 36.1 38 12.1 
German 11.8 61K 200 44.5 43 9.0 
Japanese 10.0 22K 230 33.8 31 7.9 
Korean 14.5 64K 137 36.1 41 9.9 
Portuguese 19.0 25K 297 46.8 46  
Spanish 20.0 15K 245 43.5 40 8.2 
Turkish 16.9 15K 280 44.1 29 8.5 

 
Table 1: LVCSR Systems in 10 different languages1 

 
3.3 Acoustic Model Combination 

For the integration of monolingual speech recognizers into one global multilingual engine we 
propose the combination of acoustic models.  Here we share acoustic models for similar sounds 
across languages. Those similarities can be either derived from international phonemic 
inventories like Sampa or IPA, which classify sounds based on phonetic knowledge, by data-
driven methods, or by a combination of both. For this paper, we investigated a combined 
procedure for multilingual context-dependent acoustic modeling. Based on the phonemic 
inventory of several monolingual systems, we can define a combined phoneme set. Sounds of 
different languages that are represented by the same IPA symbol share one phonetic unit. 
Combining 5 languages in this manner reduces the size of the phoneme inventory by 41%; nine 
languages yield a reduction of about 50%.  Half of the phonetic units consist of phonemes only 
belonging to one language.  
 
For monolingual systems, modeling wider contexts has been shown to increase recognition 
performance significantly. Extending context dependent models to a multilingual setting requires 
algorithms that can automatically construct them. In a multilingual system, we build context 
dependent models by initially assigning one model to each phonetic unit and training this model 
by sharing the data of all languages belonging to this phonetic unit. We then use a divisive 
clustering algorithm that creates context querying decision trees. As selection criterion for 
dividing a cluster into sub-clusters, we use the maximum entropy gain on the mixture weight 

                         
1 Word-based error rates for Mandarin and Korean are given in characters, for Japanese in hiragana 
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distributions.  This clustering approach provided significant improvements across different tasks 
and languages [FR97]. 
 
We investigated two variations on building the decision trees: Either all training data is shared 
without using language information or the information about which language the data belongs to 
is provided to the algorithm. In the latter case, adding questions about the language or language 
group to which a phoneme belongs enhances the set of context questions for the decision tree 
clustering. The decision of whether language information should be included with the phonetic 
context information is therefore performed on a case-by-case basis and depends only on the 
training data.  
 
When recognizing data from a language that is part of the training set, our results show that 
acoustic model combination achieves better results if the language information is preserved. This 
observation is consistent with results from other studies [CDG97], [Koe98].  However, blind data 
shared models perform better if the recognition experiments are performed on languages that are 
not in the training set, which can be explained by an augmented language robustness achieved 
through sharing all information across languages. 
 
 
3.4 Language Adaptation 
Currently, one of the major time and cost factors for developing LVCSR systems for new 
languages is the need for large amounts of transcribed audio data for training accurate acoustic 
models. To accommodate potential variations in the amount of training data available for the 
target language, we address three topics of research: 
 
 - Cross-language transfer  no data 
 - Language adaptation  very limited data 
 - Bootstrapping  large amounts of data 
 
The term cross-language transfer refers to the technique of using a recognition system from on 
language on a new language without having ever seen any training data in the new language. 
Research in this area investigates whether cross-language transfer between two languages of the 
same family performs better than across family borders [CC97], and whether the number of 
languages used for training the original acoustic transfer models influences the performance on 
the target language [GG97], [SW98b]. Results indicate a relation between language similarity 
and cross-language performance [CC97], [BKI97]. Furthermore our own work as well as of 
others [BKI97] have clearly shown that multilingual transfer models outperform monolingual 
ones [SW98a]. 
 
In a language adaptation technique, an existing recognizer is adapted to the new target language 
using very limited training data. Ongoing research ([WKA94], [Koe98], [SW98c]) concentrates 
on two issues: first, the amount of adaptation data needed to get reasonable results, and second, 
finding suitable initial acoustic models . As expected, language adaptation performance is 
strongly related to the amount of data used for adaptation. The results in [WKA94] demonstrate 
that the number of different speakers used for training is more critical than the number of 
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utterances. In [SW98c] we investigated the issue of finding suitable initial models, comparing the 
effectiveness of multilingual acoustic models to monolingual models. Again, it could be shown 
in our own work (and confirmed by [Koe98]) that multilingual models outperform monolingual 
ones [SW98c]. 
 
The key idea in a bootstrapping approach is to initialize the acoustic models of the target 
language recognizer by using seed models that have previously been developed for other 
languages.  After this initialization step, the resulting system is completely rebuilt using large 
amounts of training data from the target language.  We have applied this approach in [OAM92] 
to bootstrap a German recognizer from English. Work by [GFG95] and [WKA94] confirms that 
cross-language seed models perform better than flat starts or random models.  In more recent 
work, we could demonstrated the advantages of multilingual phonemic inventories and 
multilingual phoneme models as seed models [SW97]. 
 
We exploited the LVCSR performance of multilingual acoustic model combination by porting a 
multi-lingual recognition engine to new target languages comparing cross-language transfer, 
language adaptation, and bootstrapping.  Our results indicate that language adaptation clearly 
outperforms bootstrapping and cross-language transfer. Bootstrapping performs better than cross-
language transfer, even if only a very small amount of training data (about 10 minutes) is 
available.  
 
Assuming that only a small amount of adaptation data is given, the performance on a new target 
language is mainly impaired by a considerable mismatch between the models built to match 
phoneme contexts observed during training on multiple languages and the actual phoneme 
contexts occurring in the new target language.  Therefore, the high gain in performance achieved 
by language adaptation results from the specialization of these wide context models to the new 
target language [SW99]. Our results emphasize the importance of even a small amount of data 
for acoustic model adaptation and context specialization. 
 
 
4. Non-native Speech in Multilingual Systems  

Though multilingual systems handling a number of major languages broaden the reach of speech 
recognition technology to consumers around the world, it is to be expected that many users are 
not native speakers of the input language they have chosen to use.  Not all languages can be 
covered by a multilingual system, so speakers of unavailable languages would need to use a 
second language.  Even if the native language of a speaker is available as input language, he/she 
may prefer or need to use a second language. This can be the case for professionals in specialized 
fields who are not accustomed to using their native language at work, or for users who simply 
wish to use more than one language.  Non-native speech is encountered in travel and business 
situations, for travelers and visitors to foreign countries, or in business or technical collaboration 
across national boundaries.  Last not least, the recognition of non-native speech is required for 
educational applications like language tutoring.  
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Non-native spoken input can be a major challenge for speech recognition. Pronunciation, 
disfluencies, lexical choice, use of filler words, syntactic structure, and pragmatic goals can 
deviate considerably from the patterns that are found in native speech. 
 
In this section, we focus on the problem of foreign-accented speech, looking at both non-native 
pronunciation (phoneme realization typical of a specific speaker group) and pronunciation errors 
(phonotactic errors and other speech errors associated with the articulation of an unfamiliar 
phoneme sequence).  We then describe several approaches to acoustic modeling for non-native 
speech. Finally, we touch on the higher-level issues of word and structural choice, discussing the 
effects of non-native usage on language modeling and natural language understanding. 
 
 
4.1 Characteristics of foreign-accented speech 

Human listeners can adapt to accented speech.  Most native speakers of English living in the 
United States, for example, can understand Spanish-accented English without difficulty, perhaps 
subconsciously performing a phonemic mapping. Even young children are able to imitate foreign 
accents, showing an ability to detect and identify common phonemic substitutions present in 
accented speech. Since many of the features found in speech vary considerably between native 
speakers, it is difficult to identify a boundary beyond which such variations are perceived as 
foreign accent. What are some of the dimensions along which native and non-native 
pronunciation can be distinguished? 
 
4.1.1 Phoneme realization 

Since stress patterns and durations play only a minor role in most speech recognition systems, the 
most important difference between non-native pronunciation and native pronunciation is in 
phoneme realization. Phonemes in a language that is not native to the speaker (the target 
language) can be placed into one of two categories: phonemes for which there is an obvious 
counterpart in the speaker's native language (the source language), and phonemes for which there 
is not.  The perception that a source-language counterpart for a target-language phone exists is 
often based on acoustic similarity, but can also be influenced by orthography; a speaker may tend 
to substitute a phone that is quite dissimilar to the target phone acoustically but is represented by 
the same symbol in text.  
 
When there is an obvious counterpart in the speaker's native language, phoneme realization 
errors can sometimes be attributed to linguistic transfer, although many studies have indicated 
that this is the case less frequently than it may seem (see [Bee80], e.g.).  Transfer effects in 
pronunciation can range from slight deviations in place or manner of articulation to exact 
substitution of a native language phone for a target language phone; in some cases, the speaker 
does not even perceive a difference between the source and target language phones.  Even when 
speakers of the same native language consistently substitute a specific source language phoneme 
for a specific target language phoneme, variation among those speakers' articulations of the 
source language phoneme can be significant, meaning that a seemingly straightforward mapping 
can be quite complex to model. Non- exact substitutions are even more difficult to model, as 
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individual speakers' realizations can fall anywhere between the source and target phone, and may 
exhibit features that are not present in either the source or target phone. 
 
When there is no obvious counterpart for a target phone in the source language, the speaker must 
approximate it as best he can. This can result in a realization that is unsystematic both within one 
speaker's speech and across speakers. 
 
4.1.2 Articulation of phonemes in context 

If the only deviation in the non-native speaker's pronunciation is in the realization of individual 
allophones, high-quality recognition can often be achieved with speaker adaptation [Sch97]. 
However, many non-native speakers differ from native speakers in the way phonemes are 
articulated in certain contexts.  Native speakers of German speaking English, for example, may 
tend to devoice consonants at the end of a word in places where a native English speaker would 
not. As many speakers are unaware of allophonic variation in their own native speech, generating 
the correct allophones in context in the target language can be very difficult. In a recognition 
system in which phonetic contexts have already been clustered  based on allophonic variations 
observed in native speech, codebook adaptation will not perform optimally as the contexts cannot 
be adapted separately. 
  
4.1.3 Phonotactic constraints  

A third source of errors in target language production lies in the phonotactic constraints of the 
source language. Different languages allow different sequences of phonemes, and attempts to 
pronounce phoneme sequences to which one is not accustomed can fail. Many of the phoneme 
combinations that appear in English are difficult for native speakers of other languages, and 
although it is possible to learn to pronounce them, it is common to make use of other strategies. 
Insertion of vowels (known as epenthesis) is one way to make a consonant clusters easier to 
articulate; Japanese speakers may pronounce try [T OW R AY], which is very confusing for a 
native English listener. Epenthesis is not limited to cluster-internal position: source language 
constraints on consonants in word-initial or word-final position may cause speakers to insert 
vowels in those positions, as in the Japanese-accented [B AE G G U W] (bag) or Spanish-
accented [EH S K UW L]  (school). 
 
Even when a phoneme sequence is pronounceable, and is realized correctly in careful speech, the 
timing with which articulation of sequential phonemes is initiated, a largely subconscious 
process, can be incorrect and cause such phenomena as phoneme inversion in conversational 
speech. Words like the German ‘sprichst’, for example, can be problematic for English speakers, 
some of which tend to invert the final two consonants. 
 
 
4.2 Acoustic modeling for non-native speech  

One way to increase the robustness of a recognition system with respect to foreign accent is to 
develop accent-specific or accent-tolerant acoustic models. The former may be desirable when 
the source-target language pair is known and sufficient training data is available. The latter may 
be more appropriate when the system must handle a variety of different foreign accents. 
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4.2.1 Non-native models  

If the source-target language pair is fixed, and enough non-native training data is available, 
models representing non-native pronunciation can be explicitly trained. This approach is most 
appropriate for a system designed to accurately recognize the speech of a specific non-native 
speaker group. This is essentially a bootstrapping approach, and brings with it the advantages 
(accuracy) and disadvantages (data requirements) discussed in section 2.2. 
 
4.2.2 Bilingual models  

An alternate way to allow pronunciation that is typical of a particular non-native speaker group is 
to include models from both the source and target languages in the acoustic model set. If the 
speaker's articulation of an /r/, for example, is much closer to a phoneme in the source language 
than the intended target phone, allowing the system to recognize the source phone may result in 
improved overall accuracy. With a bilingual acoustic model set, two sets of models are trained 
separately on different data.  Target-language models can be taken from an existing target-
language system.  Source-language acoustic models can be taken from an existing source-
language system, as in [Kaw99], or can be trained with data from heavily accented speakers, as in 
[RNF97]. Criteria must then be defined for allowing transitions between target and source 
language models, and ensuring that model sets are compatible. 
 
4.2.3 Model merging 

When source and target language models from compatible systems are available, it has been 
observed that "merging" the models can significantly improve recognition of non-native speech 
[WY99]. Witt and Young have reported that by combining Gaussian mixtures from 
corresponding source and target language models into a new model with twice as many mixture 
components, an increase in performance can be achieved that is greater than that given by 
creating new models composed of linear combinations of source and target model components. 
 
4.2.4 Dictionary modification  

A straightforward way to allow for non-native errors is to include common phonemic 
substitutions in the pronunciation dictionary. This approach can be implemented in off-the-shelf 
recognition packages, which may not be otherwise easily modified. Auberg et al. report success 
in modifying the IBM ViaVoice system to create an application which teaches users to 
discriminate, identify, and produce sounds that are recognized as being problematic for Japanese 
learners of English [Aub98]. Dictionary modification can also be used to model systematic 
phonemic shifts among speakers of different varieties  of the same language, as discussed in 
[HW98]. This strategy can be used when no acoustic training material for the source language is 
available but basic pronunciation mappings can be derived. 
 
4.3 Beyond accent: addressing non-native usage  

Although modeling non-native pronunciation in the acoustic model can help to increase 
recognition accuracy on non-native speech, idiosyncrasies in non-native speech do not stop with 
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pronunciation; non-native usage at the lexical and phrasal levels will need to be modeled to 
achieve accurate recognition of non-native speech. In this section we report on a series of 
experiments comparing linguistic features of native and non-native spontaneous and read speech. 
 
4.3.1 Perplexity and frequent trigrams  

Although it is difficult to make a judgement about grammaticality non-native conversational 
speech (even native conversational speech is often ungrammatical), measuring the perplexity and 
common phrases of a transcribed spoken corpus can help to quantify the ways in which non-
native speech is unique. For a test corpus of tourist queries posed in English by native speakers 
of English, Japanese, and Chinese2, the trigram perplexities for the two non-native speaker 
groups were significantly lower than those for the native speakers. The trigram hit rates were 
similar, but the set of most frequently used trigrams was quite different, suggesting that while 
non-native speakers are using phrases that are indeed common in native speech, they are not the 
ones the native speakers would use in a particular semantic and pragmatic context. This has 
implications not only for language modeling but also for parsing and translation, for which query 
formats favored by non- native speakers will need to be represented. 
 
Speaker group Perplexity Trigram hit rate Common trigrams 
Japanese 66.5 55.8 can i get, do you know 
Chinese 74.4 52.9 the name of, can i go 
English 102.6 48.6 i need to, you tell me 

 
 
4.3.2 Disfluencies in spontaneous speech  

It has been observed that native speech contains many instances of abandoned words, stutters, 
restarts, filler words, and other disfluencies, some of which occur systematically enough to 
warrant incorporation in the language model ([SS96], e.g.). Disfluencies often occur when the 
speaker is searching for the right word or expression, or is pronouncing a word that is difficult to 
articulate. In our study, such situations arose more often for the non-native speakers than for the 
native speakers, and examination of their disfluencies showed a high incidence of both 
incomplete words and filler words, although much more so for the Japanese than the Chinese 
speakers. 
 
 
 % of stumbles3        % of filler words 
Speaker group spontaneous Read spontaneous read 
Japanese 1.46 2.48 4.37 0.25 
Chinese 0.83 1.31 1.46 1.31 
                         
2 Non-native speakers tested at the novice-to-intermediate level; all had studied English for more than 8 years, but 
had been in an English-speaking environment for less than one year. The database is discussed in greater detail in 
[MB99]. 
3 A stumble is a completed fragment, usually due to difficulty in articulation or visual decoding (...many env= 
environ= environmentalists oppose the law...)  as opposed to an abandoned fragment (...many env= many researchers 
oppose the law...) 
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5. 5. Dynamic Lexical Adaptation 
The quality of a speech recognizer is heavily influenced by the correspondence of the recognition 
dictionary used and the actual vocabulary of the utterances to be recognized. If a high percentage 
of the words to be recognized is not included in the dictionary, a large number of misrecognitions 
is triggered. This especially applies to open domains like dictation systems or the automatic  
transcription of broadcast news where the recognition dictionary cannot be constrained to a 
predefined vocabulary. Instead, an unlimited vocabulary is required. If the language to be 
recognized has a large number of inflections and composita, like German, Serbo-Croatian and 
Turkish, for example, the vocabulary grows even faster and the problem of new and unknown or 
out-of-vocabulary words worsens. 
 
This section first introduces some morphological properties of  languages and also possible 
solutions to the problem of out-of-vocabulary words. Finally, we introduce methods to improve 
the reliability and performance of speech recognition systems for continuous speech on large 
vocabularies by overcoming the limitation of the recognition dictionary to a certain size N. Even 
though the recognition vocabulary is still finite, the  methods presented here allow for a virtually 
much larger vocabulary by dynamically adapting the dictionary to the speech data at hand 
[Geu99a]. Based on the idea of vocabulary adaptation, a multipass strategy called Hypothesis 
Driven Lexical Adaptation (HDLA) is developed and results on Serbo-Croatian, German and 
Turkish broadcast news data are presented [Geu98a]. 
 
 
5.1 Morphological Properties of Languages  
As described in section 1.1, two major groups of languages can be distinguished when comparing 
their morphological properties: languages like English that show an exceptionally simple 
morphological structure, and morphologically rich languages like German, Serbo-Croatian and 
Turkish. Whereas English only has a small variety of different inflection endings both for verbs 
and nouns, highly inflected languages have a very large number of distinct verb conjugations and 
noun declinations. Taking the German word "kommen" ("to come") as an example, the difference 
between the two language groups becomes clear: whereas in English the present-tense 
conjugation of this verb consists of just two distinct endings, the number is twice as large for 
German where there exists a different ending for almost every person in the singular and the 
plural. Table 4.1 illustrates the differences between German and English for this example. 
 
 

German English 
Ich komm-e I Come 
Du komm-st you  (sg.) Come 
er/sie/es komm-t he/she/it come-s 
Wir komm-en We Come 
Ihr komm-t you  (pl.) Come 
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Sie komm-en they Come 
Table 5.1   Examples of inflection endings for German verbs. 

Additionally, the German language has an uncountable number of compound words. Formation 
of these composita is not only possible for nouns but also for verbs. Several prefixes can be 
attached to every verb, each time creating a new word. The same applies to noun composita. 
Nouns can be concatenated to long noun chains, every chain creating a word with a new 
meaning. Naturally, these characteristics of morphologically rich languages lead to a much faster 
vocabulary growth over the same amount of training data than morphologically simple languages 
like English. Figure 4 shows a comparison of the vocabulary growth for Chinese, Serbo-Croatian, 
Japanese, Portuguese, Russian, Spanish, Turkish, German and English on broadcast news 
transcripts and newspaper articles.  

 
Figure 2: Vocabulary Growth for several languages 

 
A consequence of a very fast vocabulary growth is the resulting large out-of-vocabulary rate for a 
given dictionary size. For a task like broadcast news, the out-of-vocabulary rate for English using 
a dictionary with 60,000 words is less than 1%. Much higher rates are encountered for languages 
like German, Serbo-Croatian or Turkish: a broadcast news recognizer for the Serbo-Croatian 
language with a comparable dictionary size shows an out-of-vocabulary rate of about 8%. As 
each out-of-vocabulary word causes one or more recognition errors, high out-of-vocabulary rates 
significantly worsen recognition performance. 
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5.2 Approaches to the Out-Of-Vocabulary Problem 
One possibility to counteract both a fast vocabulary growth and high out-of-vocabulary rates is 
the usage of base units other than words for the recognition process. To this end, syllable-based 
as well as morpheme-based decompositions of words have been used as recognition units. 
Instead of a dictionary of words the underlying recognition lexicon consists of subword units. 
The coverage of such a dictionary by subword units is significantly better than the coverage of a 
dictionary of the same size comprised of conventional words.  However, recognizers built on top 
of these units suffer a severe degradation in the performance measured at the word level, because 
many now hypothesized morpheme sequences do not map to legal words.  To make matters 
worse, short morphemes (suffices, prefixes) are also more confusable than long words.  As an 
alternative approach, the idea of a dynamic expansion of the recognition dictionary has been 
investigated. Words are still considered as the dictionary units for recognition. But instead of 
having a static dictionary of those words, a dynamic dictionary is introduced which has the same 
fixed size as the static dictionary but is tailored on the fly to each utterance. Since the recognizer 
uses a different customized dictionary for every single utterance, the total size of the recognition 
dictionary is virtually unlimited. 
 
 
5.3 Dynamic Lexical Adaptation 
Hypothesis Driven Lexical Adaptation (HDLA) is a technique for dynamically adapting the 
dictionary of a speech recognizer [Geu98b].  It still treats the size of a dictionary as finite, but 
allows for a larger number of ‘virtual’ words to be recognized. This is done by abandoning the 
notion of a fixed static dictionary.  Instead, we exchange vocabulary entries from the recognition 
dictionary, dynamically, depending on the actual speech input.  A two-pass recognition procedure 
is the basis for this vocabulary adaptation strategy. The first pass provides the necessary 
information needed to exchange the vocabulary entries of a general baseline dictionary by words 
similar to the actually uttered or hypothesized words. The second performs another recognition 
run on the adapted vocabulary that has a lower out-of-vocabulary rate, resulting in a lower word 
error rate. The dictionary used for both recognition runs has a fixed size, but the individual 
vocabulary entries are exchanged. Through this approach the lexicon is adapted to the actual 
speech utterance and an optimal vocabulary is created for each recognition subtask. 
Simultaneously, any size limitations of the dictionary imposed by implementational issues or 
computing resources are overcome and speech recognition on a virtually unlimited vocabulary is 
possible. 
 For the selection of the vocabulary entries incorporated into the recognition dictionary for the 
second recognition run, knowledge about morphological and phonetic affinity of actually uttered 
and hypothesized words is incorporated into the adaptation procedure. The expectation is that a 
dynamically adapted recognition dictionary, constituting an utterance-specific vocabulary for the 
speech segment to be recognized, reduces the number of out-of-vocabulary words and thereby 
improves recognition performance. Especially when transcribing broadcast news, this should 
keep the out-of-vocabulary rate limited and thus improve the word error rate. 
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5.3.1 The HDLA Algorithm  

The algorithm below describes the steps of the Hypothesis Driven Lexical Adaptation (HDLA):  
1. A first recognition run on a general domain-specific recognition dictionary generates word 

lattices and an utterance-specific vocabulary list.  
2. This vocabulary list is then used to look up all similar words in a large background lexicon 

that contains words from large available text corpora.  
3. All similar words are then incorporated into the original recognition vocabulary by replacing 

the least relevant words that did not show up in the lattice, so that the dictionary size of the 
recognizer does not change.  

4. In an automatic procedure a new dictionary and language model are created and used to 
perform a second recognition run. 

 

Figure 3: The HDLA framework 
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Figure 3 illustrates HDLA applied to German broadcast news.  Applied to Serbo-Croatian and 
German broadcast news data it yields significant improvements both in out-of-vocabulary and in 
word error rate. 
 
5.3.2 Different Selection Criteria 

Various criteria for selecting entries for the adapted vocabulary can be applied [Geu99b].  Figure 
4 summarizes the ideas and methods that have been used to generate customized dictionaries:  
 
1. Selection from large dictionaries based on morphological similarity::    

For the morphology-based approach, two words are considered similar if they share the same 
word stem and only differ in their inflections (morphological similarity).  Similarity is 
determined linguistically by morphemic rules. 
 

2. Selection from large dictionaries based on orthographic of phonetic similarity:      
To estimate phonetic similarity, we introduced various distance measures that are either 
based on the letter sequence of words (grapheme-based) or their phoneme sequence 
(phoneme-based) [Geu98c]. For the phoneme-based approach three different methods of 
calculating the phonetic distance were used: the equality of two phonemes, the Hamming 
distance with respect to a binary vector of acoustic features, or the acoustic confusability of 
phonemes. In this approach, compounds can also be taken into consideration when 
determining word distances. 
 

3. Creation of artificial large dictionaries and selection based on phonetic similarity: 
If no large database is available for a given task or language, language-specific morphological 
rules for generating inflections can be applied to create an artificial fallback lexicon.  We 
then compute the phonetic distance between its entries and the entries of the vocabulary list 
from the first recognition run. Candidates beneath a certain threshold are included in the 
adapted dictionary. 
 

4. World-Wide-Web-Based Retrieval for dictionary creation:         
Last not least, information retrieval on the World-Wide-Web has been applied to retrieve 
texts that are similar to the hypothesized output in order to create suitable customized 
dictionaries. Two approaches have been evaluated: the first employs a search engine to 
retrieve similar texts; the second uses the topicality of a news show to retrieve similar texts. 

 
Based on these methods, we have implemented several algorithms to select the customized 
vocabulary for the second recognition. 
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Figure 4: Selection Criteria 

 
5.3.3 Results  

Depending on the special characteristics of a language to which HDLA is applied, different 
procedures lead to optimal performance.  Table 5.2 summarizes the results achieved by applying 
the HDLA- algorithm to Serbo-Croatian, German, and Turkish recognition.  Note that the aim of 
these experiments is to establish relative improvements.  Absolute error rates are higher than 
comparable systems in English in part due to the limited language resources available in these 
languages. 
 
 Serbo-Croatian German Turkish 
                                         OOV-Rates 
Baseline 8.7% 4.4% 14.9% 
Morphology-based 4.8% 2.9% 10.9% 
Grapheme-based 4.0% -- -- 
Equality 4.0% 3.1% -- 
Hamming distance 5.4% -- -- 
Acoustic confusability 4.4% -- -- 
Phoneme-based (Composita) -- 2.1% -- 
Artificially created fallback lexicon 5.8% -- -- 
Information retrieval based -- 3.2% -- 
Topicality-based -- 1.9% -- 

 
 

Table 5.2  OOV-rates for Serbo-Croatian, German, and Turkish data 
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The recognition experiments for both Serbo-Croatian and German show that the reduction in out-
of-vocabulary rate leads to significant reduction in word error rate. Applying the HDLA 
procedure to Serbo-Croatian broadcast news, the percentage of new words decreases from 
originally 8.7% to 4.0%.  This results in a reduction in word error rate from 29.5% to 25.4%.  
 
 Vocabulary Size OOV-Rate Word Error 
Baseline 49,000 8.7 % 29.5 % 
Morphology-based HDLA 49,000 4.8 % 26.0 % 
Phoneme-based HDLA 49,000 4.0 % 25.4 % 

 
Table 5.3 Serbo-Croatian recognition results based on adapted vocabularies 

 
 For German, a 57% reduction in the number of unknown words from 4.4% to 1.9% can be 
achieved. The baseline recognition result of 24.7% word error rate can be improved to 23.1%. 
 
 Vocabulary Size OOV-Rate Word Error 
Baseline 61,000 4.4 % 24.7 % 
Topicality-based HDLA 61,000 1.9 % 23.1 % 

 
Table 5.4 German recognition results based on adapted vocabularies 

 
5.4 HDLA Conclusion 
Speech recognition systems for conversational speech have to be able to handle very large 
vocabularies, as spontaneous speech input cannot be restricted to a predefined vocabulary or 
domain. Therefore, unforeseen words can always occur and cannot be included in a static 
recognition dictionary. Each of these out-of- vocabulary words will automatically lead to one or 
more recognition errors and thus worsens recognition performance significantly. As an indefinite 
expansion of the size of the actual recognition dictionary is not possible, other ways have to be 
found to reduce the out-of-vocabulary rate of a speech recognizer. The HDLA approach 
presented above is a successful method for this purpose. 
 
When looking at the resulting number of out-of-vocabulary words and recognition performance, 
it is interesting to see that different methods and selection criteria are better suited for different 
languages. While either grapheme or phoneme based distances turn out to be optimal for Serbo-
Croatian, German (excluding compounds) appears to improve optimally using a morphology-
based approach.  Errors due to compound nouns (common in German), by contrast, can be 
improved using a phoneme-distance based distance selection.  These results demonstrate that it is 
helpful to consider the special characteristics of a language when trying to find useful selection 
criteria for the lexical adaptation procedure. 
 
In our effort to control unmanageable vocabulary growth in heavily inflected languages, 
Hypothesis Driven Lexical Adaptation was shown to be an effective means for reducing the rate 
of out-of-vocabulary words.  Using a two-pass recognition strategy for German and Serbo-
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Croatian Broadcast News transcription, a significant reduction of up to 57% could be achieved in 
the out-of-vocabulary rate, resulting in word error rate reduction by up to 14%. 
 
 
6. Multi-lingual Speech Translation 

Perhaps the most challenging task for multi-lingual speech and language processing is the 
automatic translation of spontaneous speech.  Possible applications include international e-
commerce, help desks, mobile translation systems for travelers, automatic generation of 
television subtitles, and the translation of telephone conversations. 
 
In the following, we will highlight some of the challenges in speech translation, and review 
present current approaches and solutions.  A brief overview of the C-STAR speech translation 
consortium and the Janus speech translation system will also be given. 
 
6.1 Challenges 
Many of the known problems of bilingual text translation, such as dealing with lexical ambiguity, 
anaphora, and idiomatic expressions, occur also in multi-lingual speech translation.  A number of 
problems, however, are specific to the translation of spoken language and to the requirements of 
providing speech translation for multiple languages. 
 
6.1.1 Translating Spoken Language  

Many of the problems in automatic speech translation are introduced while transforming the 
input speech to tokens that can be used for translation4. The most obvious of these problems are 
recognition errors. Since dialogues usually contain spontaneously spoken utterances that are less 
well formed than those found in read speech, word error rates around 10 to 40% are still to be 
expected. This implies that there is at least one recognition error in every other utterance.   
Ignoring recognition errors, grammar coverage for the translation of completely correctly 
recognized utterances is typically between 70 and 90%.  If the speech translation process were 
approached as speech recognition with subsequent text translation, the errors introduced by the 
individual steps would accumulate to overall unacceptable end-to-end performance. 
 
Another set of difficulties is introduced by the fact that spoken language in dialogues differs 
considerably from written language. Ungrammatical utterances ("I mean would you?"), 
colloquial expressions, isolated fragments ("To Boston at ten.") and the lack of punctuation cause 
traditional text translation engines to fail. Since spoken utterances are less carefully planned, they 
can even be self-contradicting, as in the following example from our user studies:  
 

question: can you book a flight?           answer:   no, that's not a problem 
 

                         
4 Translating from a string that is similar to the orthographic transliteration of the speech is not the only option: it is 
also conceivable to run a translation engine on a recognized phoneme string. 
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Participants in a spoken dialogue are more likely to refer to common experience than an author 
who does not know his readers. This introduces additional levels of ambiguity. However, spoken 
dialogues contain many clues that are missing in written language, such as prosody, timing, and 
references to the current visual context. To efficiently translate speech, this information has to be 
integrated. 
 
Finally, the situations in which speech translation can be used impose constraints on the 
translation time and on the amount of data available for disambiguation: usually, an utterances by 
one speaker has to be translated before the other speaker's turn. Therefore, near real-time 
processing is important, and only data from earlier utterances can be used for disambiguation. If 
the setup allows no text output (telephone), the target language output has to be intelligible when 
spoken by a text-to-speech program (short sentences, prosodic hints). 
 
6.1.2 Translating Speech in multiple languages  

For multi-lingual speech recognition, a single multilingual engine (as described in section 2) or a 
set of monolingual recognizers can be used. For adding a new language to the system, the effort 
is limited to providing a recognizer for that language. For the translation phase, however, each 
language pair has to be considered. If any components in the translation system depend on both, 
source and target language, the effort for adding a new language increases with the number of 
languages already in the system. Later in this section, we will show that there is a tradeoff 
between the effort to add languages and the ease of expanding a system to new tasks. 
 
Due to the structural differences between language groups, appropriate analysis and generation 
algorithms differ between languages. The Japanese language, for instance, does not have blank 
spaces in the written form, which makes the definition of a dictionary unit for recognizer and 
parser difficult. The Japanese •••••••••••• (Heyawoyoyakushitainodesuga), is an unbroken 
string of characters approximately equivalent to "I would like to reserve a room, but…". Studies 
have suggested that rule-based (e.g. [Pal97]) and statistical (e.g. [MR98]) algorithms can be used 
to automatically extract units from unsegmented text that are appropriate for both, recognition 
and semantic parsing, but determining the segmentation which leads to optimal translation 
accuracy remains a challenge. The problem of base unit determination is not limited to languages 
without spaces in written text. Turkish and Korean, as described in section 1.1, are agglutinative 
and must be segmented further than they are in their written form for speech recognition and 
translation. Some languages, for example Spanish, are written with relatively short words but 
require extensive morphological analysis. For other languages, such as English, the few inflected 
forms can be enumerated in the analysis grammar. For target language generation, languages with 
extensive agreement requirements (Spanish, German) require additional attention over languages 
where cases requiring agreement are rare. 
 
Another problematic aspect of dealing with multiple languages lies in the cultural differences. In 
some languages for instance, it is considered impolite to say ‘no’, and native speakers will rather 
say things such as ‘that may be difficult’ or just switch the topic. In a machine-interpreted dialog, 
the implication may not be clear to the English speaker unless the system finds a way to point it 
out. In the other direction, translating a flat ‘no’ into Japanese may be considered as very 
impolite. Other cultural differences include task- and language-dependent expressions. The 
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‘queen sized bed’, while ubiquitous in American hotels, is a concept that does not exist in 
Germany and France, where beds come in the equivalent of twin and king-size only. In Germany, 
there is a room-rate called ‘Halbpension’, which includes breakfast and dinner, but there is no 
adequate equivalent in English. In such cases a translation system may have to insert brief 
explanatory sentences in order to be understood. 
 
Many ambiguities that exist on a semantic level are not perceived as such by the speaker of the 
source language, but the missing disambiguation information can cause trouble when generating 
a target language that requires it. One example for this are numbers in Japanese. Consider 
translating the one-word utterance ‘two’ into Japanese: two as in 'two long objects' is "ni-hon" 
while two as in 'two flat objects' is "ni-mai' and two as in 'two people' becomes "futari". A similar 
example is the explicit mention of the subject in English, which may be missing in a normal 
Japanese utterance. Further information that is often missing when translating dialogues is the 
gender of the speaker and listener as well as the social relationship between them. 
 For some language pairs, however, maintaining the level of ambiguity present in the source 
language can help to avoid clumsy, confusing, or (when the ambiguity is incorrectly resolved) 
inaccurate translations. 
 
6.2 Multi-lingual Speech Translation approaches  

Given the problems outlined in the previous section, speech translation may seem an impossible 
task. A look at possible scenarios, however, indicates that while a "universal speech translator" 
may be beyond our current reach, speech translation in some very useful limited domains is 
feasible. The most important group of scenarios involves goal-oriented dialogues such as 
shopping, getting information, and scheduling events. 
 
The assumption that the translation domain is constrained to such a scenario leads to several 
simplifications of the speech translation task:  there will be less ambiguity within one task, and 
the conversation will be more polite and less colloquial; ill-formed spontaneously spoken 
utterances can be interpreted exploiting the semantic constraints of the domain despite syntactic 
deficiencies of the spoken utterance.  Finally, the relationship between the participants is usually 
clear from the scenario (salesperson-customer).  Proper names will be used more cautiously and 
may even be spelled.  Utterances in such dialogues can be classified by their "domain action", 
that is by their achievement towards the dialogue goal (for instance giving information about a 
flight). Moreover, task-dependent idiomatic expressions abound in such dialogues. Therefore, 
semantic representations become an important tool for the translation of goal driven 
conversations. 
 
6.2.1 Interaction between Recognition and Parsing  

A common bottleneck in speech translation systems lies between the speech recognition output 
and the translation or analysis step. A number of methods are used to reduce the accumulation of 
errors at this point. Parsers used for speech translation are designed to accommodate repetitions, 
hesitations, and speech recognition errors by skipping input words or by parsing word graphs that 
include alternatives to the most likely recognition hypothesis. Some unknown words (unexpected 
proper nouns not known to the recognizer) can be represented by their phonetic transcription. 
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Unless the speaker asks for the exact spelling, it is often irrelevant in spoken dialogue 
translation5. When parts of the utterance cannot be translated, it can be helpful to skip them and 
provide a translation for the remaining parts of the utterance. Another approach for a close 
integration of recognition and analysis is to have the recognition engine use the robust analysis 
grammars to restrict the recognition search space. In this case, the parsing grammars have to 
provide for all ungrammaticalities. For utterances that are not covered by the parsing grammar, 
the next most likely interpretation will be recognized; to avoid this problem, confidence 
measures must be introduced. 
 
6.2.2 Semantic Representations and Interlingua  

Many systems perform a syntactic or syntactic/semantic analysis to extract a source language 
dependent representation, perform a transfer step from the source language representation to the 
target language representation, and then generate the target language. The number of transfer 
rules is usually proportional to the number of input languages times the number of output 
languages.  
An Interlingua is a target- and source-language-independent representation of the content of an 
utterance. For multi-lingual translation systems, an Interlingua makes it possible to add 
translation between a new language and all existing languages by simply providing translation 
from the new language to the Interlingua and from the Interlingua to that language. 
 
Ideally, we would like an Interlingua that is unambiguous, at least with respect to the current 
task. Therefore, natural languages are not very suitable as Interlingua. Moreover, goal-oriented 
tasks contain many idiomatic expressions that should not be translated literally.  Mapping them 
on a language independent semantic Interlingua avoids misleading awkward translations. Special 
parsers have been developed to extract semantic Interlingua structures from recognition output. 
They work with semantic grammars that can be written by native speakers without linguistic 
training. 

 
By translating from the source language to a language-independent semantic Interlingua and back 
into the source language, we also obtain a new feature: paraphrasing. Through the paraphrase, the 

                         
5 proper nouns that are common enough in many countries so they have received a language dependent spellings 
(e.g. Muenchen, Munich), should be represented explicitly. 

Interlingua 

Source 
Language 

Target 
Language 

Transfer
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user can see whether the Interlingua structure that was extracted from the (possibly ambiguous) 
input corresponds to the intended meaning without actually looking at the Interlingua. 
 
For many tasks, semantic Interlingua structures can also be transformed into database queries to 
obtain information for the task at hand or to resolve ambiguities or conflicts in translating the 
current utterance (next Friday is the 13th, Kyoto is in Tokyo, there is no train from New York to 
Frankfurt, etc.). 
 
While systems that are based on semantic representations are easier to expand to new languages, 
porting to new tasks with new semantic concepts but similar syntactic forms is more expensive. 
For goal-driven dialogues, however, the number of semantic concepts is comparatively small and 
reusable grammar components (specific phrases for requesting information, e.g., times & dates, 
places, addresses, currencies and amounts, etc.) can be used to limit the effort. 
 
Since an Interlingua should contain all information necessary to generate all target languages, 
much of the disambiguation work has to be done in the analysis step of such systems. Once a 
language-independent Interlingua representation has been established, the disambiguation work 
has to be done only once for every new source language. 
 
6.2.3 Incomplete Information  

Extracting a complete semantic Interlingua structure from a single utterance is not always 
possible. Consider the following example:  
 

question: how many will be travelling                            answer: two 
 
While it is clear from the task that the question is about how many people will be travelling, it is 
not clear from the answer alone. Missing information can be extracted from multiple sources 
(dialogue, prosody, databases, default assumptions) and added to the Interlingua representation. 
Since there is often a source language dependent default for missing values (such as the speaker 
as subject in a Japanese sentence), a default can also be provided by the analysis step. It is, 
however, a good idea to add confidence measures and to mark information that was not in the 
original utterance. This way, it is possible to retain ambiguities where resolving them is not 
required for the target language rather than risking a possibly wrong interpretation of the input. 
As a last resort, the user of a speech translation system can be asked to disambiguate in critical 
cases ("eleven fifty five" = 1,155 or $11.55 or 11:55am).  
 
6.2.4 Statistical Translation  

Another well-known approach to enhance portability and to reduce the impact of multiple 
language pairs on the development effort is to use statistical translation approaches. For these 
systems to work in a multi-lingual environment, a bilingual corpus for the task in question has to 
be available for each language pair. Alternatively, a multi-lingual corpus for all languages can be 
used. This corpus should contain sufficient amounts of original, task dependent examples for 
each source language.  Statistical methods and semantic Interlingua can be used together by 
training statistical systems to segment the input utterance into domain actions and concepts. 



 25 

 
6.3 C-STAR and Janus  

The Consortium for Speech Translation Advanced Research (C-STAR) was founded in 1991 as a 
forum for research groups focusing on speech translation to collaborate and meet the challenges 
of multi-lingual speech translation.  C-STAR-I began with 4 members and demonstrated in 
1992/3 the feasibility of speech translation using a rather limited prototype for German, English, 
and Japanese. At the end of the second phase of C-STAR in July 1999, the consortium, now 
expanded to 20 partner and affiliate members, demonstrated a much more powerful joint 
arrangement to translate between German, English, Japanese, Italian, Korean, and French on a 
travel planning domain. Each member in the consortium built a speech recognition system for its 
own language, and provided for translation from their native language either into multiple other 
languages or to and from a common Interlingua, called the 'Interchange Format' (IF). To perform 
multi-lingual translation, several systems running at the individual sites are connected through 
the Internet and create a distributed translation engine. The loose form of the consortium allows 
each member to do its own research with very little overhead, at the same time avoiding 
redundant development and making optimal use of the local resources in all member countries. 
The resulting distributed system allows for world wide cross-language experiments that none of 
the partners would have been able to perform each on its own.  More information on C-STAR 
can be found on the consortium's web page: http://www.c-star.org. 
 
6.3.1 C-STAR-II Interchange Format (IF)  

While using English words to describe concepts, the C-STAR-II Interlingua is designed to work 
for all six C-STAR languages. Some target language dependent requirements were found during 
the development of the translation systems, leading to amendments in the IF. 
 
A C-STAR-II IF consists of five components: speaker tag, speech act, concepts, arguments and 
argument values. In the case of the travel domain, the speaker tags are "a:" for travel agent, and 
"c:" for customer. Since the IF was designed for translation in goal-driven dialogues, the speech 
acts represent the intent of the utterance with respect to the dialogue goal: "I want to book the 
cheap room", therefore, is a request to book the room (request-action), while in a different 
context it could be considered as simply giving information. The most common speech acts in 
the C-STAR-II Interlingua are: give-information, request-information, 
request-action, greeting, and closing. 
 
The concepts are used to specify the domain-specific intent of the utterance. In the sentence "I 
want to book the cheap room", the additional concepts are "reservation", "price", and "room". 
Speech acts and concepts together create the domain action, in this case request-
action+reservation+room. Specifications beyond that level are made by argument-value 
pairs, in our example "price=cheap" and "who=I". The total IF representation for this utterance 
would therefore be: 
 
c:request-action+reservation+room(who=I, price=cheap) 
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Due to the distributed nature of the IF development, most of the discussions had to be done by 
email, favoring solutions that are simple and easy to communicate. While the current IF works 
very well for the travel task, substantial enhancements are planned for the next C-STAR 
Interlingua in order to improve portability to new tasks. Planned extensions center around the 
current separation between concepts and arguments and the representation of optional 
information. 
 
6.3.2 The Janus System 

The Janus speech translation system as used in the 1999 C-STAR experiment [WBG98] 
provides a modular platform for combining and comparing multiple translation approaches. In 
the default setup, the Janus Recognition Toolkit (JRTk) is used for German or English speech 
recognition. The SOUP parser, using manually written, modular semantic grammars, parses the 
recognition output.  The grammar for each language is modularized into one sub-grammar per 
sub-domain, such as hotel reservations and booking flights.  Rules for actions that are required 
for multiple scenarios, such as requesting names and telephone numbers, are put into a cross-
domain grammar.  Common components such as time expressions reside in a shared grammar 
that acts as a library of non-terminals accessible to all other grammars.  This structure makes the 
grammars more consistent and easier to maintain and it facilitates porting to new domains. The 
parser output is mapped to the C-STAR IF by means of a Perl script to maintain a high level of 
re-usability of parsing grammars with respect to changes in the IF.  From the IF, the system can 
generate English, Japanese, German, Korean, French, Italian and Spanish output. Janus also 
supports a multi-engine approach, that permits combination of a number of alternate approaches 
for translation, including an example-based approach (PANGLOSS) [NIR95] and a statistical 
hidden understanding model (SALT) [Mun99] to automatically extract and label utterance 
segments corresponding to IF speech acts, concepts and arguments.  
 
6.3.3 Language Portability of Speech Translation Systems 

Porting speech translation systems to new languages has become a considerable concern, when 
considering the large number of world languages. Adding new languages to the Janus speech 
translation system for any given task requires the several steps. First, a speech recognizer has to 
be built. It can be efficiently bootstrapped either from a recognizer for that language from a 
different task, or from a multi-lingual speech recognizer as described in section 1. In either case, 
at least 50,000 to 100,000 words of text data in the domain are required as a development 
database for language modeling and translation. 
 
Since the interchange format is language independent, the next task is to write semantic grammar 
rules that cover likely expressions for the core part of the interchange format. These rules then 
have to be expanded to cover all likely ways to express every concept covered by the interchange 
format. This is done by analyzing user data and developing grammar rules that cover the 
development data in a way that is likely to generalize to unseen data, while at the same time 
avoiding over-generalization. This part of the grammar development requires practice and skill. 
In order to get reasonable flexibility large grammars have to be coded. 
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The effort to developing a semantic parsing grammar clearly depends on the number of concepts 
in the domain. For the scheduling task, the main concepts centered around suggesting a time, 
accepting a time and rejecting a time. This resulted in compact parsing grammars that could be 
developed by a single person in a few months. The travel domain with its many sub-domains is 
considerably more complex. Careful modularization and reuse of existing structures allow 
development of a grammar with reasonable coverage for this task by one person in about 12 to 18 
months. To add a new output language, the only new requirement is a generation grammar for the 
new language. Since it is sufficient to come up with a single way to express each concept, the 
effort for developing generation grammars is smaller than the effort for parsing grammars. When 
adding Japanese output to a system that already contained a fairly large generation grammar for 
English, we found that starting out by manually translating the core English rules to Japanese and 
then refining the grammars reduces the development time considerably. However, characteristics 
of certain languages (noun/verb agreement, as in German) can require the use of more complex 
generation systems.  One person could develop a grammar with moderate coverage for the travel 
domain in approximately 6 months. 
 
Several dialog models have been tried within the framework of our C-STAR systems. The 
currently most successful model is using the a priori likelihood of dialog-acts (directly integrated 
into SOUP’s transition probabilities), as well as the likelihood of dialog-acts given the dialog-
acts of the proceeding utterance (of the other speaker).  
 
6.3.4 Evaluation Procedures and Results  

To get realistic data to evaluate and improve speech translation systems, user studies are 
required.  The data from each study was first used to evaluate the system, then for error analysis, 
and finally for development. The subjects were also given a questionnaire on user interface 
issues, which was evaluated to improve HCI aspects of the system. The subjects involved in all 
user studies had little or no previous exposure to speech recognition or speech translation. They 
were seated in a moderately noisy office and asked to play the role of a traveler booking a trip to 
Germany or, in the case of the latest user study, to Japan. The travel agents (researchers from our 
group) were placed in a different office. The only means of communication between the “client” 
and the “agent” were by way of our speech-to-speech translation system translating from English 
via IF back to English, a multi-modal interface allowing for handwriting recognition and sharing 
web-pages, and a muted NetMeeting video-conference (no audio). During the entire duration of 
the user study, the subjects were observed and videotaped by a researcher.  Instructions on how to 
best use the system and interventions in case of problems were kept to a minimum. 
  
Sentence-based Janus MT evaluations are run as end-to-end evaluations of translation output 
from speech input. Bilingual graders compare the source language input and target language 
output for each sentence. The grades assigned are OK, bad, and perfect. OK translations 
contain all the information from the source language sentence with no extra misleading 
information. Perfect translations meet this criterion and are, in addition, fluent sentences in 
the target language.  
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Table 5.1 reports the results of a recent evaluation. The evaluation was conducted on a set of 132 
utterances (all previously unseen by the system developers). Each utterance contains one or more 
sentences. The data was taken from our latest user study of subjects trying to book a trip to Japan.  
 
Experiment Method Output language % OK + perfect % Perfect 
1 Recognition only English 78  62  
2 Soup on transcription English 74  54  
3 Soup on recognition English 59  42  
4 Soup on transcription Japanese 77  59  
5 Soup on recognition Japanese 62  45  
6 Soup on transcription German 70 39 
7 Soup on recognition German 58 34 

 
Table 6.1 Translation grades for English to English, English to Japanese, and English to 

German using the Soup parser 
 
Experiment 1 in Table 5.1 shows the quality of the speech recognition output measured by the 
same criteria as the output of the translation engine: OK for retaining all relevant meaning and 
Perfect for being fluent. For about 22% of all utterances, some important change of meaning 
had occurred due to a recognition error in the best matching hypothesis. Preliminary experiments 
using word graphs rather than first best hypotheses indicate that for about half of these utterances 
even a small word graph contains a hypothesis of the correct meaning. Experiments 2 and 3 give 
the performance of the system for paraphrasing back into English from transcribed text 
(Experiment 2) and speech recognition output (Experiment 3). An error analysis showed that 
only 8% of all utterances did not get a correct translation because of speech recognition errors. 
Another 20% of all utterances did not get correct translations because of coverage limitations of 
the interchange format or grammars. Experiments 4 and 5 give the performance for English-to-
Japanese translation from transcribed English input (Experiment 4) and recognized English input 
(Experiment 5). The slightly better result in comparison to English-to-English paraphrase reflects 
the subjective nature of the grading process more than the actual performance. The results for 
translation into German (Experiments 6 and 7) mostly reflect the extremely short development 
time for the German generation grammars (7 weeks at the time of the evaluation).  
 
7. Conclusion 
In this paper we have reviewed several strategies for the development of multilingual speech 
recognition and understanding systems.  While most modern systems are trained on large speech 
databases, careful design and long development times are still required to achieve good 
performance in multilingual spoken language systems.  In this paper, we have described several 
difficulties of multilinguality and offered solutions to: 

• the problem of portability across languages 
• the problem of foreign accented speech 
• the problem of morphology, or:  lexicon size and confusability 
• multilingual spoken language and translation systems 
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