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10.1 Introduction

Speech-to-speech translation is the task of translating speech input in one
language into speech output in another language. This process consists of
three basic steps: speech recognition, translation, and speech generation.
In this chapter, the main focus is on the translation component and the chal-
lenges posed by spoken language input. Discussions of multilingual speech
recognition and speech generation aspects can be found in Chapters 4 to 7.

A variety of approaches to speech-to-speech translation have been
developed, including interlingua-based, example-based, statistical, and
transfer approaches. The first section of this chapter compares interlingua-
based and statistical implementations within the framework of the
NESPOLE! system developed at Carnegie Mellon University. It discusses
decoding strategies allowing for flexible phrase reordering, spoken lan-
guage specific problems, such as the removal of disfluencies, and coupling
of the speech recognition and translation components. The second sec-
tion of this chapter focuses on example-based and transfer approaches and
describes their realization within the spoken language translation system
developed at ATR in Japan.
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Translation of speech (as opposed to text) is greatly complicated by the
fact that spontaneously spoken speech is ill-formed and errorful. Speech
translation is compounding three sources of errors: errors introduced by
the speaker (disfluencies, hesitations), errors of the recognizer, and errors
of the translation system. In addition to the need for robust individual
components (recognition, translation, synthesis), a successful speech-to-
‘speech machine translation system (SSMT) must also be error-tolerant in
its architecture. It must allow for and represent near-miss alternatives at
each level of processing, statistically score the likelihood of each hypothe-
sis, and prune and reject unpromising candidates as new knowledge and
information is applied at each processing stage.

In order to provide the translation component with multiple hypothe-
ses, the recognition output string is replaced by an output graph of possible
near-miss word hypotheses (the “word-lattice”), and the subsequent trans-
lation module selects the most likely sentence during its attempt to find
a translation. The translation module should also allow for missing or
wrong words and provide multiple interpretation results in its attempt
to produce an output sentence. Two schools of thought diverge on how
to achieve that: a direct approach (here, statistical machine translation)
and an Interlingua approach. Both approaches handle ambiguity stochas-
tically and by retaining and evaluating competing alternatives. Both also
take advantage of semantic and domain knowledge to subsequently reduce
ambiguity and extract useful information from an otherwise ill-formed
sentence.

10.1.1 Speech Translation Strategies

In the following sections, we present several speech translation strategies
that we have explored at our laboratories. We describe and evaluate each
method according to the following criteria:

* First and foremost, spoken language input and translation perfor-
mance have to be considered.

* Cost of adding a new language: As the number of languages
grows, the number of language pairs increases quadratically.
Translation based on a language independent intermediate represen-
tation (Interlingua) alleviates this problem by requiring translation
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into the Interlingua only. However, it requires designing the Interlin-
gua and developing analysis and generation modules. More flexible
and automatically scalable approaches must be found.

* Cost of development: To achieve good performance, good coverage
of the many possible translations from one language to the other has
to be achieved. Therefore, if translation models are (semi-)manually
designed, each new language and each domain require additional
development effort.

* Cost of data collection: Performance is dramatically affected by the
amount of available data. The cost of collecting large parallel or
tagged corpora (tree banks) increases with the number of languages
and/or domains.

* Explicit representation of meaning: It is useful to be able to represent
meaning for a system to produce paraphrases and/or to link to other
applications in addition to the translator.

10.1.2 Language Portability

Speech translation has made significant advances over the last years with
several high-visibility projects focusing on diverse languages in restricted
domains (e.g., C-Star, NESPOLE!, Babylon). While speech recognition
emerged to be rapidly adaptable to new languages in large domains,
translation still suffers from the lack of both hand crafted grammars
for Interlingua-based approaches and large parallel corpora for statistical
approaches. Both facts prevent the efficient portability of speech transla-
tion systems to new languages and domains. We believe that these limits of
language- and domain-portable conversational speech translation systems
can be overcome by relying more radically on learning approaches using
easy/cheap-to-gather data and by applying multiple layers of reduction
and transformation to extract the desired content in another language.
Therefore, as shown in Figure 10.1 we cascade several stochastic source-
channel models that extract an underlying message from a corrupt observed
output. The three models effectively translate: (1) speech into word lat-
tices (ASR), (2) ill-formed fragments of word strings into a compact
well-formed sentence (Clean), and (3) sentences in one language into
sentences in another (MT).
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Speech WW,.. W
peeen, ASR |—| Clan |—| wMmT |— %700
L_source L_target

Figure 10.1: Stochastic source-channel speech translation system.

10.2 Statistical and Interlingua-Based Speech
Translation Approaches

In response to these considerations, we begin by exploring direct and
Interlingua-based translation approaches, as well as modifications on
Interlingua-based approaches. While direct approaches can be trained on
data, they require O(N?) parallel corpora if all of the N languages need to
be connected. Interlingua-based approaches require fewer translation mod-
ules, but they typically require costly design and grammar development.

After a brief description of the Interlingua we introduce statistical
machine translation methods. We then explore Interlingua-based statis-
tical methods, interactively learning Interlingua and statistical translation
via intermediary natural languages (pivot languages). Furthermore, we
discuss the integration of speech recognition and translation modules into
integrated speech translation systems. These integration methods are crit-
ical to scale speech translation systems to domain unlimited performance.
Central aspects are cleaning disfluencies in speech and dealing with recog-
nizer errors by translating not only the first best recognition result but all
paths in the word lattice generated by the speech recognition system. Last
but not least, we present a prototype of an integrated domain unlimited
speech translation system.

10.2.1 Interlingua-Based Speech Translation

Interlingua-based MT analyzes a sentence into a language independent
semantic representation using an analysis grammar, and generates the
target sentence using a generation grammar. Therefore, building a domain-
specific translation system first requires designing an Interlingua that is
rich enough to capture the semantics of the domain. Second, analysis and
generation grammars need to be developed.
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Interlingua Design

The Interlingua, as for example used in the NESPOLE! system, is called
Interchange Format (IF) (Levin et al., 1998). The IF defines a shal-
low semantic representation for task-oriented utterances that abstracts
away from language-specific syntax and idiosyncrasies while capturing
the meaning of the input. Each utterance is divided into semantic segments
called semantic dialog units (SDUs), and an IF is assigned to each SDU.
An IF representation consists of four parts: a speaker tag, a speech act,
an optional sequence of concepts, and an optional set of arguments. The
representation takes the following form:

speaker: speech act 4 concept* (argument*)

The speaker tag indicates the role of the speaker in the dialog, for exam-
ple, “agent” and “client” in a hotel reservation dialog. The speech act
captures the speaker’s intention—for example, getting information or con-
firming. The concept sequence, which may contain zero or more concepts,
captures the focus of an SDU—for example, getting information about
the price of the hotel room. The speech act and concept sequence are
collectively referred to as the domain action (DA). The arguments use a
feature-value representation to encode specific information from the utter-
ance (e.g., a double room, a nonsmoker). Argument values can be atomic
or complex. Very simple and more complex examples of utterances with
corresponding IFs are shown here:

On the twelfth we have a single and a double available.
a:give-information + availability 4 room
(time = (md12), room-type = (single + double))

Thank you very much.
c:thank

The NESPOLE! Interlingua is based on representing the speaker’s intention
rather than the literal meaning of the utterance. The design of an Interlingua
has to balance expressive power and simplicity. The inventory of domain
actions needs to be sufficiently expressive in order to capture speaker inten-
tion. The specification at the argument level attempts to distinguish between
domain-dependent and domain-independent sets of arguments, to better
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support portability to new domains. The Interlingua also has to be simple
and straightforward enough so that grammar developers can independently
work on different languages at different sites without the need of constant
information exchange.

Semantic Grammars

The advantage of semantic grammars is that the parse tree that results from
analyzing an utterance is very close to its final semantic interpretation (as
opposed to, say, the laborious step of transforming syntactic constituent
structures into semantic functional structures). A disadvantage however,
is that a new grammar has to be developed for each domain, although
some low-level modules—such as those covering time expressions—can
be reused across domains. Once an utterance comes in, it is run through a
parser that, together with the grammar in question, produces an analysis
in the form of a parse tree. A statistical parser such as SOUP (Gavalda,
2004) is especially suitable for handling spoken language because it rep-
resents semantic grammars as probabilistic recursive transition networks.
Thus, the search for the optimal interpretation is easily implemented as a
beam search, with a scoring function that maximizes the coverage (number
of words parsed) and likelihood (sum of arc probabilities) of an inter-
pretation, but minimizes its complexity (number of nonterminals in parse
lattice) and fragmentation (number of parse trees per utterance). Moreover,
SOUP allows for skipping of words (with a penalty), character-level pars-
ing (morphology rules can be defined using the same formalism as rules
operating at the word level), multiple-tree interpretations (interpretations
can be a sequence of top-level parse trees covering nonoverlapping frag-
ments of the utterance), and dynamic modifications (rules can be modified
on the fly), which enables the interactive grammar learning described
below.

Interactively Learning Semantic Grammars

One of the greatest difficulties in the successful deployment of natural
language processing (NLP) systems lies in the inherent richness of human
language: it is impossible to capture a priori all the different ways in
which people may choose to express a particular idea. Therefore, NLP

o
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> do | have any mail

[ understand “do | have any mail”

> arrange by recency

| don’t understand right away what you mean but let me guess

“arrange by recency” is a way to express

1. count mail, e.g., “count” 2 R et S e o 4t e e e =
2. list mail, e.g., “list” D ) , ) ; o
3. sort mail, e.g., “sort” | public <sortMail> = < SORT> ~  ° H
0. None of the above i <_MAIL_ARGUMENT> [—<__SORT__MODE>] N >
> sort . [<._SORT BY>] [ <_SORT BY> < SORT_MODE>]:
“recency” is a way to express R T T
1. sort by size, e.g., “size” {«_SORT> = [please] (sort |arrange)-

H

2. sort by date, e.g., “date” : o
3. sort by sender, e.g., “sender” '<sortBY date> = date | time | recency:
0. None of the above e S . :

> by date

Thanks for teaching me the meaning of “arrange by recency”

| understand “arrange by recency”

> Please arrange messages from Bob by recency

| understand “please arrange messages from Bob by recency”

Figure 10.2: Dynamic grammar acquisition as by-product of clarification
dialogs using the GSG system on an e-mail client application. The left
panel shows the dialog maintained between the user (preceded by “>") and
the system; the right panel shows the dynamic extension of the underly-
ing grammar, particularly the acquisition of the meaning of “arrange” and

“recency.”

systems that are capable of learning the meaning of extra-grammatical
utterances—that is, capable of dynamically extending the coverage of their
underlying grammars—become of paramount importance. An example is
GSG (Gavalda, 2000), a system that extends the semantic grammar ofa
particular domain simply by asking clarification questions to the nonexpert
user of the application in question (see Figure 10.2).

This is accomplished by augmenting the initial grammar using external
knowledge sources (such as a part-of-speech tagger or a shallow syntactic
grammar) in combination with various machine learning strategies withina
coherent, mixed-initiative conversation with the end user. The result is the
acquisition of new grammar rules. Then, a sophisticated rule management
scheme—which includes detection of rule subsumption and rule ambi-
guity, vertical generalization (bottom-up generalization along ontological
IS-A links), and horizontal generalization (making certain right-hand-side
constituents optional and/or repeatable)—is employed to add the new rules
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to the current grammar, seamlessly and without disrupting analyses that are
already correct.

10.2.2 Statistical Direct Translation

Statistical machine translation (SMT) was proposed in the early 199(g
by the IBM research group (Brown et al., 1993b) and has since grown into
a very active research field. Its key advantage is that it can be automatically
trained from large corpora. The approach is based on Bayes’ decision rule:
Given a source sentence f = fl of length J, the translation e = e{ is
given by:

€ = arg max p(e|f) = arg max p(f|e)p(e). (10.1)
[ e

Here, p(e) = p(el) is the language model of the target language, typically

a trigram language model, and p( f1 |e1) is the translation model. The
argmax operation denotes the search problem.

Word Alignment Models

A number of different translation models, also called alignment models,
have been described (Brown et al., 1993b; Wu, 1995; Vogel et al., 1996
Och and Ney, 2000). The most simple word alignment models are based
only on word co-occurrence statistics. In Brown et al. (1993b), this is the
first in a sequence of models:

1 J 1
p(fle) = —,1’[}: (files). (10.2)

This is the so-called IBM1 model. The IBM2 model also includes position-
alignment probabilities p(i| j, J, I), resulting in:

p(tle) = HZp(ﬁle»p(zu,J . | (10.3)

j=1i=1
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As an alternative to the IBM2 model, which is based on absolute positions,
the so-called HMM alignment model has been formulated (Vogel et al.,
1996), which uses relative positions to model word reordering between
two languages:

J
ptle) = > [ [ plajlai-1,D) - p(fileq)

a{ Jj=1

Here, a; denotes the alignment to the j’th word in f.

Phrase Alignment Models

A simple approach to extract phrase translations from a bilingual corpus
is to harvest the Viterbi path generated by a word alignment model. The
phrase alignment is then essentially a post-processing step following the
word alignment. For any word sequence in the source sentence, the aligned
words in the target sentences are taken from the Viterbi alignment. The
smallest and the largest index on the alignment side are then the boundaries
for the entire target phrase aligned to the source phrase.

Many word alignment models are not symmetrical with respect to
source and target language. To make up for the asymmetry of the word
alignment models, training can be done in both directions: source to target,
and target to source. This results in two Viterbi paths for each sentence
pair. Different ways have been explored to combine the information given
by those alignments. Och and Ney (2000) described experiments using
intersection, union, and a combination along with some heuristic rules.
Koehn et al. (2003) studied different combination schemes and concluded
that using the right one has a bigger impact on the resulting performance
of the translation system than the underlying word alignment model.

Some alternative phrase alignment approaches have been developed,
which do not rely on the Viterbi word alignment. Both Marcu and Wong
(2002) and Zhang et al. (2003b) consider a sentence pair as different real-
izations of a sequence of concepts. These alignment approaches segment
the sentences into a sequence of phrases and align those phrases in an
integrated way.

In Vogel et al. (2004) phrase alignment is described as sentence split-
ting, as shown in Figure 10.3. The goal is to find the boundaries for the
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Figure 10.3: Phrase alignment as sentence splitting.

target phrase, given some source phrase. This can be done with a modified
IBM1 alignment model:

* For words inside the source phrase, we sum only over the probabilities
for words inside the target phrase candidate; for words outside of
the source phrase, we sum only over the probabilities for the words
outside the target phrase candidate.

* The position alignment probability—which for the standard IBM1
alignment is 1/, where I is the number of words in the target
sentence—is modified to 1/(k) inside the source phrase and to /I —k)
outside the source phrase.

This leads to the following calculation:

j1—1
pa@e =] > 7 p(me»xHZ = p( flen)
Jj=1 ie(i. tz) J=ihvi=i

(10.4)

x H > —p(f,le,)

J=h+1id. tz)
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The target side boundaries i1 and iz, which give the highest alignment
probability, are chosen by:

(i1, i2) = arg max{p;, ;,(f|e)}

i1,i2

Similar to p;, ;,(f]e), we can calculate p;, ;,(e|f)—now summing over the
source words and multiplying along the target words.

To find the optimal target phrase, we interpolate the log probabilities
and take the pair (i1, i2) that gives the highest probability.

(i1, i2) = arg max{(1 — ¢)log( pg,ip)(f1e)) + ¢ - log(pgyip)(el 1))}

it,iz

The Decoder

A decoding approach that is based on

e =arg mgxp(elf) = arg max p(fle)p(e) (10.5)
e

requires that, for any given word, its preceding word history is known.
This leads to a search organization that constructs the target sentence in a
sequential way. However, to incorporate the different word order of various
languages, the words in the source sentence have to be covered nonsequen-
tially while the translation is being generated. The most general form isto
allow for any permutation of the source words—that is, without restrictions
on the possible reordering. Such a search organization, restricted to word-
based translation, has been described in NieBen et al. (1998). However, this
leads to a very large search space and high computational costs. Therefore,
various restrictions on reordering have been proposed. :

The approach described here allows for phrase-to-phrase translation.
Decoding proceeds along the source sentence. At each step, however, the
next word or phrase to be translated may be selected from all words or
phrases starting within a given look-ahead window from the current posi-
tion. The decoding process works in two stages: First, the word-to-word and
phrase-to-phrase translations and, if available, other specific information
like named-entity translation tables are used to generate a translation lattice.
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Second, a standard N-gram language model is applied to find the best path
in this lattice. It is during this search step that reordering has to be taken
into account. Both steps will now be described in more detail.

We define a transducer as a set of translation pairs generated by the
methods described above as well as alternative knowledge sources, such
as manual dictionaries and named entity lists. Each translation pair is given
as a quadruple:

label # source words # target words # probability

For decoding, the transducers are organized as trees over the source side,
and the translations are attached to the final nodes. This allows for effi-
cient processing, since a node in the transducer represents all source
phrases that consist of the words along the path to this particular node
and include all possible paths that lead to final nodes of this particular
node’s subtree.

The first step in the decoding process is to build a translation lattice by
applying the transducers. We convert the sentence to be translated into a
lattice structure, in which the nodes are the positions between the words,
and the words are attached to the edges. The nodes v are numbered from
0to J, the length of the source sentence. We also use v to simply denote
the node number.

To search for matching phrases, we encode the relevant information in
a hypothesis structure

h = (Vl, v2, 0, h[), 8),

which means that starting from node vy and ending in node v, a sequence
of words has been found that corresponds to a transducer path from state
oy to state o, and whereby in the last step, the hypothesis 7, has been
expanded over edge ¢.

The matching process between a path through a transducer and a seg-
ment of a sentence can start at all positions in the sentence. Therefore, an
initial hypothesis (v, v, 0 = 00, hp = 0, & = @) is set for each node except
the final node in the lattice.

Expanding hypotheses is structured in the following way: Let v be a
node in the translation graph, and E(v) be the set of incoming edges for
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this node. Let v®(g) denote the start node of an edge ¢. Then, for each
incoming edge ¢ € E(v), all hypotheses £, in v°(¢) are expanded with the
word f attached to ¢. That is to say, if o, is the transducer state of hypothesis
hp, then o is the transducer state that can be reached from o, over the
transition labeled f. If expansion is possible, then a new hypothesis 7 is
generated:

hp = (1, V*(8),0p, I, €') = h = (v1,v,0, hp, ).

If expanding a hypothesis leads into a final state of the transducer, a new
edge is created and added to the translation lattice. The new edge is labeled
with the category label taken from the transducer. The additional infor-
mation stored with this edge is the translation and the sequence of edges
traversed, which corresponds to the sequence of source words.

Once the complete translation lattice has been built, a one-best search
through this lattice is performed. In addition to the translation probabili-
ties, or rather translation costs, as we use the negative logarithms of the
probabilities for numerical stability, the language model costs are added
and the path that minimizes the combined cost is returned.

The search for the best translation hypothesis involves generating par-
tial translations and expanding them until the entire source sentence has
been accounted for. The information accumulated during search is stored
in the following hypothesis structure:

h=(Q,C A,i,hp,e),

where Q is the total cost; C, the coverage information; A, the language
model state; i, the number of the words in the partial translation; and /i,
and ¢, the trace-back information. In the case of a trigram language model,
the language model state comprises just the last two words of the partial
translation—that is, the history in the next expansion step.

To allow for reordering, we organize the search in the following way.
Assume we have a partial translation, which already covers ¢ words of
the source sentence, n < ¢ of which are the first words of the sentence.
- (In other words, the initial section of the sentence has already been com-
pletely translated, the remainder only partially.) To expand this partial
translation, we have to extend it over one of the edges in the translation
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Second, a standard N-gram language model is applied to find the best path
in this lattice. It is during this search step that reordering has to be taken
into account. Both steps will now be described in more detail.

We define a transducer as a set of translation pairs generated by the
methods described above as well as alternative knowledge sources, such
as manual dictionaries and named entity lists. Each translation pair is given
as a quadruple:

label # source words # target words # probability

For decoding, the transducers are organized as trees over the source side,
and the translations are attached to the final nodes. This allows for effi-
cient processing, since a node in the transducer represents all source
phrases that consist of the words along the path to this particular node
and include all possible paths that lead to final nodes of this particular
node’s subtree.

The first step in the decoding process is to build a translation lattice by
applying the transducers. We convert the sentence to be translated into a
lattice structure, in which the nodes are the positions between the words,
and the words are attached to the edges. The nodes v are numbered from
0'to J, the length of the source sentence. We also use v to simply denote
the node number.

To search for matching phrases, we encode the relevant information in

a hypothesis structure
h=(vi,v2,0,hp,¢),

which means that starting from node vy and ending in node vy, a sequence
of words has been found that corresponds to a transducer path from state
op to state o, and whereby in the last step, the hypothesis &, has been
expanded over edge ¢.

The matching process between a path through a transducer and a seg-
ment of a sentence can start at all positions in the sentence. Therefore, an
initial hypothesis (v, v,0 = o9, h, = @, & = @) is set for each node except
the final node in the lattice.

Expanding hypotheses is structured in the following way: Let v be a
node in the translation graph, and E(v) be the set of incoming edges for
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this node. Let v’(g) denote the start node of an edge e. Then, for each
incoming edge ¢ € E(v), all hypotheses h, in v*(¢) are expanded with the
word f attached to . That is to say, if oy, is the transducer state of hypothesis
hy,, then o is the transducer state that can be reached from o}, over the
transition labeled f. If expansion is possible, then a new hypothesis £ is
generated:

by = (01, v (&), 0p, 1, €'Y = h = (v1,v,0, I, ).

If expanding a hypothesis leads into a final state of the transducer, a new
edge is created and added to the translation lattice. The new edge is labeled
with the category label taken from the transducer. The additional infor-
mation stored with this edge is the translation and the sequence of edges
traversed, which corresponds to the sequence of source words.

Once the complete translation lattice has been built, a one-best search
through this lattice is performed. In addition to the translation probabili-
ties, or rather translation costs, as we use the negative logarithms of the
probabilities for numerical stability, the language model costs are added
and the path that minimizes the combined cost is returned.

The search for the best translation hypothesis involves generating par-
tial translations and expanding them until the entire source sentence has
been accounted for. The information accumulated during search is stored
in the following hypothesis structure:

h=(Q,C A, i, hye),

where Q is the total cost; C, the coverage information; A, the language
model state; i, the number of the words in the partial translation; and 7,
and &, the trace-back information. In the case of a trigram language model,
the language model state comprises just the last two words of the partial
translation—that is, the history in the next expansion step.

To allow for reordering, we organize the search in the following way.
Assume we have a partial translation, which already covers ¢ words of
the source sentence, n < ¢ of which are the first words of the sentence.
- (In other words, the initial section of the sentence has already been com-
pletely translated, the remainder only partially.) To expand this partial
translation, we have to extend it over one of the edges in the translation
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Second, a standard N-gram language model is applied to find the best path
in this lattice. It is during this search step that reordering has to be taken
into account. Both steps will now be described in more detail.

We define a transducer as a set of translation pairs generated by the
methods described above as well as alternative knowledge sources, such
as manual dictionaries and named entity lists. Each translation pair is given
as a quadruple:

label # source words # target words # probability

For decoding, the transducers are organized as trees over the source side,
and the translations are attached to the final nodes. This allows for effi-
cient processing, since a node in the transducer represents all source
phrases that consist of the words along the path to this particular node
and include all possible paths that lead to final nodes of this particular
node’s subtree.

The first step in the decoding process is to build a translation lattice by
applying the transducers. We convert the sentence to be translated into a
lattice structure, in which the nodes are the positions between the words,
and the words are attached to the edges. The nodes v are numbered from
0'to J, the length of the source sentence. We also use v to simply denote
the node number.

To search for matching phrases, we encode the relevant information in
a hypothesis structure

h =, vm,0o,h,e),

which means that starting from node v; and ending in node v;, a sequence
of words has been found that corresponds to a transducer path from state
oy to state o, and whereby in the last step, the hypothesis 7, has been
expanded over edge €.

The matching process between a path through a transducer and a seg-
ment of a sentence can start at all positions in the sentence. Therefore, an
initial hypothesis (v, v,0 = o9, h, = @, & = ) is set for each node except
the final node in the lattice.

Expanding hypotheses is structured in the following way: Let v be a
node in the translation graph, and E(v) be the set of incoming edges for
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this node. Let v®(¢) denote the start node of an edge . Then, for each
incoming edge ¢ € E(v), all hypotheses /1, in v*(¢) are expanded with the
word f attached to . That is to say, if o, is the transducer state of hypothesis
hp, then o is the transducer state that can be reached from o;, over the
transition labeled f. If expansion is possible, then a new hypothesis & is
generated:

hy = (v1,v(e), 0p, 1, ") = h = (v1,v,0, hp, &)

If expanding a hypothesis leads into a final state of the transducer, a new
edge is created and added to the translation lattice. The new edge is labeled
with the category label taken from the transducer. The additional infor-
mation stored with this edge is the translation and the sequence of edges
traversed, which corresponds to the sequence of source words.

Once the complete translation lattice has been built, a one-best search
through this lattice is performed. In addition to the translation probabili-
ties, or rather translation costs, as we use the negative logarithms of the
probabilities for numerical stability, the language model costs are added
and the path that minimizes the combined cost is returned.

The search for the best translation hypothesis involves generating par-
tial translations and expanding them until the entire source sentence has
been accounted for. The information accumulated during search is stored
in the following hypothesis structure:

h=(Q,C A,i,hp,¢),

where Q is the total cost; C, the coverage information; A, the language
model state; i, the number of the words in the partial translation; and
and ¢, the trace-back information. In the case of a trigram language model,
the language model state comprises just the last two words of the partial
translation—that is, the history in the next expansion step.

To allow for reordering, we organize the search in the following way.
Assume we have a partial translation, which already covers ¢ words of
the source sentence, n < ¢ of which are the first words of the sentence.

- (In other words, the initial section of the sentence has already been com-

pletely translated, the remainder only partially.) To expand this partial
translation, we have to extend it over one of the edges in the translation
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lattice that corresponds to one of the remaining untranslated source words.
We allow for phrases—that is, longer edges in the translation lattice. It can
be the case, therefore, that such an edge spans over some words that have
already been covered. This causes a collision, and so an expansion over
such an edge is not possible.

Reordering is now restricted to be within a window of given size. That
is to say that the next word to be translated has to be taken from positions
n <= j <= n + d, where d is the size of the reordering window. In
terms of nodes: if v; is the node with number n and v, is the node with
number n + d, then expansion is restricted to edges starting from nodes
vy <=V’ <= v,. Withd = 0, there is no reordering; therefore, decoding is
monotone.

Expansion of hypotheses is organized according to overall coverage—
that is, the number of words already translated. So we start with coverage
zero and expand until we have reached coverage J, where J is the number
of words in the source sentence. At the sentence end, the language model
probability for the sentence end is applied. In addition, a sentence-length
model can be used. The best hypothesis is then used to trace back and
collect the actual words generated along this path.

To reconstruct the path taken through the translation lattice, we
need to store additional back-pointer information. Traveling back using
these pointers allows us to generate the actual sequence of words. The
back-pointer information consists of the edge that was traversed dur-
ing the last expansion and the pointer to the predecessor of the current

hypothesis.

10.2.3 Statistical Translation Using a Formal Interlingua

Interlingua-based translation as described above requires, in addition to the
design of the interlingua, the development of handwritten (or interactively
learned) semantic grammars—analysis grammars for each input language
and generation grammars for each output language. Here we describe a
method to automatically train a semantic mapping between source text and
the tree-structured interlingua, which replaces the analysis grammar. We
show that this can be done given a corpus of semantically tagged data (from

source language to IF).
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A Language Model for Trees

In the usual situation, where e = (ey,...,¢;), language modeling is
typically based on the decomposition

!
pe) = [ [ pteiler,....ei1),

i=1

where the conditional probability p(e;|ey,.. ., e;—1) is approximated by the
relative frequencies of N-grams seen in the training corpus. While e may
in this case be defined as some token e together with a subsequence €/, a
tree € may be defined as consisting of some token e together with a set
of a > O subtrees ey,...,e, (a is the arity of the tree). This leads to the
decomposition

a
p(e) = pleler,....e) - [ [ peeiler,... ei-1),

i=1

which corresponds to a bottom-up decoding in the order ey, ..., €g, €.

It is a special feature of the IF that the ordering of subtrees is unimpor-
tant for the semantics they cover—that is, the term a(b, c) is semantically
equivalent to a(c,b). This justifies the assumption that the probabili-
ties p(e;|e1,...,e;—1) are independent of ey,...,e;-1, given the recursive
formula

p(e) = pleler,...,eq) - [ | ple,

i=1

in which p(e;) is to be decomposed further in the same way as p(e). To
approximate p(eler,. .. ,e,) with relative frequencies, “tree-N-grams” are
used. As Figure 10.4 shows, these N-grams use only the roots of the
subtrees.

Translation Models for Trees

As described previously, the standard translation models use the concept
of word alignment: each word in the source sentence is aligned to a word
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Figure 10.4: The concept of N-grams (a) in sequences (b) in trees.

with-whom= (whose=i, spouse, sex=female)

with my wife

Figure 10.5: An alignment between an English phrase and its corresponding IF
representation.

in the target language. Words that have no correspondence in the target
sentence are aligned to the so-called empty word added to the sentence at
position 0. This concept of alignment can also be used when translating
into IF, as illustrated in Figure 10.5.

The IBM1 and IBM2 translation models proposed in Brown et al,
(1993b) can be generalized to the case in which the e’s are trees. For the
IBM1 translation model, this is straightforward because the model makes
no assumptions that are specific to sequences. In the model’s formula

J I
ple) = 7= 1), ——— T2 p(Sle,

j=1i=0

we just need to assign an index to each of the I nodes in the tree e in some
arbitrary way.
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The IBM2 model also includes alignment probabilities p(i|j,1,J),
resulting in the estimation formula

J

1
pele) =D p(Slenptili,J. 1)

j=1 i=0

in the sequential case. The idea is that the jth token of the source sentence f
is aligned to the ith token of the target sentence e with probability p(il j, J, I)
provided that J is the length of f and I is the length of e.

Now, indexing the nodes of a tree is no longer arbitrary because it affects
the values of p(i|j,J,I). Using again the fact that the IF is commutative,
it seems appropriate to consider only the depth of a particular node. Its
position within the level does not contribute any information. Taking d as
the depth of e and #e; as the number of nodes in level i, this leads to

LS (PGl D)
ple) =T (5= Y p(silen)

j=1 i=0

where the ¢; in the right sum run over all nodes of level i.

Decoding Trees

For generating e from f given a language model p(e) as well as a trans-
lation model p(f|e), a stack decoder similar to the one described in Wang
and Waibel (1997) is used but adapted to generate trees rather than lin-
ear sequences. To cope with the huge search space, “bad” hypotheses are
pruned after each iteration.

The algorithm starts with an empty hypothesis. In the case of linear
sequences, new hypotheses are generated by iteratively appending new
target words to existing hypotheses. The tree decoder takes a set of existing
hypotheses hy,. .., h, and forms a new tree, with the h; as subtrees and an
additional target token as its root. If the algorithm is restricted to choose
only sets of size 1, it reduces to the sequential version.

Generating trees gives a much larger search space than generating linear
sequences. In fact, while n hypotheses and k words to append lead to n - k
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new hypotheses for the next iteration of the sequence decoder, the tree
decoder generates 2" - k new hypotheses because a set of size n has exactly
2" subsets.

Three methods are applied to reduce the search space. First, hypotheses
that are not legal terms according to the IF specification are not generated.
Second, the branching factor of generated trees is restricted to three, the
depth to four. Finally, standard pruning is used. In less than 5% of the test
sentences used in our experiments, the decoder generated an IF that had
a lower score than the reference IF, indicating that the number of search

errors due to pruning was small.

10.2.4 Using English as Interlingua

Interlingua-based translation systems and statistical translation systems
are both well-known approaches with inherent advantages. However, in
most systems, only one of the approaches can be fully implemented, at
the expense of the other. Using English as interlingua tries to combine the
advantages of a system with an explicit Interlingua and the advantages of
a pure data-driven system. The Error-Driven Translation Rule Learning
(EDTRL) system overcomes existing limitations by (1) avoiding the need
for an explicit handcrafted interlingua specification and (2) tackling the
“Parallel Data Sparseness Problem” that statistical machine translation
faces for unusual or low-resources language pairs.

While translation from and to English has made significant progress
partly due to large parallel corpora, the situation drastically changes if
non-English language pairs are supposed to be translated into each other.
The amount of parallel text corpora is much smaller than the paralle] text
corpora from each of these languages paired with English. The intuitive
solution to this problem is to cascade two translators using English as
an intermediate language. However, the pure cascading of two machine
translation systems using the output of the first as input to the second results
in a multiplication of translation errors and therefore in a significantly
higher error rate compared to each translation step. The reduction of this
multiplication in translation errors should be achieved by introducing a
suitable interlingua and appropriate training and decoding methods. This
is the focus of the EDTRL approach.
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Standardized and Simplified English as Interlingua

Using ordinary English makes it more difficult to take advantage of for-
mal aspects of an interlingua. To take this into account and to improve
the cascaded translation, the intermediate English is transformed to a stan-
dardized and simplified form. The standardization step maps alternative
expressions with similar or equal meanings to the most commonly used
alternative. Sometimes English utterances have some freedom in word
order without changing the main meaning of the utterance. To obtain a con-

sistent word order in such cases, a reordering step can be applied, as in the
following:

please give me ... — give me... please

Furthermore, the sentence structure is simplified (SimplifiedEnglish,
2004), with more complex, rarely used tenses being replaced by easier
ones:

He had spoken. — He spoke.
He would be speaking. — He would speak.

Although these kinds of simplifications do remove information, often such
fine nuances are of little value to the quality of the translation given the
current performance of MT systems. In most cases, the translation prof-
its from the transformations through more reliable alignments and better
utilization of the training data. Even humans can benefit from Simplified
English in some technical domains (AECMA, 2004).

Linguistically Enhanced English as Interlingua

Besides standardizing and simplifying the intermediate English, adding fur-
ther information to the structure and the semantic content of a sentence can
be helpful for the second translation step. To be independent of the source
and target language and to minimize manual work, additional knowledge
sources should only use information that can be automatically obtained
from parallel text or be derived from the intermediate representation based
on English as interlingua. :
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We examined the incorporation of the following additional knowledge
sources to provide additional information for the translation process:

* Morphological Analyzer: Starting from the WordNet ontology (Miller
et al., 2005), we built a system to analyze English word forms and
determine its base forms and derivation rules. The analyzer contains
a set of common transformation rules and an even larger list of excep-
tions from these rules. In the current implementation, each word is
analyzed without using its context or information from former sen-
tences. The precision for finding the base class is 95%, while the
determination of the derivation rules is not yet that good.

* Sense Guesser: The sense guesser tries to find the sense of a word.
Many words have different meanings depending on the context in
which they occur—for example, “table” can have the senses “desk” or
“chart.” Often the context of the word can be used for disambiguation.
In our example, the context “in the” assigns “table” to the chart class,
while “on the” assigns it to the desk class. We used the sense hierarchy
from WordNet.

* Synonym Generator: WordNet also lists synonyms for words, all
within a well-structured and linked hierarchy. Both the sense guesser
and synonym generator only use open word classes like nouns, verbs,
adjectives, and adverbs. _

* Part-of-Speech Tagger: A statistical part-of-speech tagger is used to
provide POS-tags. The tagger uses the tag set described in Brill (1995)
and trained on the tagged Brown corpus.

* Named Entity Tagger: Handwritten rules are used to find named
entities, which often need to be treated in a special way.

Further knowledge sources such as sentence type, active or passive voice,
politeness, domain, and category could also be added.

Connecting the Translation Steps

The translation errors from intermediate English to the target language can
be reduced if not only the best hypothesis but also additional information
from the search is used. We have examined the following methods:

* N-best list of complete translations: The translation system produces
up to N alternative translation hypotheses and passes them to the
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second translation step. The number of hypotheses has to be kept
small to guarantee fast overall decoding, thereby allowing only for
little variability. This approach did not improve the translation in our
experiments.

 N-best word or phrase alternatives to the best hypothesis: This method
selects the single best hypothesis from the first translation step,
but augments it by adding alternative words or phrases that have
high translation probabilities. This strategy results in a noticeable
improvement in the translation performance.

« Full lattice: In order not to fix one translation hypothesis as the basis
for constructing these alternatives, we can also pass on full translation
lattices. This method has the highest potential because it keeps all
promising alternatives. But without pruning, this approach increases
the search space considerably. Using a lattice as input for the second
translation step has been shown as the most profitable way to use
translation alternatives to improve the translation quality.

Besides the information about alternatives and additional knowledge
sources their probability or confidence measure can be part of the inter-
lingua. Therefore words, phrases, and their alternatives carry probabilities
as well as attributes and classes. All this information together with the for-
malization step forms the interlingua, which allows improvement of the
cascaded translation.

10.2.5 Comparing the Translation Strategies

In this section, we evaluate the different translation strategies on two
speech-to-speech translation tasks. In the first part, we compare the
grammar-based system to the statistical interlingua-based system and to
the direct statistical approach. (The experiments were carried out using
travel planning dialogs from the NESPOLE! project [Lavie et al., 2001a].)
In the second part, a comparison between the Error-Driven Translation
Rule Learning (EDTRL) system and the direct statistical system on the
BTEC (Kikui et al., 2003) corpus is presented.

Interlingua versus Direct Statistical Translation

Dialogs in the travel planning domain have been collected, transcribed,
and annotated with IF representations (Lavie et al., 2001a). From this
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Table 10.1 Corpus statistics for the NESPOLE! training and test set.

Training Test
Language Ger Eng Ger Eng
Sentences 2,427 2,427 194 194
Tokens 11,236 11,729 889 955
Vocabulary 1,196 1,010 269 241
Singletons 566 429 152 123

Table 10.2 Scores of the translations generated by systems IL, SIL, and
SMT; the values are percentages and averages of four independent graders.

IL SIL SMT
Perfect 18.9 15.1 40.3
Okay 36.3 30.2 22.7
Bad 44.8 54.7 37.0
Acceptable 55.2 45.3 63.0

database, we extracted a trilingual corpus of about 2,500 triples German-
English-IF as a training set. One hundred ninety-four German sentences
were held out to be used as a test set. Detailed corpus statistics are given in
Table 10.1.

For each German test sentence, three IF representations were generated
using (1) the grammar-based system (/L); (2) the statistical system (SIL),
with a model trained on German/IF; and (3) the direct statistical translation
system (SMT). For the interlingua-based systems, the IF expressions were
converted into English using the same IF-to-English generation grammar.

The translations from the different systems were then presented to
six human evaluators. Each translation was assigned one of three grades:
“perfect” (the translation is semantically complete and grammatically cor-
rect); “okay” (the main part of the original semantics is covered and
expressed understandably); “bad” (otherwise). The “perfect” and “okay”
translations form the class “acceptable.”

The evaluation results are given in Table 10.2. The statistical IL system
does not perform quite as well as the grammar-based system. Given the very
small training corpus, with about 40% of all words seen only once during
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training, this is not surprising, on the contrary, the results show the potential
of the proposed approach. However, the direct statistical system—not using
any syntactic structure information beyond what is implicit in the phrase-
to-phrase alignments—outperformed the grammar-based system, despite
the small training corpus and the significant amount of effort that had been
put into the development of the grammars.

EDTRL versus Direct Statistical Translation

In the following experiments, we first evaluate the concept of English as
an interlingua, and then compare this to the direct statistical translation.
To evaluate the concept of English as an interlingua, we chose Chinese
as the input language and Spanish as the output language, since, in spite of
the widespread use of these languages, comparatively few direct Chinese-
Spanish translations are available. We trained the EDTRL system for
Chinese to English (C — E), English to Spanish (E— S), and Chinese
to Spanish (C — S). We then cascaded the C — E and E — S systems by
simply feeding the output of the former into the latter. The translation was
then done on the same test set using the full definition of an augmented,
formalized version of English as an intermediate step. Additionally, we
trained a statistical MT system on the same language pairs and cascaded
the C— E and E — S translations to generate a C— E— S translation
in comparison to a direct C— S translation. To evaluate the translation
quality, we used the NIST standardized tool for benchmark evaluations
(MTeval) in version 10 (NIST, 2000). For comparison, we give also the
results for Systran’s publicly available online machine translation system.
The SMT system and the EDTRL system both use the same bilin-
gual training corpus, while the EDTRL system uses additional dictionaries
for initialization. An additional difference is the handling of punctuation.
While EDTRL ignores punctuation marks, SMT treats them as normal
words. In the reported experiments, the EDTRL system does not make
use of the sense guesser, the named entity tagger, and full lattice. The
data for these experiments were taken from the Basic Travel Expression
Corpus (BTEC), a multilingual collection of conversational phrases in the
travel domain (Kikui et al., 2003) as briefly introduced in Section 10.4.2.
Table 10.3 shows the training and test material for Chinese, English, and
Spanish phrases. Since only a subset of 6,027 phrases was available for
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Table 10.3 Training (test in parentheses) corpora.

Train (Test) Chinese English Spanish
sentences 162,316 (506) 162,316 (506) 6,027
-unique 96,074 (497) 97,500 (503) 5,934
-avg. length 7.0 (7.3) 7.5(7.5) 9.8
words 1,134,417 (3681) 1,216,207 (3779) 58,834
vocabulary 13,793 (954) 16,224 (843) 4,651
-singletons 4,745 (590) 6,705 (523) 2,370
-unseen (29) (22)

Spanish, the training data for the E— S and C — S systems was reduced
to the corresponding parallel phrases. The scores were calculated based on
16 English and 3—4 Spanish reference translations.

The first four lines in Table 10.4 give NIST scores of direct transla-
tions from the source to the target language. For the direct translation, the
EDTRL system does not use any interlingua. While the lower rows refer to
an internal evaluation of a preliminary version of the systems (01/2004),
both systems were lately compared among several systems in an official
evaluation JWSLT, Kyoto Japan, August 2004). Based on the NIST score
of the unlimited Chinese-English track, the SMT system came in first and
the EDTRL system came in second.

The second and third column of Table 10.4 show the comparison
between EDTRL and direct statistical translation. As the fifth line shows,
the cascaded EDTRL system outperforms the directly trained systems.
Using augmented and formalized English as interlingua yields to further
improvements of the EDTRL system (last line of Table 10.4).

Table 10.4 NIST scores for translation from Chinese to Spanish.

" Translation tasks EDTRL SMT Systran
C — E (IWSLT eval 08/2005) 1.5 9.56 -
C — E (internal eval 01/2004) 7.34 7.35 5.74
E—>S 5.17 4.57 6.06
C—-3S 3.17 3.04 -
C—>E—>S 3.41 2.60 2.84
C— Ep — S 3.69 - -
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10.3 Coupling Speech Recognition and Translation

Due to the peculiarities of spoken language, an effective solution to speech
translation cannot be expected to be a mere sequential connection of auto-
matic speech recognition (ASR) and machine translation components but
rather a coupling between both. This coupling can be characterized by
three orthogonal dimensions: (1) the complexity of the search algorithm,
(2) the incrementality, and (3) the tightness, which describes how close
ASR and MT interact while searching for a solution (Ringger, 1995). The
benefits and drawbacks have been widely discussed along aspects such as
modularity, scalability, and complexity of systems (Ringger, 1995; Harper
et al.,, 1994). State-of-the-art translation systems use a variety of differ-
ent coupling strategies. Examples of loosely coupled systems are IBM’s
MASTOR (Liu et al., 2003), ATR-MATRIX (Takezawa et al., 1998c), and
NESPOLE! (Lavie et al., 2001a), which uses the interlingua-based JANUS
system. Examples for tightly coupled systems are EuTrans (Pastor et al.,
2001), developed at UPV, and AT&T’s Transnizer (Mohri and Riley, 1997).

10.3.1 Removing Disfluencies

Spontaneous spoken speech usually contains disfluencies such as filler
words, repairs, or restarts, which do not contribute to the meaning of
the spoken utterance and cause sentences to be ill-formed, longer, and
thus harder to process for translation. We developed a cleaning compo-
nent based on a noisy-channel model that automatically removes these
disfluencies (Honal and Schultz, 2003, 2005). Its development requires
no linguistic knowledge but rather annotated texts and therefore has large
potential for rapid deployment and adaptation to new languages.

In this approach, we assume that “clean” (i.e., fluent) speech gets passed
through a noisy channel that adds “noise” to the clean speech, and thus
outputs disfluent speech. Given a noisy string N, the goal is to recover the
clean string C such that p(C|N) becomes maximal. Using Bayes’ rule, this
problem can be expressed as:

A

C = argmax P(C|N) = argmax P(N|C) - P(C). (10.6)
c c
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We model the probability P(C) with a trigram language model trained on
fluent speech. To establish correspondences between the positions of the
source and the target sentences, word-alignment models as described pre-
viously can be used. However, in the case of disfluency cleaning, only
deletions of words needs to be considered. Assuming that each target sen-
tence is generated from left to right, the alignment a; defines whether the
word n; in the source sentence is deleted or appended to the target sentence.
Let J be the length and n; the words of the source sentence N, I the length,
and c; the words of the target sentence C; and m the number of deletions
(of contiguous word sequences) that are made during generation of the
target sentence. We can then introduce an alignment a; for each word n;

and rewrite P(N|C) as:

: J
P(N|C) = Pry(m) - [ [ Pum). - 107)
j=1

The probability Pz, y(m) models the number m of contiguous word
sequences that can be deleted in NV to obtain C. Py(n;) is the probability
that word n; of the string N is disfluent.

Each of the probabilities Py, (n;) is finally composed of a weighted sum
over the following six models: (M1) models the length of the deletionregion
of a disfluency; (M2) models the position of a disfluency; (M3) models
the length of the deletion region of a disfluency with a word fragment
at the end of the reparandum; (M4) models the context of a potentially
disfluent word; (M5) uses information about the deletions of the last two
words preceding a potentially disfluent word; and (M6) takes into account
whether a potentially disfluent word is part of a repeated word sequence.

The system can be optimized on a development test set by training the
scaling factors for the different models using a gradient descent approach.

The probability distributions for the models are obtained from the
training data using relative frequencies. All experiments are conducted on
spontaneously spoken dialogs in English from the Verbmobil corpus, and,
in order to demonstrate the feasibility of rapid adaptation, on the spon-
taneous Mandarin Chinese CallHome corpus. The highest performance
gain results from model (M4), which considers the context of a poten-
tially disfluent word. This can be easily explained for filler words, since
it allows discriminating between the deletion of the word “well” in the
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Table 10.5 Results for automatic disfluency removal on the English Verbmo-
bil (EVM) and the Chinese CallHome (CCH) corpora.

Corpus Setup Precision Recall F

EVM Baseline 90.2 772 0.832
Hand optimized 91.5 86.2 0.888
Gradient descent 93.1 85.1 0.890

CCH Baseline 76.8 494 0.601
Hand optimized 71.8 534 0.634
Gradient descent 79.0 53.0 0.634

context “Well done!” and “Alright, well, this is a good idea.” The impact
of (M1), (M2), and (M3) is a slight increase of the number of hits at the
cost of a slight increase or decrease of the number of false positives. Model
(M5) causes a large number of false positives and was therefore disregarded
in the best system,

Overall, the baseline system shows a precision of 90.2% and a recall
of 77.2% for English dialogs, as shown in Table 10.5. Almost no effort
was required for the adaptation to Mandarin Chinese. The same algorithms
and the same statistical models were used, achieving 76.8% precision and
49.4% recall on the Mandarin corpus (after retraining on the CallHome
data). When adjusting the weighting parameters for the models, a small
improvement was achieved.

10.3.2 Lattice Coupling

Research on spoken language translation must support scalable systems
capable of handling complex translation tasks, but it must also allow for
the improvement of individual components. Our own system is therefore
structured in a loosely coupled, nonincremental way. Initially, the link
between the ASR and MT components was established solely through the
single best hypothesis generated by the speech recognizer. Since it is well
known that the speech recognition word error rate can be dramatically
decreased by generating many alternatives in the form of N-best lists or
word lattices, we expect that it could also improve translation performance.

We conducted several studies to investigate whether lattice-based cou-
pling between ASR and MT improves speech translation performance.
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The studies were carried out on German-to-English travel-arrangement
dialogs originally recorded as part of the NESPOLE! speech translation
project (Lavie et al., 2001a). The applied version of the JANUS speech
recognition toolkit (JRTk) (Metze et al., 2003) achieved 23.5% lattice word
error rate in 1.3 real time, given a lattice density of 22. In JRTk, a word
lattice is represented as a directed graph in which nodes are associated with
words, and links represent the possible succession of words. The lattice
density is defined as the number of words in the lattice divided by the num-
ber of words in the transliteration. JRTk allows for various lattice-related
functions, such as filler word removal, as well as beam-width pruning to
obtain cleaned lattices in the desired density.

The translation system used is the CMU statistical machine translation
(SMT) system, as described above and in more detail in Vogel et al. (2003)
and Vogel (2003). The decoder was extended to read entire word lattices.
A word lattice is traversed from left to right, and word-to-word and phrase-
to-phrase translations are added by extending the lattice with edges to which
the translations are attached. The enlarged word lattice represents the search
space in which the best path is found, with path scores accumulated over
translation model scores, target language model scores, acoustic scores,
and source language model scores.

The baseline system uses the single best hypothesis for coupling ASR
and MT, and gives a BLEU score of 16.83. The BLEU score is a standard
measure of translation quality (Papineni et al., 2002). It is measured as a
weighted sum of N-gram precision counts up to N = 4, modified by a
length penalty. Higher BLEU scores indicate better translation quality.

The first experiment applied lattice-based coupling without taking into
account acoustic scores or language model scores of the paths in the JRTk
lattice. This was to determine if the SMT system could benefit from those
additional paths in the word lattice that have a significantly lower error
rate than the first-best hypothesis. However, despite the advantage of the
lattice topology with different densities, it did not outperform the baseline.
Since the ASR lattice typically contains not only paths that are better than
the first-best hypothesis but also many paths that are worse, the decoder
can choose a path that is easy to translate—that is, a path that gives high
probabilities for the translation model and target language model—but that
can have many recognition errors. In other words, the resulting translation
is not guaranteed to be a translation of what the speaker originally said.
This result indicates that it is necessary to incorporate the ASR acoustic
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and source language model scores into the selection process of the MT
system.

In the second experiment, weighted acoustic scores were added to
the translation scores. The BLEU score was calculated for acoustic score
weights ranging from 0.01 to 0.29 and for lattices of different densities. The
bestimprovement for the BLEU score over the baseline was 7.3%, obtained
with a lattice density of 3 and an acoustic score weight of 0.28. The BLEU
score increased from that of the one-best hypothesis with the addition of
acoustic scores; however, no smooth transition could be found with increas-
ing densities, which indicates that source language model scores need to
be included in the translation system.

A closer analysis showed that the length of an utterance has an impact
on the improvements on the BLEU score. We therefore used a development
test set to find the best BLEU score improvements given the utterance
lengths, acoustic score weights, and lattice densities. Table 10.6 shows the
optimal settings for different utterance lengths.

The optimized parameters were finally applied to the test set and
resulted in a relative improvement over the baseline of 16.22%.

Finally, both ASR scores, the acoustic and the source language model
scores were included in order to identify paths in the word lattice that have
few recognition errors and, at the same time, represent good translation
hypotheses.

Figure 10.6. demonstrates the effect of adding both ASR scores to the
translation model and target language model scores.

For a lattice of density 4 and an ASR score weight of the 0.89, the
improvement of the BLEU score over the baseline is 12.71% (on the test
set). When adding source language model scores, the system was again
tuned separately for sentences of different lengths using a development set.

Table 10.6 Optimal density and acoustic score weight based on utterance
Iength. )

Words Optimal Acoustic Optimal Lattice
Weight Density
Short 1-5 0.0 8
Medium 6-10 0.22 3
Long 11-23 0.01 2
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Figure 10.6; Translation quality with and without ASR scores (acoustic model
and source language model scores).

The resulting optimal model scaling factors and lattice densities are shown
in Table 10.7. :

These optimal parameter settings are now much smoother than in the
previous case, in which only the acoustic model scores were used, indicat-
ing that adding the source language model makes the overall system more
robust and stable.

When applying those settings to unseen test data, an improvement of
21.78% in the BLEU score was achieved. Further tuning of the parameters
on the test set resulted in a relative improvement of 26.9% over the baseline.

Table 10.8 summarizes the results of the experiments in tight coupling

between speech recognition and translation.

Table 10.7 Optimal density and acoustic score weight based on utterance
length when using acoustic and source language model scores.

Words Optimal Acoustic Optimal Lattice
' Weight Density
Short 1-5 0.61 4
Medium 6-10 0.93 2
Long 11-23 0.89 3
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Table 10.8 Summary of translation results for tight coupling between recog-
nition and translation (D = lattice density).

BLEU Score Improvement
Baseline 16.8 -
Lattice (D=23) 14.2 —15.5%
with Acoustic Model (D =3) 18.0 7.3%
- Length specific 19.5 16.2%
with AC and Source LM (D=4) 18.9 12.7%
- Length specific 20.5 21.8%

10.4 Portable Speech-to-Speech Translation:
The ATR System

This section describes example-based and transfer-based approaches to
speech-to-speech translation (S2ST) in greater detail and exemplifies their
use in a complete speech-to-speech system—namely, the system developed
at ATR (Advanced Telecommunications Research Institute International)
in Japan. ATR was founded in 1986 as a basic research institute in cooper-
ation with the Japanese government and the private sector, and initiated a
research program on Japanese-English speech-2-speech translation (S25T)
soon afterward. This program has addressed not only S2ST approaches
proper but also the speech recognition, speech synthesis, and integration
components that are required for a complete end-to-end system. The first
phase of the program focused on a feasibility study of S2ST, which only
allowed a limited vocabulary and clear, read speech. In the second phase,
the technology was extended to handle “natural” conversations in a lim-
ited domain. The target of the current third phase is to field the S2ST
system in real environments. The intended domain of the system is dialog
applications.

While earlier phases of the research program were characterized
by hybrid rule-based and statistical approaches, the current technol-
ogy is heavily corpus-based and uses primarily statistical techniques to
extract information from linguistically annotated databases. The reason
is that corpus-based methods greatly facilitate the development of sys-
tems for multiple languages and multiple domains and are capable of
incorporating recent innovative technology trends for each component.
Domain portability is particularly important, since S2ST systems are often
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used for applications in a specific situation, such as supporting a tourist’s
conversation in non-native languages. Therefore, the S2ST technique
must include automatic or semiautomatic functions for adapting to spe-
cific situations/domains in speech recognition, machine translation, and
speech synthesis (Lavie et al., 2001b).

10.4.1 A Corpus-Based MT System

Corpus-based machine translation (MT) technologies were proposed in
order to handle the limitations of the rule-based systems that had formerly
been the dominant paradigm in machine translation. Experience has shown
that corpus-based approaches (1) can be applied to different domains;
(2) are easy to adapt to multiple languages because knowledge can be
automatically extracted from bilingual corpora using machine learning
methods; and (3) can handle ungrammatical sentences, which are common
in spoken language. Corpus-based approaches used at ATR include, for
example, Transfer-Driven Machine Translation (TDMT) (Furuse and Iida,
1994; Sumita et al., 1999), which is an exampled-based MT system based
on the syntactic transfer method. One current research theme is to develop
example-based translation technologies that can be applied across a wide
range of domains, and to develop stochastic translation technologies that
can be applied to language pairs with completely different structures, such
as English and Japanese. Example-based methods and stochastic methods
each have different advantages and disadvantages and can be combined
into a single, more powerful system.

Our overall speech-to-speech translation system is shown in
Figure 10.7. The system consists of three major modules: a multilingual

Speech Machiqe Speech
Recognition Translation Synthesis
English/Chinese Japanese
Utterances Utterances
Speech Machine Speech
Recognition Translation Synthesis

Figure 10.7: Block diagram of the ATR S2ST system.
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speech recognition module, a multilingual machine translation module,
and a multilingual speech synthesis module. These modules are designed
to process Japanese, English, and Chinese using corpus-based methods.
Each module is described in more detail below.

Multilingual Speech Recognition

The speech recognition component uses an HMM-based approach with
context-dependent acoustic models. In order to efficiently capture contex-
tual and temporal variations in the input while constraining the number of
parameters, the system uses the successive state splitting (SSS) algorithm
(Takami and Sagayama, 1992) in combination with a minimum descrip-
tion length criterion (Jitsuhiro et al., 2003). This algorithm constructs
appropriate context-dependent model topologies by iteratively identify-
ing an HMM state that should be split into two independent states. It
then reestimates the parameters of the resulting HMMs based on the stan-
dard maximum-likelihood criterion. Two types of splitting are supported:
contextual splitting and temporal splitting, as shown in Figure 10.8.
Language modeling in the multilingual speech recognizer is performed
by statistical N-gram models with word classes. Word classes are typically
established by considering a word’s dependencies on its left-hand and right-
hand context. Usually, only words having the same left-hand and right-
hand context dependence belong to the same word class. However, this

\ Contextual Splitting
ai,i, ai,iz
¢ @ aj i, @ v

=1-ayj,

Temporal Splitting

Figure 10.8: Contextual splitting and temporal splitting.
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word class definition is not adequate for representing the distribution of
words that have the same left-hand or right-hand context but not both, as
exemplified by the words “a” and “an.” The left-hand context of “a” and
“an” is almost equivalent; however, the right-hand context is significantly
different. Such differences are more common in languages with inflection,
such as French and Japanese. For example, the Japanese inflection form
has an influence only on the right-hand context, while the left-hand context
can be shared between the same words with different inflection forms.
We therefore use multidimensional word classes to represent left-
and right-hand context dependence separately (Yamamoto et al., 2003).
Multidimensional word classes can assign the same word class to “a”
and “an” to represent the left-context Markovian dependence (left-context
class), and assign them to different word classes to represent the right-
context Markovian dependence (right-context class). Each multidimen-
sional word class is automatically extracted from the corpus using statistical
information, rather than grammatical information such as part of speech.

Formally, this is defined as follows:
PWilwi—y 1. .. wi—) = P(C'w)I C™V Wiy 1), .. C2(Wima CTH(wi—1))

P(w;i|C'(wy)), C108)

where the suffix for class C is used to represent position-dependent
(left- and right-context) Markovian dependence. Here, Clw) represents
the left-context class to which the word w belongs, and C" i(w) represents
the right-context class to which the ith word w belongs. Hereafter, we refer
to these class N-grams based on multidimensional classes as multiclass

N-grames,

Multilingual Machine Translation

The translation engine (named C-cube, for “corpus-centered computa-
tion”) relies heavily on corpus-based technology. Translation knowledge
is extracted from corpora, translation quality is gauged and optimized
by reference to corpora, and the corpora themselves are paraphrased or
filtered by automated processes. Figure 10.9 shows an overview of the
machine-translation system developed in the C-cube project.

There are two main approaches to corpus-based machine translation:
(1) Example-Based Machine Translation (EBMT) (Nagao, 1984; Somers,
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> D-cube ‘l ‘
Input Translated

Y
> SAT

Figure 10.9: An overview of the machine translation system developed in the
C-cube project.

1999); and (2) Statistical Machine Translation (SMT) (Brown et al., 1993;
Knight, 1997; Ney, 2001; Alshawi et al., 2000; Wang and Waibel, 1998;
Och et al., 1999; Venugopal et al., 2003), which was already described
above. C-cube develops both technologies in parallel and blends them into
a single system. Three different machine-translation engines have been
developed in the course of this project: D-cube, HPAT, and SAT. D-cube
is a sentence-based EBMT engine. It retrieves the most similar example
of the input from example sentences using dynamic programming based
matching, and adjusts the gap between the input and the retrieved example
by using dictionary information (Sumita, 2001). HPAT is a phrase-based
EBMT engine.. Based on phrase-aligned bilingual trees, transfer patterns
are generated. According to these patterns, the source phrase structure
is obtained and converted to generate target sentences (Imamura, 2002).
SAT is the Statistical ATR Translator. It translates between Japanese and
English and builds on a word-based SMT framework. SAT is a developing
series of SMT models, which includes phrase-based translation (T. Watanae
and Sumita, 2002), chunk-based translation (Y. Akiba and Sumita, 2002),
and sentence-based greedy decoding (Watanae and Sumita, 2003). These
three systems have obtained good performance on Japanese and English
translation, and have recently been successfully applied to Japanese and
Chinese.

Sentence-Based EBMT

The ATR sentence-based EBMT approach relies on D3—a dynamic pro-
gramming transducer that exploits matching between word sequences
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(Sumita, 2001). Suppose we are translating a Japanese sentence into
English. The Japanese input sentence (1-j) is translated into the English sen-
tence (1-e) by utilizing the English sentence (2-€), whose source sentence
(2-j) is similar to (1-j). The common parts are unchanged, and the differ-
ent portions, shown in boldface, are substituted by consulting a bilingual

dictionary.

;s A Japanese input

(1-j) iro/ga/ki/ni/iri/masen

;;» the most similar example in corpus
(2-j) dezain/ga/ki/ni/iri/masen

(2-e) I do not like the design.

;;; the English output

(1-e) I do not like the color.

We retrieve the most similar source sentence example from a bilingual
corpus. For this, we use DP-matching, which computes the edit distance
between word sequences while simultaneously identifying the matched
portions between the input and the example. The edit distance is calculated
by summing the count of the inserted words, the count of the deleted words,
and the semantic distance value of the substituted words, normalized by
the sum of the lengths of the input and the source part of the translation
example. The semantic distance between two substituted words is calcu-
lated by using the hierarchy of a thesaurus (Sumita and Iida, 1991a). Thus,
the language resources required in addition to a bilingual corpus are a bilin-
gual dictionary, which is used for generating target sentences, and thesauri
of both languages, which are used for incorporating the semantic distance
between words into the distance between word sequences. Furthermore,
lexical resources are used for word alignment.

Phrase-Based EBMT

The second EBMT system is different from the first in that it parses bitexts
of a parallel corpus with grammars for both source and target languages.
Itincorporates a new phrase alignment approach called Hierarchical Phrase
Alignment (HPA), which was proposed by Imamura (2001). HPA retrieves
equivalent phrases that satisfy two conditions: (1) words in the pair cor-
respond with no deficiency and no excess; and (2) the phrases are of the
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same syntactic category. This was subsequently extended to HPA-based
translation (HPAT) (Imamura, 2001). HPAed bilingual trees include
all information necessary to automatically generate transfer patterns.
Translation is done according to transfer patterns using a Transfer-Driven
MT (TDMT) engine (Furuse and lida, 1996). Finally, a feedback cleaning
method (Imamura, 2003) is applied that utilizes automatic evaluation to
remove incorrect/redundant translation rules. The standard BLEU method
was utilized to measure translation quality for the feedback process, and a
hill-climbing algorithm was applied to search for the combinatorial opti-
mization. Finally, incorrect/redundant rules were removed from the set of
all rules initially acquired from the training corpus, which improved the
translation quality considerably.

Phrase alignment refers to the extraction of equivalent partial word
sequences between bilingual sentences. The term “phrase alignment” is
used since these word sequences include not only words but also noun
phrases, verb phrases, relative clauses, and so on.

For example, when the following bilingual sentence is given,

English: I have just arrived in New York.
Japanese: Nyuyooku ni tsui ta bakari desu.

the phrase alignment should extract the following word sequence pairs.

* in New York <> Nyuyooku ni
e arrived in New York <> Nyuyooku ni tsui
* have just arrived in New York <> Nyuyooku ni tsui ta bakari desu

We call these equivalent phrases and define this task as extracting phrases
that satisfy the following two conditions.

Condition 1 (Semantic constraint):

Words in the phrase pair correspond to no deficiency and no excess.
Condition 2 (Syntactic constraint):

The phrases are of the same syntactic category.

In order to extract phrases that satisfy the two conditions, correspond-
ing words—called word links, represented as WL(word,, word;)—are first
extracted by word alignment. Next, the sentence pair is parsed and phrases
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and their syntactic categories are acquired. Those phrases—which include
some word links, exclude other links, and are of the same syntactic
categories—are regarded as equivalent.

For example, in the case of Figure 10.10(a), NP (1) and VMP (2) are
regarded as equivalent because they only include WL(New York, Nyuyooku)
and are of the same syntactic category. In the case of WL(arrived, tsui),
VP (3) is regarded as equivalent, and in the case of both word links,
VP (4), AUXVP (5),and S (6) are regarded as equivalent. Consequently,
six equivalent phrases are extracted hierarchically.

Even though word links are available, the parts-of-speech (POS) of the
words are sometimes different in different languages, as shown in the sec-
ond example in Figure 10.10(b). In this case, the phrases that contain only
WL(fully, ippai) or only WL(booked, yoyaku) are not regarded as equiva-
lent because of the syntactic constraint, and VP (2) nodes are extracted
first. Thus, few unnatural short phrases are extracted as equivalent.

The problem besetting the method described above is that the result of
the phrase alignment directly depends on the parsing result. This problem
can be solved by using the following features and techniques.

Disambiguation Using Structural Similarity: As Kaji et al. (1992) and
Matsumoto et al. (1993) showed, some parsing ambiguities can be resolved
when the two languages are made to correspond. This disambiguation
utilizes structural similarity. For example, a PP attachment in English is
ambiguous as to whether it modifies a noun or a verb, but this is nearly
always definite in Japanese. Hence, when the attachment is assumed
to modify the same word, the ambiguity is resolved. Accordingly, the
structures between the two languages become similar.

We employ a phrase correspondence score to measure structural sim-
ilarity. This measure is calculated by counting the phrases that satisfy the
above two conditions. The parsing candidate that has the maximal score is

selected.

Combination of Partial Trees: Partial parsing is an effective way to avoid
a lack of grammar or to parse ungrammatical sentences. It is used to com-
bine partial candidates in the parser. Therefore, a criterion as to whether the
part is valid or not is necessary for the combining process. We utilize the
phrase correspondence score as the criterion, and a partial tree sequence
that maximizes the sum of the phrase correspondence scores is searched for.
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s(6)

AUXVP (5)

VP(4)
VMP(2)
VP(3) NP(l)
- =

have  just

NP(l) VP(3)
VMP(Z)
VP (4)

AUXVP (5)
s(6)

(a) Example of Simple Translation

s(3)

AUXVP
vp ( 2)

(b) Example of Different POS Translation

Figure 10.10: Examples of Hierarchical Phrase Alignment (top and bottom trees
denote English and Japanese, respectively; lines between languages denote word
links).
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Syn. Cat.| Source Pattern Target Pattern| Source Example
VP XpatYyp = Y deX’ (present, conference)
Y niX (stay, hotel), (arrive, p.m.)
Y wo X (look, it)
NP Xpp 8t Yy = Y noX {man, front desk)

Figure 10.11: Examples of transfer rules in which the constituent boundary
is “at.”

The forward DP backward A* search algorithm (Nagata, 1994) is employed
to speed up the combination.

Transfer Driven Machine Translation (TDMT)

The Transfer Driven Machine Translation system, or TDMT (Furuse and
Iida, 1994; Sumita et al., 1999), used here is an example-based MT system
(Nagao, 1984) based on the syntactic transfer method (called transfer-
based MT).

Transfer rules of TDMT represent the correspondence between source
and target language expressions. These are the most important kinds of
knowledge in TDMT. Examples are shown in Figure 10.11 that include the
preposition “at.” In this rule, source language information is constructed by
a source pattern and its syntactic category. The source pattern is a sequence
of variables and constituent boundaries (functional words or part-of-speech
bigram markers). Each variable is restricted by a syntactic category using
daughter rules. Namely, source language information is equivalent to a
context-free-grammar such that the right side of each rewrite rule absolutely
contains at least one terminal symbol.

Target patterns are similarly constructed with variables and constituent
boundaries, but they do not have POS bigram markers. In addition, each
rule has source examples, which are instances of variables. The source
examples are head-words acquired from training sentences. For instance,
the first rule of Figure 10.11 means that the English phrase “present at (the)
conference” was translated into the Japanese phrase “kaigi (conference) de
happyo-suru (present).”

At the time of translation, the source sentence is parsed using source
patterns. Then, the target structure, which is mapped by target patterns, is
generated (Figure 10.12). However, as shown in Figure 10.11, one transfer
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__________________________ - ni
b!l.\‘ M \ ;\‘*z / \ ,
X PRQPN Y X a.m. bass ’X H?} ‘Y Vo )T
AN I \\ "bus" /:' I Ji ; wo
> Tl Bt "o’clock” /.
leaves Kyolo-._ eleven T 11 SR Wa
. Juichi S Kyoto  deru
"eleven"  _.* "Kyoto" "leave"

Figure 10.12: Example of TDMT transfer process.

rule has multiple target patterns. In order to select the appropriate tar-
get pattern, semantic distances (node distances on the thesaurus; refer to
Sumita and lida (1991b)) are calculated between the source examples and
the daughter head-words of the input sentence, and the target pattern cor-
responding to the best matching example is selected. Therefore, each rule
also has head information.

For example, when the input sentence “The bus leaves Kyoto at eleven
a.m.” is given, the source pattern (X at Y) is used. Then, the head-word
of the variable X is “leave” and Y is “a.m.” According to the semantic
distance calculation, the source example (arrive, p.m.) is the closest match.
Therefore, the target pattern (Y’ ni X’) is selected. The semantic distance
is also applied to parsing disambiguation.

Application of HPA Results for TDMT

The transfer rules described previously are constructed by source patterns
that include their syntactic category, target patterns, source examples, head
information, and local dictionaries. They are generated as follows from the
HPA results (Figure 10.13).

1. First, the result of HPA is transformed into a structure that can
construct transfer rules.

« If an input word sequence includes continuous content words,
insert a bigram marker in the intermediate of the content words.
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(2) Tree structure after transformation

Figure 10.13: Example of transfer rule generation
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The bigram marker is an artificial word, which works as a
functional word when the translator parses the input sentence.

* Ifthe edges of a word link are content words and are of the same
POS types, a new word-level correspondence is added. The
function of this correspondence is to translate unseen words
by referring to the translation dictionary.

In Figure 10.13, the correspondences (a)N and (b)NUM
are supplied from the word links WL(bus/N, basu/N) and
WL(11/NUM, 11/NUM).

» When the source pattern is generated, the correspondence is
removed if variables are continuous because TDMT does not
accept the series of variables. In Figure 10.13, (6)VMP is
removed.

 Allnodes that do not have correspondences are removed except
for the top node.

2. Next, source patterns, target patterns, source examples, head
information, and local dictionaries are created as follows.

e Source patterns and target patterns are generated from the
correspondences. The patterns are generalized by regarding
daughter corresponding nodes as variables.

» Head information is acquired from grammar, and source exam-
ples are identified by tracing the parsing tree to the head
branch.

e Local dictionaries are created by word links and by extracting
leaf equivalent phrases in which the source phrase contains
only a word.

In addition, because the inputs of phrase alignment are aligned sen-
tences, sentence correspondences are added to the phrase alignment results
as equivalent when the top nodes of the trees do not have a corres-
pondence.

When the result of HPA is given (as shown in Figure 10.13), five rules
are generated (as shown in Figure 10.14). Note that rules are not generated
from the correspondences (2) VP, (3)NP, (a)N, and (b)NUM because
they are output to the local dictionaries.
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Syn. Cat.| Source Pattern Target Pattern | Source Example
(8) s Xep<N-V>Yy, = X'waY’ | (bus, leave)
(7) VP | Xy atYy = Y’ niX’ | (leave, a.m.)
(5) VP |X,p<V-PROPN>Y,, = Y’ woX” | (leave, Kyoto)
=
=

(1) ~p the X, X’ (bus)
(4) NP Xyou @M. X’ji (11)

Figure 10.14: Example of generated rules from the sentence “The bus leaves
Kyoto at 11 a.m.”

SAT (Statistical ATR Translator)

As described above the framework of statistical machine translation for-
mulates the problem of translating a sentence of language J into another
language E as the maximization problem of the conditional probability
E= argmaxy P(E|J) (Brown et al., 1993b). The application of the Bayes
rule resulted in £ = argmaxy P(E)P(J|E). The former term P(E) is called
a language model, representing the likelihood of E. The latter term PU|E)
is called a translation model, representing the generation probability from
Einto J.

Under this concept, Brown et al. (1993b) presented a translation model
in which a source sentence is mapped to a target sentence with the notion
of word alignment.! Although it has been successfully applied to similar
language pairs, such as French-English and German-English, little success
hasbeen achieved for drastically different language pairs, such as Japanese-
English. The problem lies in the huge search space resultin g from frequently
occurring insertion/deletion, the larger numbers of fertility for each word,
and the complicated word alignments. Due to its complexity, a beam search
decoding algorithm often leads to suboptimal solutions.

Word alignment based statistical translation represents bilingual cor-
respondence by the notion of word alignment A, allowing one-to-many
generations from each source word. A is an array for target words describ-
ing the indices to the source words. For instance, Figure 10.15 illustrates
an example of English and Japanese sentences, E and J , with sample word
alignments A. In this example, the “show;” has generated two words,

IThe source/target sentences are the channel model’s source/target that correspond to the
translation system’s output/input.
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E=NULL, show, me, the; one, ing theg  windowsy

J= uindo, no, shinamono; 0, mise; tekudasaig

A= ( 7 0 4 0o 1 1 )

Figure 10.15: Example of word alignment.

“mises” and “tekudasaig.” The word alignment assumption, the translation
model P(J|E), can be further decomposed without approximation:

PU|E) =) _P(J,AlE)
A

The word alignment based statistical translation model was originally
intended for similar language pairs, such as French and English. When
applied to Japanese and English, for instance, the resulting word align-
ments are very complicated, as seen in Figure 10.15. The complexity is
directly reflected by the structural differences—that is, English takes an
SVO structure while Japanese usually takes the form of SOV. In addition,
insertion and deletion occur very frequently as seen in the example.

Example-Based Decoder

Instead of decoding word-by-word and generating an output string word-
by-word, as seen in beam search strategies, Watanabe and Sumita (2003)
proposed an alternative strategy taken after the framework of example-
based machine translation: Retrieve a translation example from a parallel
corpus whose source part is similar to the input sentence, then slightly
modify the target part of the example so that the resulting part becomes the
actual translation (see to Figure 10.16).

Retrieval of Translation Examples

Given an input sentence Jy, the retrieval process looks up a collection of
translation examples {(J1, E1), (J2, E2), . . . }, where Jy is similar to Jo using
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Figure 10.16: Example-based decoding.

the edit distance criteria, penalizing an insertion/deletion/substitution with
one editing step. A simple implementation of the multiple alignment prob-
lem resulted in an NP-hard problem in which Dynamic Programming (DP)
algorithms should be applied to all the examples in a bilingual corpus. An
additional problem results from the fact that the DP matching criteria does
not reflect the closeness of two sentences. For instance, the sentence “I’m
a computer system engineer”” can match many examples—such as “I’m a
graduate student” or “I’m an engineer”—with the same edit distance of 3.
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In order to overcome those problems, a tf/idf criterion was introduced
to search for the relevant examples by treating each example as adocument.
Particularly, when given an input Jg, the decoder first retrieves N,(< N)
relevant translation samples {(J1, E1), (J2, E2), . . .} using the tf/idf criterion,
as seen in the information retrieval framework (Manning and Schiitze,
1999):

log(N/df (Jo, 1))/ log N

P do) =Y ol

iJo,i€Jk

b

where Jp,; is the ith word of Jo, df (Jo,;) is the document frequency for the
word Jo ;, and N is the total number of examples in a bilingual corpus.
Note that the frequency is set to 1 if the word exists in Ji, otherwise 0; and
tf/idf scores are summed and normalized by the input sentence length.

Then, for each sample (Ji, Ex), DP matching is performed against Jy to
compute the edit distance:

dis(Jx, Jo) = 1(Jx, Jo) + DUk, Jo) + Sk Jo),

where k < N, and I(Jy, Jo), D(J, Jo), and S(Ji, Jo) are the number of inser-
tions, deletions, and substitutions, respectively. All samples are scored by
the following criteria:

_ __ dis(Jy, Jo)
(1.0 — @)(1.0 — 2kl

score = +oPisriar (Jx, Jo)

1.0 otherwise

dis(Ji, Jg) > 0

In this scoring, dis(Ji,Jo) is transformed into the word error rate by nor-
malization with the input length |Jy|, then subtracted from 1 to derive the
correction rate. The correction rate is linearly interpolated with the nor-
malized tf/idf score with a tuning parameter o that was set to 0.2 in the
experiments. Note that when the distance of the input sentence and the
source part of an example is zero, the example is treated as an exact match
and is scored as one.
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Modification of Translation Examples

After the retrieval of similar examples {(J1, E}), (J2, E), . .}, the modifica-
tion step tunes the sample translations according to a statistical translation
model. In this step, the greedy algorithm was applied, originated in
Germann et al. (2001). However, it differs in that the search starts from the
retrieved translation example, not from a guessed translation.

For each translation example (Ji, Ey),

1. Compute the Viterbi alignment Ay, for the pair (Jy, E;)
2. Perform the hill-climbing algorithm for (Jy,A, E;) to obtain
(Jo, A}, E} ) by modifying Ay and Ej

Ay is computed through hill climbing by rearranging particular word align-
ments as proposed by Brown et al. (1993b). When the retrieved samples
contain an exact match scored as one, the search terminates and returns the
retrieved examples with the highest probability together with the Viterbi
alignment.

When the samples are not an exact match, the decoder performs
hill climbing, modifying the output and alignment for a given example
(Jo,A, E), where A is the word alignment initially assigned by the Viterbi
alignment and E is the target part of the example. In this greedy strategy,
the operators applied to each hill-climbing step are:

* Translate words: Modify the output word Ey; to e aligned from Jy - If
¢ =NULL then Jy; is aligned to NULL and A; = 0. When the fertility
of Ey4; becomes zero, the word Ejy; is removed. e is selected from
among the translation candidates, computed from the inverse of the
lexicon model (Germann et al., 2001).

* Translate and insert words: Perform the translation of a word, and
insert a sequence of zero fertility words at appropriate positions. The
candidate sequence of zero fertility words is selected from the Viterbi
alignment of the training corpus (Watanabe and Sumita, 2002).

* Translate and align words: Move the alignment of A; to i and modify
the output word from E; to e. ‘

* Move alignments: This operator does not alter the output word
sequence, but modifies the alignment A through moving/swapping
(Brown et al., 1993b).
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e Swap segments: Swap nonoverlapping subsets of E by swapping a
segment from iy to {1 and from ij to i3. Note that i1 < is.

e Remove words: Remove a sequence of zero fertility words from E.

e Join words: Join words of E; and Ey when the fertility of both of the
words is more than or equal to one.

For each hill-climbing step, the decoder tries all the possible operators,
then selects the best step for the next iteration. The hill-climbing operators
were taken from Germann et al. (2001), but two new operators were added:
the “translate-and-align-words,” and the “move-alignment.” If at the first
step of computing the Viterbi alignment an input word is found for which
no translation exists among the retrieved samples, this word will either be
aligned to NULL or to an irrelevant word, raising the fertility. Therefore, the
translate-and-align operator can force it to move the alignment to another
word and to choose the right word-for-word translation using the lexicon
model. Similarly, the move-alignment operator can resolve the problem by
simply alternating the existing word alignments.

Selector Approach

Today, no single system can translate everything. The translation qual-

ity changes from sentence to sentence and system to system. Since each
system has its own strengths for translating particular kinds of sentences,
the differences in quality can be substantial. The translations provided by
multiple engines are often complementary. Thus, we could obtain a large
increase in accuracy if it were possible to select the best out of different
translations for each input sentence.

We adopted a selector approach, as shown in Figure 10.9, by using both
the language and translation models of SMT (Akiba et al., 2002). The selec-
tor outperformed conventional selectors using only the language model
(the target N-gram in the experiment with the three previously mentioned
machine translation systems).

Although it is likely that the selector based on SMT models always
favors SMT, that was not true for this experiment. This suggests that
although an SMT engine fails to produce good translation under time and
space restrictions, SMT models can be used as a good measure for compar-
ing the quality of multiple translations. The second suggestion is amplified



366 CHAPTER 10. SPEECH-TO-SPEECH TRANSLATION

to a general framework in that a translation system can be divided into two
parts: (1) a generator of translation candidates and (2) a selector of the best
one by using automatic quality evaluation. This contrasts with a conven-
tional system, which often determines a single translation in a deterministic
fashion. The emphasis here lies on focus on the independence of quality
evaluation as an automated process, and the fact that an SMT model works
well as an evaluator.

The selector scheme is an easy-to-implement method of improving
overall performance, since there is no need to investigate the com-
plex relationships between the resources and processes of the component
MT systems by hand. This simplifies the development process because
each element MT system can be improved without any consideration
of the other components, and this loosely coupled system automatically
boosts the performance of the whole system by exploiting the elemental

improvements.

Multilingual Text-to-Speech

The synthesis component of the S2ST system is based on the concatenative
synthesis approach (see Chapter 7). As one of the pioneers in corpus-based
speech synthesis technology, ATR has made contributions to the progress
of the technology through various studies, which have led to the develop-
ment of three text-to-speech (TTS) systems, namely v-talk (Sagisaka et al.,
1992b), CHATR (Black and Taylor, 1994), and XIMERA, which is cur-
rently under development. The framework of XIMERA is essentially the
same as that of CHATR, v-talk, and other corpus-based TTS systems. The
general aim is to achieve a substantial improvement in naturalness through
the optimization of the component technologies of TTS.

Ablock diagram of XIMERA is shown in Figure 10.17. Similar to most
concatenative TTS systems, XIMERA is composed of four major modules,
namely a text processing module, a prosodic parameter generation module,
a segment selection module, and a waveform generation module.

The target languages of XIMERA are Japanese and Chinese. Although
the framework of corpus-based synthesis is language independent, most
modules, in reality, must be developed or tuned toward the target language.
Language dependent modules include the text processing module, acoustic
models for prosodic parameter generation, speech corpora, and the cost
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Figure 10.17: A block diagram of a TTS module.

function for segment selection. The search algorithm for segment selection
is also related to the target language via the cost function.

Although emotion and speaking style variations are indispensable
for achieving a speech synthesizer that can be used in place of
humans, XIMERA is currently focused on a normal reading speech
style suitable for news reading and emotionless dialog between man and
machine.

The prominent features of XIMERA are: (1) its large corpora (a 110-
hour corpus of a Japanese male, a 60-hour corpus of a Japanese female,
and a 20-hour corpus of a Chinese female); (2) HMM-based generation
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of prosodic parameters (Tokuda et al., 2000); and (3) a cost function for
segment selection, optimized on perceptual experiments (Toda et al., 2004).

Text Processing and Speech Corpora

The text processing module consists of three submodules for morphological -

analysis, rough syntactic analysis, and pronunciation and accent genera-
tion. The morphological analysis is conducted based on a bigram language
model and a morpheme dictionary consisting of 239,591 Japanese and
195,959 Chinese entries. The rough syntactic analysis determines (1) a
dependency between adjacent words, which is mainly used for F genera-
tion, and (2) clause boundaries, which are mainly used for pause insertion.
The pronunciation generation determines the readings of homographs and
euphonic changes of unvoiced to voiced sounds. The accent generation
determines the accent type of an accentual phrase based on accent types
and the accent concatenation features of the constituent morphemes. In

terms of the dichotomy of corpus-based versus noncorpus based, the first

two subprocesses are corpus-based technologies while the latter one is not.

Three large-scale single-speaker speech corpora were collected. One
corpus of Japanese male of 111-hour length, one corpus of Japanese female
of 60-hour length, and one corpus of Chinese female of 20-hour length.
The contents of the Japanese corpora include news, novels, and travel
conversations. The travel conversations were uttered in a reading style.
The given corpus size in hours include speech pauses within utterances
but not between utterances. The speakers were professional narrators. The
recordings took 181 days over a span of 973 days (Japanese male corpus),
95 days over a span of 307 days (Japanese female corpus), and 32 days
over a span of 63 days (Chinese female corpus). The speech was recorded
in a soundproof room. To obtain high signal-to-noise ratio (SNR), a large
diaphragm condenser microphone with a cardioid directional pattern was
used. The speech data were digitized at a sampling frequency of 48 kHz
with 24-bit precision, recorded onto a hard disk. After reading errors were
removed by human inspection, speech data were separated into utterances,
high-pass filtered at 70 Hz, precision-converted down to 16 bits after ampli-
tude adjustment, and stored in files. Phonemic transcriptions in katakana
characters were also inspected and corrected by humans. Phone segmenta-
tion was conducted automatically by using speaker-dependent monophone
HMMs. The results were not corrected manually.
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Generation of Prosodic Parameters

Prosodic parameters, namely Fo, phone duration, and power, are gener-
ated applying the HMM-based speech synthesis algorithm (Tokuda et al.,
1995, 2000). Japanese speech is modeled with context-dependent HMMs
of 42 phonemes consisting of five states each, while Chinese speech is
modeled with context-dependent HMMs of 60 initials and finals. The gen-
erated prosodic parameters are sent to the succeeding module to be used
as targets for segment selection.

Cost Function

The cost function of a sentence for segment selection is given by
1
Co=5 Zl Cilai, 17, (10.9)
=

where N denotes the number of targets in the sentence, C; denotes a local
cost at the target #;, and u; and #;, respectively, denote the ith target and
segment candidate. Power p was determined to be 2 as a result of perceptual
experiments (Toda et al., 2003). The local cost is given by

Ci(ui, t;) = wro - Cro(Ui, ;) + Waur + Caur (i, 1i)
+ Ween + Ceen(Ui, ti) + WEoc - Croc(ui, 1)
+ Weny + Cenv(tti, i) + Wipg * Cspg(uia 1), (10.10)

where Cro(u;, 1), Caur(uti, 1;), and Ceen(u;, t;), respectively, denote errors in
Fo, segment duration, and spectral centroid between the target and a seg-
ment candidate (target costs). On the other hand, Croc (i, ), Cen(1is t),
and Cjpg(u;, 1;), respectively, denote discontinuities of Fy, phonetic envi-
ronment, and spectrum between adjacent segments (concatenation costs).
WFEQs Wdurs Weens WFOc> Weny, and wgpg are corresponding weights for the
local costs. Mappings from acoustic measures into the above local costs

and weights were optimized based on perceptual experiments (Toda et al.,
2004).
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10.4.2 Multilingual Corpora

ATR has been constructing three different types of corpora in the travel
domain in addition to speech databases for training acoustic models: (1) a
large-scale multilingual collection of basic sentences that covers many top-
ics in travel conversations, called BTEC (Basic Travel Expression Corpus)
(Takezawa etal., 2002); (2) a small-scale bilingual collection of spoken sen-
tences that reflects the characteristics of the spoken dialogs, called SLDB
(Spoken Language Database) (Morimoto et al., 1994); and (3) a small-scale
corpus of the MT-assisted dialog, called MAD (Kikui et al., 2003). The
first one is used to train the multilingual translation component; the second
one is used to link spoken sentences to basic sentences, and the third one

is used mainly for evaluation of S2ST.

Basic Travel Expression Corpus (BTEC)

The Basic Travel Expression Corpus (BTEC) was designed to cover utter-
ances for all potential topics in travel conversations, together with their
translations (Kikui et al., 2003). Since it is almost infeasible to collect them
through transcribing actual conversations or simulated dialogs, sentences
from the memories of bilingual travel experts are used. We started by inves-
tigating phrase books that contain bilingual (in our case Japanese-English)
sentence pairs that experts consider useful for tourists traveling abroad.
We collected these sentence pairs and rewrote them to make translations as
context independent as possible and to comply with our speech transcrip-
tion style. Sentences outside of the travel domain or those containing very
special meanings were removed.

Table 10.9 shows the basic statistics of the BTEC collections, called
BTECI, 2, and 3. Each collection was created with the same procedure in
a different time period. We used a morpheme as the atomic linguistic unit
for Japanese (instead of a word), since the morpheme unit is more stable
than the word unit. This table shows that the BTEC sentences are relatively
short and contain duplications. '

Since the BTEC sentences did not come from actual speech conversa-
tion, we were able to efficiently create a broad coverage corpus; however,
it has two potential problems. First, the corpus may lack utterances that
appear in real conversation. For example, when people ask the way to a
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Table 10.9 Size of BTEC and SLDB.

BTECI1 | BTEC2 BTEC3 | Total (BTEC) | SLDB
Utterances (E)
# of tokens 175,512 | 46,288 198,290 420,070 | 16,110
# of types 102,869 | 37,791 141,504 254,766 | 14,266
Words (E)
# of tokens 1,089,570 | 311,537 | 1,316,188 2,717,295 | 199,951
# of types 14,725 | 11,796 22,925 27,998 4,544
Words per
Utterance (E) 6.21 6.73 6.64 6.47 12.75
Utterances (J)
# of tokens 172,468 | 46,268 198,290 417,026 | 16,110
# of types 108,612 | 36,869 143,454 264,401 | 14,259
Morphemes (J)
# of tokens 1,181,763 | 341,353 | 1,434,175 2,957,291 | 204,894
# of types 20,363 | 15,081 31,155 39,316 5,765
Morphemes per
Utterance (J) 6.85 7.38 7.25 7.09 12.75

bus stop, they often use a sentence like (1). However, BTECI contains (2)
instead of (1).

(1) I'd like to go downtown. Where can I catch a bus?
(2) Where is a bus stop (to go downtown)?

The second problem is that the frequency distribution of the corpus may
be different from the “actual” one. In this corpus, the frequency of an
utterance (indirectly) corresponds to how many travel experts came up
with this sentence and in how many situations they think the sentence will
appear. Therefore, it is possible to think of this frequency distribution as a
first approximation of reality, but this is an open question.

BTEC was used as test sentences for evaluating various S2ST systems
at IWSLT (International Workshop for Spoken Language Translation), held
at ATR in October 2004.

ATR is expanding the volume of BTEC by about one million English-
Japanese sentence pairs and creating Chinese-Japanese sentence pairs by
translating from English/Japanese to Chinese.
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Spoken Language Database (SLDB)

For a comparison of the features of expressions in BTEC and utterances
in real conversation, we employed an existing corpus, SLDB. SLDB con-
sists of simulated dialogs between a hotel clerk and a tourist. We used
a Japanese speaker and an English speaker to achieve some dialog tasks
(e.g., to book a hotel room) through conversation mediated by two pro-
fessional interpreters: one translating from Japanese to English, the other
from English to Japanese. Thus, this corpus can be seen as a collection of
bilingual dialogs using ideal S2ST systems.

The statistics of SLDB corpora are also seen in Table 10.9. The number
of utterance tokens are the same for each language since the utterances
were translated simultaneously.

The travel conversation task was selected for the SLDB corpus because
of its familiarity to people and its expected use in future speech translation
systems. The interpreters speak English and Japanese in all of the conver-
sations and take the role of the speech translation system. One remarkable
characteristic of the database is the integration of speech and linguistic data.
Each conversation comprises recorded speech, transcribed utterances, and
their correspondences.

In creating SLDB, we have tried to collect conversations consisting of
speech and sentences that are acceptable for a speech translation system in
the near future. For that reason, we have imposed the following constraints

on utterances and turns.

1. A speaker can only speak when it is his/her turn. When a speaker
wants to stop speaking and listen to a response, he/she actively
transfers the speaking permission to the other speaker.

2. Each utterance must be concluded in ten seconds or less, and is then
sent to an interpreter.

3. The interpreter translates the speaker’s utterance and conveys it to
the other speaker. The speaker’s utterance is translated consecutively
rather than simultaneously, so that the length of the interpreter’s
utterance is almost the same as the speaker’s original utterance. This
is also done to resemble the output of speech translation systems in
the near future.

‘4. 'When a speaker cannot finish what he/she wants to say within the ten
seconds, he/she must use several utterances of ten seconds or less.
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Each utterance (or translation) continues until the speaker transfers
his/her speaking permission (or alike).
5. No interruption of a speaker (or interpreter) is allowed.

With the above constraints, we can avoid extremely long sentences and
overlapping of utterances. All human interpreters were professionals result-
ing in a high translation quality that never caused mistranslations during
the conversations.

According to our transcribed bilingual text, all of the expressions in both
English and Japanese are acceptable if we consider that they are spoken
languages.

As previously noted, SLDB can be seen as a collection of bilingual
dialogs using ideal S2ST systems. However, utterances in SLDB have
different characteristics from utterances collected from conversation in
a real environment. This can be observed when comparing SLDB to a
Japanese monolingual travel conversation database, “The Travel Arrange-
ment Task (TRA),” with conversations collected using similar scenario
settings and the same recording conditions for robust speech recognition
research (Nakamura et al., 1996; Takezawa et al., 1998a). Table 10.10
shows the characteristics of the bilingual and monolingual travel con-
versation databases. The frequency of filled pauses and the frequency of
self-repairs of the bilingual travel conversation database are less than those
of the monolingual travel conversation database. Several constraints may

Table 10.10 Characteristics of bilingual and monolingual travel conversation
databases.

Conversation style Bilingual J-E) | Monolingual (J-J)

Number of collected conversations 618 892

Speaker participants 71 499

Interpreter participants 23 0

Total number of utterances 16,107 22,874

Total number of Japanese words 301,961 491,159

Utterances including one filled 24% 42%
pause or more ‘

Utterances including one self-repair 3% 6%
or more

Average unit length (per utterance) 30 morae 35 morae
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cause these significant differences. The situations in the Japanese mono-
lingual conversation database involve direct communications between two
Japanese speakers, but the bilingual situations involve indirect commu-
nications. When collecting conversations, the turn-around time is much
longer for the bilingual case than for the monolingual case, such that the
speakers in the bilingual case may have more than enough time to consider
what to say and how to say their next utterances.

MT-Assisted Dialogs (MAD)

The lastapproach is intended to collect representative utterances that people
will input to S2ST systems. For this purpose, we carried out simulated (i.e.,
role-play) dialogs between two native speakers of different mother tongues
using a Japanese-English bidirectional S2ST system instead of human inter-
preters. We replaced the speech recognition modules with human typists for
most parts of the dialogs in order to concentrate on the effects of MT by cir-
cumventing communication problems caused by speech recognition errors
(Takezawa and Kikui, 2003). In this case, the resulting system is consid-
ered equivalent to using an S2ST system whose speech recognition part is
almost perfect. The environment with human typists is somewhere between
the “Wizard of Oz” approach used in Verbmobil (Jekat and Hahn, 2000)
and in creating the SLDB, which replaced the entire S2ST process with
humans, and an approach that relies only on an S2ST system (Costantini
et al., 2002). In order to investigate the effects of including speech rec-
ognizers, we substituted real speech recognizers for human interpreters in
some dialogs. An overview of the data collection environment is shown in
Figure 10.18.

Translation quality generally depends on the linguistic and acoustic
properties of the training and test corpora. We have carried out five sets
of simulated dialogs so far, changing the complexity of the task that the
speakers needed to carry out and the instructions given to the speakers.

We divided the dialog tasks into three classes: simple, medium, and
complex. A task in the simple class consisted of a single request to which a
simple answer was expected, such as “asking an unknown foreigner where
a bus stop to downtown is.” The medium class tasks included two or three
negotiations, each requiring two or three utterance turns, such as ordering
meals at a restaurant by asking today’s special. A task in the complex
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Figure 10.18: Data-collection environment of MAD.

class consisted of mutually dependent sequences of information exchange.
A typical example is planning a guided tour through a conversation with
a travel agent.

The MAD corpus consists of five sets of dialogs. The first set of
dialogs (MAD1) was collected to see whether conversation through a
machine translation system is feasible. The second set (MAD2) focused
on task achievement by assigning complex tasks to participants. The
third set (MAD3) contained carefully recorded speech data using medium
complexity. The fourth set (MAD4) aimed at investigating the relations
between instructions and utterances. For this set, we gave different types
of instructions before starting the dialog. The least restrictive instruction
was something like “Speak loudly and clearly,” whereas a more restrictive
one was “Try to divide utterances into sentences that include one topic in
one sentence.” For the final set (MADS), we controlled extra information
given to speakers, such as the translated text displayed on a PDA, to see
whether the information affected the dialogs.

Table 10.11 shows a summary of the five experiments, MAD1-MADS.
In this table, the number of utterances includes both Japanese and English.
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Table 10.11 Statistics of MAD corpora.

Subset ID MADI1 | MAD2 | MAD3 | MAD4 [ MAD5
# of utterances 3022 1696 2180 1872 1437

# of morphs per utterance | 10.0 12.6 11.1 9.82 8.47

# of utterances per dialog | 7.8 49.3 18.8 22.0 27.0
Task Complexity Low High | Medium | Medium | Medium

Average numbers depend on experimental conditions

10.4.3 Component Evaluation

Japanese Speech Recognition

The ML-SSS algorithm and the MDL-SSS algorithm were compared to
create Japanese context-dependent HMMs. As described in the previous
sections, the resulting acoustic models can capture both contextual and
temporal variations, while decision-tree clustering can capture contextual
variations only. Furthermore, the MDL-SSS algorithm can estimate the
best model almost automatically, while the ML-SSS algorithm needs to
find the best parameters via experiments.

For the acoustic training set, we used the Japanese travel dialogs in
“The Travel Arrangement Task (TRA).” We also used 503 phonetically
balanced sentences (BLA) read by the same 407 speakers of the TRA.
TRA includes about 5 hours of speech, and BLA includes about 25 hours
of speech. The TRA corpus includes many expressions that are similar to
those of the BTEC, and the BLA corpus is helpful for creating Japanese

standard phoneme models.
The analysis conditions were as follows: The frame length was 20 ms

and the frame shift was 10 ms; 12-order MFCC, 12-order AMFCC, and A
log power were used as feature parameters. The cepstrum mean subtraction
was applied to each utterance. We used 26 Japanese phonemes and silence.
Table 10.12 shows the phoneme units for the Japanese ASR.

Table 10.12 Phoneme units for Japanese ASR.

Vowels a,i,ue,0
Consonants b,ch,d, g, f, h,j,k,mn,ngp,q,r,s,sh,t,ts, w, z, zh




10.4. PORTABLE SPEECH-TO-SPEECH TRANSLATION 377

The silence model with three states was built separately from the
phoneme models. Three states were used as the initial model for each
phoneme. The scaling factors C. = 2,C; = 20 were used for the MDL-
SSS. After a topology was obtained by each topology training method,
mixture components were increased, and a five Gaussian mixture model
was created.

The transcriptions of the BTEC and SLDB corpus were used to create
language models. The training databases included 6.2 million words. A
word bigram model, a word trigram model, and a Multi-Class Composite
(MCC) bigram model were created. The MCC bigram model included
4,000 classes for each direction. The size of the lexicon was 54,000 words,
and the number of extracted composite words was 24,000 words. For recog-
nition, the gender-dependent acoustic model and the MCC bigram model
were used in the first pass, and the word trigram model was used to rescore
word lattices in the second pass.

For the test set, the Japanese test set 01 of the BTEC was used, which

" contains 510 sentences. As a speech database, we collected utterances by

20 males and 20 females. Each speaker uttered 102 utterances included in
the test set 01.

As Table 10.13 shows, the perplexity of the MCC bigram model lies
between the word bigram and the word trigram model.

Table 10.14 shows the recognition performance represented by word
accuracy (WA) rates for the Japanese BTEC test set 01. The model with
2,086 states, created by the MDL-SSS, using scaling factors C; = 2,

Table 10.13 Perplexity for Japanese BTEC test set 01.

word 2-gram word 3-gram MCC 2-gram
30.64 17.45 24.81

Table 10.14 Recognition performance for Japanese BTEC test set 01.

#states WA([%]
ML-SSS 2,100 (max state length = 4) 94,51
MDL-SSS 2,086 (C; =2,Cy = 20) 94.41
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Table 10.15 Word accuracy rates [%] for two different language model
combinations (the MDL-SSS acoustic model).

Model Word 2-gram MCC 2-gram
3-gram Rescore No Yes No Yes
Acc.(%) 91.98 93.84 93.37 94.41

C: = 20, obtained almost the same performance as that with 2,100 states
created by the ML-SSS.

Table 10.15 shows the word accuracy rates by two combinations of lan-
guage models. For the first-pass search, one used the word bigram model
and the other used the MCC bigram model. Furthermore, both of them
used the word trigram model for rescoring in the second pass search. The
acoustic model was the same as the MDL-SSS model with scaling factors
Cc = 2, C; = 20inTable 10.14. The MCC bigram model obtained a 17.3%
error reduction rate compared to the word bigram model, and the combi-
nation of the MCC bigram mode! and the word trigram model obtained a
9.25% error reduction rate compared to the combination of the word bigram

model and the word trigram model.

English Speech Recognition

In contrast to the Japanese speech recognition system, in-domain acoustic
training data were not available at the first stage of developing the acoustic
mode] of the English speech recognition system. However, as Lefevre et al.
(2001) demonstrated, out-of-domain speech training data do not cause sig-
nificant degradation of system performance. In fact, it was found to be more
sensitive to the language model domain mismatch. Thus, we chose the Wall
Street Journal (WSJ) corpus for acoustic model training, since we needed
a speech database that was large enough and that contained clean speech
from many speakers. About 37,500 utterances recommended for speaker-
independent training (WSJ-284) were selected as the training set for our
acoustic model. The total number of speakers was 284 (143 male and 141
female). Feature extraction parameters were the same as for the Japanese
language system: 25 dimensional vectors (12 MFCC + 12 Delta MFCC +
Delta pow) extracted from 20 ms long windows with a 10 ms shift. First, we
trained a model of the same size and topology with the same training method
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as the Japanese baseline—that is, 1,400 states with five mixture compo-
nents per state and the ML-SSS algorithm. This was rather small compared
to the other models that have been built on the same data IWSLT workshop
1994), so it was not expected to have high performance. Nevertheless, we
regarded it as a starting point for further model development and optimiza-
tion. Next, we trained several models using the MDL-SSS algorithm, in
which the temporal splitting constant C; was set to 20 and the contextual
splitting constant C, took values from 2 to 10. In this way, we obtained
models with state numbers ranging from about 1,500 to about 7,000. Ini-
tially, they all had five mixture components per state. The preliminary tests
showed that the model with 2,009 states was the best and was therefore
selected for further experiments. Two more versions of this model—with
10 and 15 mixture components per state—were trained as well.

The language model training data consisted of 600,000 English sen-
tences of BTEC and SLDB and about 3.4 million words. Standard bigram
and trigram models were trained as well as one MCC word bigram model.
The number of classes was 8,000, while the number of composite words
was about 4,000.

Although the BTEC task domain is quite broad, there are many travel-
oriented words that are not included in publicly available pronunciation
dictionaries. Also, there are many specific proper names of sightseeing
places, restaurants, travel-related companies, and brand names. A large
portion of the task word list represents Japanese words, including Japanese
first and family names. In total, there were about 2,500 such words (~10%
of the 27,000-word dictionary), and to develop good pronunciation variants
for them was quite a challenge. For Japanese words, because there is no
principled way to predict how a native English speaker would pronounce
them, the pronunciation will depend heavily on the speaker’s proficiency
in Japanese, ranging from being fluent to speaking just a couple of widely
known words. Therefore, we decided to mimic the first extreme by tak-
ing one pronunciation variant from the Japanese dictionary and converting
the Japanese to the English phone set, and to mimic the second extreme
by generating another pronunciation variant by following the English
grapheme-to-phoneme rules. The latter was done by using the TTS software
“Festival” followed by a manual correction of some of the pronunciations
judged as “making no sense.”

The English phoneme set consisted of 44 phonemes, including silence.
They were the same as those used in the WSJ corpus official evaluations
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Table 10.16 Acoustic model performance comparison.

Model ML-SSS MDL-SSS

State # 1,400 1,578 2,009 3,028

Mix. # 5 5 5 15 5
Acc.(%) 87.5 88.1 88.5 894 88.2

Table 10.17 Language model performance comparison.

Model Word 2-gram MCC 2-gram
3-gram Rescore No Yes No Yes
Acc.(%) 89.21 92.35 89.63 93.29

because in this way, we could use its dictionary as a source of pronunciation
base forms. In addition, we could run the WSJ task tests with our model to
compare performance.

In the first series of experiments, we evaluated the performance of the
several acoustic models we have trained. The test data comprised 1,200
sentences from 35 speakers. Small conventional bigram and trigram lan-
guage models covering about 25% of all text training data were used to
speed up the evaluation. The recognition results in terms of word accuracy
are given in Table 10.16. As can be seen, the MDL-SSS model with 2,009
states and 15 mixture components was the best one, thus it was used for
the next experiments involving different types of language models.

Next, we evaluated the language model’s performance. In these exper-
iments, we used 204 utterances taken randomly from the larger BTEC test
set. The results are summarized in Table 10.17.

Chinese Speech Recognition

The basic subword units used for the Chinese speech recognition front end
were the traditional 21 initials and 37 finals, as illustrated in Table 10.18.
The acoustic model was developed using a well-designed speech
database: the ATR Putonghua (ATRPTH) speech database of 2003 (Zhang
et al., 2003). This database has a rich coverage of the triplet initial/finals
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Table 10.18 Subword units for Chinese ASR system.

Unit Types
Initials b,p,m,f,d,t,n,1, gk h,jq,xzc,s,zh, ch,sh,r
Finals a, ai, an, ang, ao, €, ei, en, eng, er, i1, i2, i3, ia, ian

iang, iao, ie, ing, in, iu, iong, o, ou, u, ua, uai, uang
uan, ui, un, uo, ong, v, van, ve, vi

Table 10.19 Token coverage rates of different subword units.

Unit 792 Set Newspaper Token Coverage
A 974 1,306 98.81%
B 402 408 99.99%
C 10,906 48,392 ©70.15%
D 4,653 4,598 99.42%

phonetic context, and sufficient samples for each triplet with respect to
balanced speaker factors, including gender and age. '

The phonetically rich sentence set of ATRPTH has 792 sentences. An
investigation on the foken coverage rates has been carried out on a one-
month volume of daily newspapers for different types of phonetic units.
Table 10.19 shows the results, where

Unit A: represents the tonal syllable

Unit B: represents the base syllable without tone discrimination
Unit C: represents the normal initial/final triplets

Unit D: represents the context-tying initial/final triplets, which
are tied based on phonetically articulatory configurations, and are
assumed to cover the major variants of each triplet phonetic context
(Zhang et al., 2001).

The speakers were chosen to have a balanced coverage of different genders
and ages. Each unique triplet has at least 46 tokens in the speech database,
guaranteeing a sufficient estimation for each triplet HMM.

During the model estimation, accurate pause segmentation and context
dependent modeling were done iteratively to guarantee the model’s accu-
racy and robustness (Zhang et al., 2003a). The HMM structure was derived
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Table 10.20 Chinese character based recognition performance.

Group Character Corr. Character Acc.
Male 96.1% 95.7%

Female 95.2% 94.4%
Total 95.7% 95.1%

through a phonetic decision tree based maximum likelihood state splitting
algorithm. The acoustic feature vector consisted of 25 dimensions: 12
dimensional MFCCs, their first order deltas, and the delta of frame power,
The baseline gender-dependent HMM had 1,200 states, with 5 Gaussian
mixtures in each state.

The language model for Chinese ASR also used the composite MCC
N-gram model. The basic lexicon had 19,191 words, while the BTEC
Chinese corpus contained 200,000 sentences for LM training. After they
were segmented and POS tagged, word clustering was investigated based
on the right- and left-context Markovian dependencies. A normal word
based bigram model showed a perplexity of 38.4 for the test set with 1,500
sentences. With a clustering of 12,000 word classes, the MCC bigram
model showed a perplexity of 34.8 for the same test data. The bigram
language model was used to generate a word lattice in the first pass, and a
trigram language model with a perplexity of 15.7 was used to rescore the
word lattice.

The evaluation data were the BTEC Chinese language-parallel test data,
which included 11.59 hours of speech by 20 females and 20 males. The
ages of the speakers ranged from 18 to 55 years. All the speakers spoke
Chinese Putonghua, with some accent.

Table 10.20 shows the gender-dependent, Chinese character based
recognition performances. The total performance was 95.1% for Chinese
character accuracy with a real-time factor of 26. The performance degraded
t0 93.4% when the search beam was narrowed to obtain a real-time factor of
6, emphasizing the need for algorithms to increase the search speed without

sacrificing performance.

Text-to-Speech Evaluation

A perception experiment was conducted in which the naturalness of syn-
thetic speech for XIMERA for Japanese and 10 commercial TTS systems
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Figure 10.19: The result of an evaluation experiment for naturalness between
several TTS products. The horizontal bars at the top, middle, and bottom of the
boxes indicate 75%, 50%, and 25% quartiles. The vertical lines extend to the
closer point of either the maximum/minimum value or 1.5 times the interquartile
distance. Mean values are indicated by “x” marks.

was evaluated. A set of 100 Japanese sentences that were evenly taken
from 10 genres was processed by the 11 TTS systems to form a set of stimuli
comprising 1,100 synthetic speech samples. The stimuli were randomized
and presented to 40 listeners through headphones in a quiet meeting room.
The listeners rated the naturalness of each stimulus on a 7-point scale from 0
(very bad) to 6 (very good).

Figure 10.19 shows the result, in which XIMERA outperforms the other
systems. However, the advantage over the second-best system, which is
not a corpus-based system, is not substantial, although it is statistically
significant.

A perception experiment for naturalness of synthetic speech for Chinese
XIMERA is undergoing planning, and we have no evaluation results
comparing other Chinese TTS systems.

10.4.4 Machine Translation Evaluation

Rank Evaluation Method

The rank evaluation methods are the simplest and the most common among
test-set-based evaluations. The training corpora used for the machine
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Table 10.21 Translation quality of four systems for BTEC.

SAT HPAT D-cube SELECTOR
A 67.2549 42.5490 63.7255 68.2353
AB 74.7059 63.7255 72.1569 75.8824
ABC 82.5490 79.0196 78.8235 83.5294

translation systems were the BTEC, described in Section 10.4.2. The test
set consisted of 510 pairs randomly selected from BTEC and kept unused
for training. The target part of the test set consisted of the paraphrasing
of up to sixteen multiple reference translations for each source sentence,
which are utilized for automatic evaluation programs.

Translations by four machine translation systems—SAT, HPAT,
D-cube, and SELECTOR—were shown simultaneously to several native
English professional interpreters. The evaluation was done according to
ATR’s evaluation standard of four grades: (A) Perfect: no problems in either
information or grammar; (B) Good: easy to understand, with either some
unimportant information missing or flawed grammar; (C) Fair: broken but
understandable with effort; and (D) Nonsense or No-output. Each transla-
tion was finally assigned to the median grade from among its grades from
multiple evaluators.

Table 10.21 shows the translation quality of Japanese to English trans-
lations for BTEC. The figures are accumulative percentages for the quality
grade. It is fairly high even for the difficult language pair of Japanese to
English. In addition, we can see in every grade, A, A+B, A+B-+C, that the
SELECTOR outperforms every single element machine translation.

Translation Paired Comparison Method

When considering the users’ viewpoint, it is ideal to assemble people with
various levels of skills in foreign languages and to ask them to evaluate
their satisfaction with the achievement of the dialog through the system.
This is important because they are thought to be influenced by their target
language skill. However, experimental costs are so prohibitive that dialog
experiments have never been carried out except evaluation tests for the final
stage of development. To address this problem, Sugaya et al. (2000) pro-
posed a translation paired comparison method that can precisely evaluate
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Figure 10.20: Diagram of translation paired comparison method.

systems’ performance. For this method, the evaluation results are given as
the systems’ TOEIC scores. TOEIC is an acronym for Test of English for
International Communication, which is a test for measuring the English
proficiency of non-native speakers, such as Japanese (TOEIC, 2005). The
total score ranges from 10 (lowest) to 990 (highest).

Figure 10.20 shows a diagram of the translation paired comparison
method in Japanese-to-English translation. Here, Japanese native-speaking
examinees were asked to listen to spoken Japanese text and then write an
English translation. The Japanese utterance was presented twice within one
minute, with a pause between the presentations. To measure the English
capability of the examinees, their TOEIC scores were used. The examinees
were asked to present their official certificates showing the TOEIC score
they had earned on the test within the past six months.

In the translation paired comparison method, translations by the exam-
inees and the output of the system were printed together in rows with the
original Japanese text to form evaluation sheets for comparison by a bilin-
gual evaluator. Each transcribed utterance on the evaluation sheets was
represented by the Japanese test text and the two translation results.

The evaluator followed the procedure depicted in Figure 10.21. Ranks
in the figure were defined as follows: (A) Perfect: no problem in both
information and grammar; (B) Fair: easy-to-understand with some unim-
portant information missing or flawed grammar; (C) Acceptable: broken
but understandable with effort; (D) Nonsense: important information has
been translated incorrectly.

In the evaluation process, the human evaluator ignored misspellings
because the capability being measured was not English writing but speech
translation. From the scores based on these rankings, either the examinee or
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Figure 10.21: Procedure of comparison by bilingual evaluator.

the system was considered the “winner” for each utterance. If the ranking
and the naturalness were the same for an utterance, the competition was

considered “even.”
To prepare for regression analysis, the number of “even” utterances

were divided in half and equally assigned as system-won utterances and
human-won utterances. Accordingly, we define the human winning rate

Wy by the following equation:

Wy = (Nnuman — 0.5 X Neven)/Niotal, (10.11)

where Ny,a; denotes the total number of utterances in a test set, Njuman
represents the number of human-won utterances, and Ny, indicates the
number of even (nonwinner) utterances—that is, no quality difference

between the results of the system and those of humans.
In the regression analysis, we regarded the examinees’ TOEIC score as

an independent variable and Wy as a dependent variable. In other words,
Wy (Y;) and the TOEIC scores for the examinees (X;) are assumed to satisfy

the population regression equation:
Vi=p+BXi+e (=12,...,m), -~ (10.12)

where B1 and B, are population regression coefficients and m is the number
of examinees.
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Figure 10.23: Procedure of the automatic evaluation method.
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are assumed to satisfy the population regression equation:
Yauto; = ﬁautal + Bauto, Xi + €auto; (i=12,...,m), (10{13)

where Bauro, and Bauro, are population regression coefficients and m is the
number of examinees.
In the automatic evaluation method, the system’s TOEIC score is deter-

mined to be the point at which the regression line crosses the objective score
evaluating the target system.

10.4.5 Overall Evaluation

Overall performance evaluation of the S2ST system was conducted with
two modes: alaboratory test conducted under various controlled conditions,
and a conversation test in real environments.

Laboratory Test

Translation performance was evaluated on two sets, BTEC1 and MAD4.
Evaluation measures were subjective ranking, BLEU (Papineni et al.,
2002), mWER (word error rate using multiple references), and the sys-
tem’s TOEIC score with the automatic evaluation scheme. Table 10.22
shows some of the evaluation results. In this table, subjective evaluation
sections show the percentage of A, A+B, and A+B+C relative to the size
of the test set.

Since BTEC originated from texts, we produced speech by reading
them. In this sense, the resulting speech was artificial. In the case of MAD,
we applied our speech recognizer to the recorded speech after the data
collection. “MT only” for MAD4 shows the result of MT applied to cor-
rect transcriptions created manually. Speech recognition results show that
we have relatively good results (i.e., just below 90% accuracy) for MAD
because people spoke in a system-friendly way as described earlier. When
we focus on translation performance, it is clear that BTEC is much eas-
ier than MAD. This is partly because the test sets share the same mother
corpora with the training corpora. As shown in Table 10.9, BTEC contains
many duplicates (e.g., 37% in Japanese) among sentences in the source and
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Table 10.22 Translation performance.

Evaluation Set | BTECI | MAD4
Speech Recognition (SR)

Word Accuracy (%) (94.8) 89.5

Sentence Perfect (%) (81.4) 54.2

MT Only

Subj (A/AB/ABC) 66.2/77.1/84.7 33.5/50.4/65.7
BLEU 0.59 0.48

mWER 0.31 0.45

SR+MT

Subj (A/AB/ABC) - 30.3/45.4/61.8
BLEU - 0.37

mWER - 0.54

target languages. Thus, some test utterances happen to be the same as train-
ing sentences even though we randomly separated the original BTEC into
test and training sets. These “duplicate” utterances do not mean “closed”
data since reference translations for the test-set utterances were created
independent of original translations in the corpus. In order to know this
effect, we divided our test data into those that were included in the training
corpus (MATCHED) and the remaining data (UNMATCHED). These two
subsets were applied to our MT system.

The results are shown in Table 10.23. We see that the subjective scores
of the nonduplicate part are still better than the average scores of MAD.
We conclude that BTEC is easier than MAD for the MT module based on
the subjective evaluation scores.

Table 10.23 Translation performance for BTEC with/without duplications.

UNMATCHED MATCHED
Subj (A/AB/ABC) 43.9/60.4/73.7 88.6/93.7/95.7
BLEU 0.51 0.73
mWER 0.42 0.19
Perplexity 36.3 14.1
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Table 10.24 Translation performance of test set without duplications.

Low Middle High
Subj (A/AB/ABC) 62.3/78.4/89.8 23.4/40.7/62.9 14.9/32.1/44.6
BLEU 0.60 0.49 0.4
mWER 0.31 0.45 0.57
Perplexity 9.8 29.9 97.0
Length* 9.6 12.0 124

*Length = # of words per utterance

To have a closer look at MAD, we divided the test utterances into three
subsets with the same size in terms of their perplexity? and calculated
scores for each subset, as shown in Table 10.24. The table shows that
the perplexity of each subset is clearly different and that the translation
performance negatively correlates with the perplexity. Consequently, we
need to improve the translation performance of mainly high-perplexity
utterances.

The system’s TOEIC scores with the automatic evaluation scheme were
also obtained. The system achieved on the BTEC and MAD subsets of low
and middle perplexity a TOEIC score of more than 700. This is 50-points
higher than the average score of a Japanese businessperson in the overseas
departments of many Japanese corporations. On the contrary, the system’s
TOEIC score for all the test sets including the BTEC and every subset
of MAD decreases to about 500 due to low TOEIC score for the subset
of MAD with high perplexity, which is mainly due to low recognition
accuracy, and a loss of fluency in the translated expressions.

These results support the bootstrapping style approach. Another promis-
ing approach is to create corpora that align high-perplexity utterances with
their simplified expressions (i.e., paraphrases) and develop a corpus-based
paraphrasing system (Shimohata et al., 2004). For this purpose, simplified

utterances in MAD can be used as communication oriented paraphrases
for S2ST. '

Evaluation Tests in Real Environments

Real environments have a complex and often uncontrollable impact on
S2ST systems. There is a limit to carrying out such evaluation tests with

2F‘erplexity was calculated in the source language.
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regard to the cost of conversation experiments in real environments, how-
ever, evaluation tests in real environments are important for fully evaluating
the availability of the system. Therefore, we conducted an evaluation test
of S2ST systems from the viewpoint of user satisfaction in locations where
S2ST systems may be necessary, such as international airports.

Prototype S2ST System

ATR has developed two kinds of prototype S2ST systems for conducting
evaluation tests in real environments—one between English and Japanese,
and the other between Chinese and Japanese. These prototype systems
consist of two sets of handheld PDAs (Personal Digital Assistants) con-
nected by means of wireless LAN to server modules of speech recognition,
machine translation, and speech synthesis in the network. One PDA is used
as an input device for Japanese and an output device for Japanese trans-
lated from English or Chinese. The other is used as an input device for
English (Chinese) and an output device for English (Chinese) translated
from Japanese. In this configuration, two sets of PDAs are used only as
speech input and output devices and for some additional functions, such
as speech detection, filtering, and noise reduction. We employed this con-
figuration because we believe that (1) an input/output device should be
portable and as light as possible in order to be taken everywhere, and
(2) S2ST systems should accept expressions that are as diverse as possible
to support communications in various situations. Since the ambient noise
at the evaluation location (airport) is very high and nonstationary, we used
head-mounted close-talking microphones.

Evaluation Test Procedure

The evaluation test sites were installed near the tourist information desk in
the Kansai International Airport and downtown in Osaka city. The speakers
of Japanese were staff members of the tourist information desks, who
frequently speak English but not Chinese. The speakers of English and
Chinese were tourists walking in the airport or downtown who volunteered
to participate in the experiment.

After a short introduction on how to use the PDA, they were asked to do
three kinds of tasks. In one, they were asked to present some predetermined
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simple questions, such as “Where is the taxi stand?” to the staff members.
In the second, they were asked to make conversation consisting of two or
three turns, such as how to go to downtown. In the third, the speakers were
requested to ask some questions about their travel, which is the most dif-
ficult task for S2ST systems. After conversations using the S2ST systems,
they were requested to fill in a questionnaire. We conducted the evaluation
tests for three days at each site, with about fifty subjects each for English
and Chinese.

Evaluation Results

Figure 10.24 shows the evaluation results based on two questionnaires:
one about the user’s impression on the success of communication, and
one about response time. As can be seen, more than 70% of English sub-
jects think that a conversation could be carried out (almost) successfully,
while only 60% of the Chinese subjects believe this. The performance
degradation of the Chinese S2ST may be due to (1) the smaller volume
of the Chinese-Japanese BTEC corpus, which degrades the performance
of the machine translation module between Chinese and Japanese, and
(2) the lower accuracy of the Chinese speech recognition module, which
also results from the smaller volume of the Chinese speech database.

100% Almost no
90% — — understanding
80%

70% — — Almost half
60% [— — understanding
50% ||

40% [— — Almost perfectly
30% +— ! understanding
20% |

10% |— L1 Perfectly

0% : . understanding

English Chinese

———

English Chinese

—

How far do you think that your How far do you understand your
party understands your saying? party’s saying?

Figure 10.24: Evaluation results in real environments.
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The evaluation results indicate that state-of-the-art S2ST systems
evolved into a stage that allows communication across language bound-
aries, however, accuracy and response time (not shown in Figure 10.24)
need further improvement.

10.5 Conclusion

10.5.1 Speech Translation Strategies

We investigated different translation strategies: Interlingua-based transla-
tion, statistical mapping into an interlingua representation, direct statistical
translation, and using English as a pivot language. Designing an interlin-
gua and writing the analysis and generation grammar is time consuming
and requires highly trained linguists. We further introduced a statistical
interlingua-based approach that applies techniques that have been initially
developed for mapping word sequences into tree structures in direct sta-
tistical MT and have been extended for this purpose. This still requires
the design of the interlingua and the annotation of sufficient data with the
interlingua, but replaces the manual writing of grammars by automatically
learning the mapping of the source sentence into the interlingua represen-
tation. In our experiments, this statistical approach to interlingua-based
translation did not perform as well as the manually crafted grammars.
To some extent this is due to data-sparseness problems. However, the
manual grammars include some phrasal translations, which improve trans-
lation quality. Such a translation memory mechanism, mapping entire
sentences to the appropriate interlingua representation, could be added
to the statistical IL system as well to get further improvements.

We also investigated the performance of a direct statistical translation
system, which is based on word-to-word and phrase-to-phrase alignments
trained from the same data. Despite the general belief that statistical
machine-translation systems can only work when large bilingual corpora
are available, the direct statistical system outperformed the grammar-based
system. As the statistical system used only the translations, this devel-
opment cost is significantly lower than that for the interlingua system.
And the statistical system is flexible in that additional data, like available
dictionaries or additional monolingual data to train the language model,
can be easily added to improve the performance.
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The comparison of translation approaches suggest that MT systems
can be successfully constructed for any language pair by cascading mul-
tiple MT systems via English. Moreover, end-to-end performance can be
improved if the interlingua language is enriched with additional linguis-
tic information that can be derived automatically and monolingually in a
data-driven fashion.

When dealing with speech translation, we are faced with disfluencies
and with errors from the speech recognizer. To handle disfluencies, we
developed a consolidation module, which detects and removes these dis-
fluencies. The approach is based on a noisy channel approach, borrowing
essentially from the statistical machine-translation techniques.

Finally, we investigated better ways to couple speech recognition and
translation to improve translation quality by optimizing the overall system.
Translating all the paths in the word lattice generated by the speech recog-
nition system and using the acoustic scores in addition to the translation
and language model scores resulted in an improvement over translating
only the first-best recognizer output.

Much remains to be done to bring robust speech translation to practical
day-to-day use in the many languages of the world. Our experiments indi-
cate that data-driven approaches—automatically learning from bilingual
corpora—is the most competitive approach to rapid building of speech
translation systems. So far, systems have been demonstrated for limited
domain speech translation tasks, and these will remain important in the
future. However, steps should and, we believe, can be taken now toward
domain-unlimited speech translation.

10.5.2 Portable Speech-to-Speech Translation

We have conducted research on corpus-based technologies because we
believe that corpus-based technologies are suitable for S2ST, taking into
consideration the points of (1) multilanguage systems, (2) domain porta-
bility, and (3) the technology trend of each component technology for
S2ST. In order to develop S2ST technologies, we have created various
speech databases for speech recognition and speech synthesis, and also
three different types of corpora in the travel domain: (1) a large-scale
multilingual collection of basic sentences called BTEC, (2) a small-scale
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bilingual collection of spoken sentences called SLDB, and (3) a small-scale
corpus of the MT-assisted dialogs called MAD.

We have developed two kinds of corpus-based S2ST systems based on
various machine-learning algorithms for each component, a huge speech
database, and multilingual corpora. One is the S2ST system between
English and Japanese; the other, between Chinese and Japanese. We have
conducted varjous evaluation tests of the S2ST systems using a subset of
the BTEC and MAD. Thanks to many various technologies in each com-
ponent module, and many large speech and text corpora, the S2ST systems
provide good translation quality for utterances of the BTEC and also for
utterances of the MAD with low and middle perplexity. We have also
conducted evaluations of the systems from the viewpoint of user satisfac-
tion in real environments, such as an international airport. The evaluation
results show that the performance of the S2ST systems is not fully satisfac-
tory, however, 60~70% of users think that conversation could be carried
on successfully or almost successfully using the S2ST systems. One of
the most important results is that about 60% of the subjects thought that
the S2ST systems could be applicable to communication between people
whose mother tongues are not understandable to each other.

However, the state-of-the-art S2ST technology still has a lot room
for improvement. One of the problems to be resolved is to shorten the
response time, especially for long utterances. It is desirable from the users’
viewpoint to provide confidence measures for translated sentences. As is
shown in the section on automatic evaluation schemes, we have an objec-
tive evaluation measure for estimating the quality of translated sentences
in the test-set level, which shows the average performance for collection
of utterances; however, we do not have adequate measure for estimat-
ing the quality in the utterance level. The other point is how to exchange
information among each module. We have employed a simple cascade con-
figuration of the speech recognizer and machine translation, in which the
single best output of the former module is fed into the latter. The N-best
lists of the former output contain the better recognition result, which may
produce better translation results. In order to improve the performance
of the S2ST system, it is important to investigate ways of improving the
performance of each module but also to achieve more collaborative func-
tions between the speech recognition module and the machine-translation
module. One way is to develop larger multilingual corpora, which cover
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more domains and diverse expressions. A promising approach is to create
corpora that align high-perplexity utterances with their simplified expres-
sions (i.e., paraphrases) and develop a corpus-based paraphrasing system
(Shimohata et al., 2004). For this purpose, simplified utterances in MAD
can be used as communication-oriented paraphrases for S2ST.



