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The Meta-Pi Network: Building Distributed
Knowledge Representations for Robust
Multisource Pattern Recognition

John B. Hampshire II, Student Member, IEEE, and Alex Waibel, Member, IEEE

Abstract— We present a multinetwork connectionist classi-
fier that forms distributed low-level knowledge representations
for robust pattern recognition, given random feature vectors
generated by multiple statistically distinct sources. The archi-

tecture comprises a number of source-dependent modules (i.e., -

each module is trained to classify patterns from one partic-
ular source) that are linked by a combinational superstruc-
ture.

The superstructure adapts to the source being processed, in-
tegrating source-dependent classifications based on its internal
assessment of the source model or combination of source models
most likely to classify the input signal correctly. To train this
combinational network, we have developed a new form of mul-
tiplicative connection, which we call the “Meta-Pi” connection;
its function is closely aligned with predecessors described in [3],
[29], and [31].

We illustrate how the Meta-Pi paradigm implements an adap-
tive Bayesian maximum a posteriori (MAP) classifier. We demon-
strate its performance in the context of multispeaker phoneme
recognition. In this task, the Meta-Pi superstructure combines
speaker-dependent time-delay neural network (TDNN) modules
to perform multispeaker /b,d,g/ phoneme recognition with
speaker-dependent error rates (2%).

Finally, we apply the Meta-Pi architecture to a limited source-
independent recognition task, illustrating its discrimination of
a novel source. We demonstrate that it can adapt to the novel
source (speaker), given five adaptation examples of each of the
three phonemes; the resulting error rate of 7% is approximately
three times that of a typical source-dependent classifier. Longer
term adaptation yields discrimination that is comparable with
a speaker-dependent classifier of the novel source. We conclude
with an assessment of our experimental results and their impli-
cations for larger real-world multisource and source-independent
pattern recognition systems.

Index Terms—Bayesian discriminant function, class-conditional
density, connectionism, Meta-Pi network, mixture density, mul-
tisource, phoneme recognition, speech recognition, time-delay
neural network (TDNN).
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I. INTRODUCTION

ANY PATTERN recognition tasks involve complex and
highly conditional mappings! of stochastic inputs to
finite-state classification outputs. The patterns to be recognized
are often generated by multiple sources, each with unique
statistical properties. We refer to these sources as “hetero-
geneous sources” [21]. When a classifier is robust for all
possible sources (i.e., over the entire ensemble of sources),
it is said to be “source-independent”; when it is robust for
some subset of the ensemble, it is said to be a “multisource”
classifier; when it is robust for only one source, it is said to
be “source-dependent.”
We present the Meta-Pi paradigm as a modular connectionist
classifier for multisource pattern recognition and discuss how
it might be used for source-independent pattern recognition.

A. Background and Summary

The notion of using modular connectionist systems to re-
alize complex nonlinear transfer (or mapping) functions was
discussed at least as far back as the mid 1980°s by Barto and
Hinton. Jacobs developed a taxonomy for a class of modular
hierarchical connectionist models [15] based on Pollack’s
cascaded backpropagation architecture [29]. In so doing, he
first articulated many of the key issues of modular connec-
tionist design. Kdmmerer and Kiipper were among the first
to build a hierarchical connectionist pattern classifier for the
task of isolated word recognition [18]—one of a number of
efforts at building modular connectionist classifiers for speech
recognition (e.g., [24], [41], [44], [27]).

The Meta-Pi architecture {8] is a multisource connectionist
pattern classifier that comprises a number of source-
dependent subnetworks (or “modules™) that are integrated
by a combinational superstructure. We refer to the latter
as the Meta-Pi combinational superstructure, owing to the
multiplicative function that its output units perform. This
function serves to combine the outputs of the modules
(independently trained to classify inputs from specific sources)
in order to form a global classification that is independent of
the conditional statistical nature of the input source. For our
particular application, the Meta-Pi superstructure is a time-

'i.e., mapping functions that vary widely according to statistical “environ-

mental” conditions
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delay neural network (TDNN), but the paradigm applies to
any multilayer perceptron (MLP) classifier.?

We show that the output units of the Meta-Pi combina-
tional superstructure are—as in the cascaded backpropagation
model—continuous-valued weights. In the cascaded back-
propagation model, the outputs of the superstructure (which
Pollack calls the “supervisory network™) constitute the weights
of a module (which Pollack calls a “subordinate network”).
Thus, the superstructure alters the mapping function of the
module(s). In contrast, the outputs of the Meta-Pi model’s
combinational superstructure represent the degree to which
a corresponding module contributes to the global classifica-
tion decision; the superstructure does not alter the mapping
function of the module(s).

We provide both a probabilistic rationale and a probabilis-
tic framework for the Meta-Pi paradigm. In the latter, we
show how the Meta-Pi paradigm implements a maximum a
posteriori (MAP) Bayesian classifier that learns to compute
optimal source mixtures in order to achieve robust multisource
classification. We then describe how the Meta-Pi network’s
error signal is backpropagated through the combinational
superstructure in an indirect way, altering the superstructure’s
output in order to optimize global discrimination.

We demonstrate the Meta-Pi network’s discrimination per-
formance on the multispeaker /b, d, g/ phoneme recognition
task. At a very coarse level, the vocal tract characteristics of
a particular speaker are unique to that individual; at another
level, a number of conditions (e.g., the health of the individual,
his/her emotional state, etc.) alter the acoustic-phonetic signa-
ture of that individual’s speech. As a result, each speaker repre-
sents a statistically unique source, and multispeaker /b, d, g/
phoneme recognition provides a good heterogeneous-source
pattern recognition task with which to test the Meta-Pi concept.
We show that the Meta-Pi network’s recognition performance
on the multisource (six speaker /b, d, g/) task is comparable
to the average performance of the source-dependent modules.

Following the multisource experiments, we demonstrate the
Meta-Pi network’s discrimination performance on a limited
source-independent task. Specifically, we remove one source
(speaker) from the Meta-Pi training procedure, reducing the
number of training sources from six to five. We train the
classifier, and then test its performance on the sixth (novel)
source. We find that Meta-Pi network’s error rate’ on the
novel speaker is approximately one order of magnitude higher
than its error rate on known sources. However, we find that
the Meta-Pi combinational superstructure can adapt to the
novel source with a small number of examples (five of each
phoneme), yielding an error rate that approaches the error rate
for the known sources.

We conclude with a discussion of our experimental results
and their implications for larger real-world multisource and
source-independent pattern recognition systems.

2We use the term “multilayer perceptron” to describe a backpropagation
network using any continuous sigmoidal nonlinearity.

3Throughout this paper, we use the term “error rate” in reference to the
classifier’s estimated probability of error.

B. Outline

We address the issues described above in the following
sequence:

1. Section II: Classifier design issues—probabilistic and
connectionist

2. Section III: Multisource pattern recognition using a
modular hierarchical connectionist structure

3. Section IV: The Meta-Pi network

4. Section V: Multispeaker phoneme recognition using the
Meta-Pi architecture

5. Section VI: A limited speaker-independent phoneme
recognition experiment using the Meta-Pi architecture

6. Section VII: Discussion—properties of the Meta-Pi net-
work and related architectures, significance of results,
and remaining questions

7. Section VIII: Conclusion

8. Appendix: A formal statement of the acuity/generality
tradeoff introduced in Section II-A.

Authors’ Note: Since we first introduced the Meta-Pi
paradigm in [8], a number of other researchers (who were
working on very similar ideas independently) have published
their work [44], {16], [26], [25], [17], [27]. We encourage the
interested reader to review each of them in detail.

C. Experimental Data

The experimental data for this research are detailed in [40].
Japanese speech from six professional announcers (two female
and four male) was sampled at 12 kHz, parsed for the /b, d,
g/ phonemes, and hamming windowed; from this windowed
data, 256-point DFT’s were computed at 5-ms intervals. The
DFT’s were used to generate 16 Melscale coefficient spectra
at 10-ms intervals. These spectra were normalized to produce
suitable input levels for the TDNN’s. Training tokens for
individual speakers were shuffled randomly and interleaved to
produce successive /b, d, g/ tokens (approximately 250
training and 250 testing tokens per phoneme, per speaker).
Training tokens for the Meta-Pi combinational superstructure
comprised a complete mixture of the tokens used to train
the speaker-dependent (i.e., source-dependent) modules. The
superstructures were also provided with the output states of
each of the fully trained source-dependent modules for all
training tokens (please see Section IV-B for a full discussion
of the Meta-Pi training procedure).

1I. CONNECTIONIST CLASSIFIER DESIGN ISSUES

The issues of connectionist classifier design that we address
are fundamentally pragmatic in nature. Although abstract
issues such as theoretical questions of convergence are vitally
important to the more general question of whether MLP
classifiers are provably workable, we do not address them.
Instead, we make assumptions regarding convergence and
learnability (detailed in [7]) and focus on probabilistic and
architectural factors that lead to the Meta-Pi paradigm.

The original motivation for the Meta-Pi model was twofold
(8]

1. There was a desire to build a connectionist system that
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could recognize the phonemic speech of multiple speak-
ers with error rates comparable to a speaker-dependent
system designed to perform the same task on the speech
of a single individual.

2. There was a desire to make the system highly modular
by integrating speaker-dependent modules to perform the
overall task of multispeaker recognition.

Both goals have probabilistic implications, and the second

goal has architectural/computational implications. We discuss
these implications in the following two sections.

A. Probablistic Design Issues: The Acuity/Generality Tradeoff

One perspective of modular connectionist systems is that by
dividing the input-to-output functional mapping into submap-
pings over the input space, they decompose a task into
subtasks [15]. In contrast, we view the task of classifying
patterns generated by multiple heterogeneous sources in a
probabilistic context. Instead of a rask that is decomposable
into subtasks, we envisage a probabilistic model that can be
estimated by adaptive combinations (or “mixtures” [10]) of
other independent models. Nowlan takes a similar probabilistic
view in [25] and [27]. This concept can be embodied in
a modular connectionist system that utilizes a number of
source-dependent statistical models to implement a multi-
source classifier—which is appropriate for speech recognition,
as an example, wherein one can view each speaker as a source
with unique statistical properties.

Early speaker-independent speech recognition systems used
fixed probabilistic models of the atomic (acoustic phonetic)
units of speech derived from large populations of speakers.
Once computed, these fixed “mixture densities” [33] were
then used in a Bayesian classification scheme to determine
the atomic unit of speech associated with the speech signal
at each point of analysis in time (e.g., see [32]). Such a
scheme for building source-independent models of speech
seems quite sensible, but it invariably leads to a discrimination
tradeoff: although multisource and source-independent sys-
tems based on fixed mixture densities are significantly better
than source-dependent systems at recognizing the speech of
a novel speaker, they are significantly worse than source-
dependent systems at recognizing the speech of any one
particular individual.

In fact, there is a simple explanation for this paradox. It
is grounded in the rudiments of Bayesian classification theory
and provides a probabilistic perspective of multisource (and
source-independent) pattern recognition:

There is a tradeoff between the acuity of a single classifier
(i.e., its ability to discriminate among classes with accuracy)
and its generality (i.e., its applicability to a large ensemble
of heterogeneous sources). In short, one can do moderately
well classifying inputs from all sources with one statistical
model, or very well classifying inputs from each source with
its own model, but one can’t do very well classifying all
sources with a single model.

It is relatively straightforward to prove this acuity/generality
tradeoff (see the Appendix). Such a proof leads to the follow-
ing assertion:
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If the input patterns to be classified are drawn from hetero-
geneous sources, the only way to achieve (optimal) Bayesian
discrimination for all sources is to have an accurate statis-
tical model of each source.

When the upper bound on the number of possible sources is
small (multisource task), it is practical to model each source
explicitly. However, when this upper bound is large (large
multisource or source-independent task), one must resort to an
alternative strategy. One strategy is to have a single statistical
model that is optimal for a fixed collection of sources and
adapt that model to each particular source using some form
of real-time learning scheme (see, for example, [39], chapter
7 of [20], [34], and [14]).

An alternative scheme is to have a statistically representative
collection of source-dependent models and some mechanism
for combining (i.e., adaptively mixing) these models in order
to estimate the a posteriori class distributions of the particular
source being recognized. The Meta-Pi paradigm employs
this alternative scheme to achieve robust multisource pattern
classification. There are implementational issues that stem
from this probabilistic perspective; we raise them under the
general auspice of connectionist classifier design.

B. Connectionist Design Issues: Modularity and Scaling

Waibel et al. [41] illustrate the effectiveness and com-
putational efficiency of modular connectionist systems for
recognizing all the consonants of an individual speaker. A
single monolithic network trained to accomplish this all-
consonant task from a “tabula rasa” state would be large (on
the order of 10 connections) and would require a long training
time, owing to the requisite size of the training data set. Indeed,
monolithic connectionist approaches to pattern recognition, in
general, seem tractable only for relatively rudimentary tasks.
The constraints of network size and training set size (ergo,
training time) are joined by an additional constraint—the
acuity/generality tradeoff—when the patterns are generated by
multiple heterogeneous sources.

Given this tradeoff, a connectionist approach to pattern
recognition might employ some form of modularity whereby
source-dependent recognition processes are integrated into a
global (multisource) framework. In order to implement such a
structure, we consider a number of properties of the module
integration scheme.

1. The size of the modular structure: In particular, what
is the size of the global structure, what is the size of
a typical module, and what is the size of the largest
distinct network (whether it is a module or part of the
integrated structure)? We seek to minimize the size of all
the components of the global structure, and we wish to
keep the relative magnitude of all components roughly
equivalent so that no single component of the modular
structure constitutes a computational bottleneck.

2. The size of the training set required: What size training
set is typically required for a module? What size training
set is required for the integrated structure? We seek to
minimize the training set sizes while maintaining robust
powers of generalization in the overall modular structure.
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3. The total training time required for the modular

structure: What is the typical training time for a mod-
ule? What is the training time for the integrated struc-
ture? Are the training of the modules and the integrated
structure independent or dependent? If they are depen-
dent, what is the degree to which they are dependent?
We seek to minimize the training time for all components
of the modular structure. We also seek to minimize the
interdependence among the various training phases in
order to maximize the modularity of the overall structure.
Ease with which the modular structure is modified: If
the integrated structure combines a number of modules
trained on specific sources, then one might want to add
a new source-dependent module to the existing global
structure at a later time. Does the architecture lend itself
to such an addition with a minimum of retraining, or
must the entire structure be dismantled and (in effect)
retrained to incorporate the new module? We seck a
modular structure that is easily modified. Ideally, we
would like to train a source-dependent module indepen-
dent of the overall modular structure and subsequently
integrate this new module into the existing structure with
a relatively simple structural alteration and retraining.

. Extensibility to novel sources: Is the modular structure

intrinsically extensible to novel sources? This issue can
be viewed as one of generalization on a more global
scale. A classifier is said to generalize well if its classi-
fication performance on a disjoint test set is comparable
with its performance on the data set with which it was
trained. Typically, our view of generalization assumes
that these disjoint training and test sets are drawn from
the same source or ensemble of sources. In this context,
the source-dependent modules of our modular structure
can generalize very well on test data that are disjoint
from the training data but drawn from the same specific
source without necessarily forming a global network that
classifies patterns from novel sources accurately. We de-
fine a novel source as one with statistical properties that
differ substantially from those of the sources modeled in
our structure. Thus, good generalization at the module
level is not a sufficient condition for extensibility to
novel sources because an accurate probabilistic model
of one source does not guarantee an accurate model
of another source. Given this definition of a novel
source, we characterize a modular network as being
intrinsically extensible to novel sources if it a) can
correctly classify a novel source without modification
or b) can rapidly adapt to and correctly classify the
novel source using a dynamic combination of known
source-dependent models embodied in its existing set
of modules. Note that this adaptive procedure occurs
rapidly and does not involve training a new source-
dependent module for the novel source. We seek a
modular structure that is intrinsically extensible to novel
sources.

. Error propagation and fault tolerance: How does the

integrated structure handle errors made at the module
level? Do these lower level errors propagate to the

final output of the modular structure, or does the ar-
chitecture have some means of correcting—or at least
suppressing—Ilower level errors. In addition, can the
structure withstand the failure of a small percentage of
its modules without necessarily yielding a statistically
significant increase in its error rate? In short, is the
modular structure fault tolerant?

One concept suggested by both the probabilistic and the
connectionist issues that we have raised is a structure com-
prising a number of source-dependent modules linked by a
combinational superstructure. We describe such a structure in
the next section. By evaluating its properties and considering
its probabilistic interpretation, we then describe a change in
its training procedure that leads to the Meta-Pi paradigm.

III. THE SOURCE IDENTIFICATION NETWORK: A
MODULAR HIERARCHICAL CONNECTIONIST MODEL FOR
RECOGNIZING PATTERNS FROM MULTIPLE SOURCES

The source identification (SID) network is architecturally
very similar to the integrated neural network (INN) [24]. The
INN is used to integrate modules trained to recognize disjoint
subsets of phonemes. The SID network is used to integrate
modules trained to recognize different speakers; the specific
recognition task is the same for all modules (in our application,
recognizing the /b, d, g/ phonemes). We first describe the
SID architecture and then offer a probabilistic interpretation
of it.

A. Connectionist Architecture

The SID modular architecture shown in Fig. 1 classifies
input signals from K different sources by using a source
identification combinational superstructure to select the ap-
propriate source-dependent module for classifying the input
signal. In order to keep the figure compact and visually
clean, the output units of each module and the global outputs
have been aligned vertically. The C connections linking the C
outputs {pr1. pr2. ... . prc} of each of the K modules to
the C global outputs {O;1. Oy. ..., O¢} via their respective
SID combinational superstructure unit Sy are shown as single
arrows. Each module in the overall structure is trained on data
from a single source. The SID combinational superstructure is
trained on the same data used to train the source-dependent
modules; however, the data for each source are combined into
a global training data set with which the SID superstructure
is trained to identify the source generating the input signal.
The inset of Fig. 1 illustrates the training procedures for the
SID architecture’s modules and combinational superstructure.
The training of each element (e.g., the modules and com-
binational superstructure) can be viewed as a search on the
parameter space # of that element; a measure of the element’s
discrimination over the set of training samples is evaluated
(denoted by the comparator symbols in the inset), and the
element’s parameters are adjusted in order to optimize this
measure. After training, recognition is performed by using the
combinational superstructure to form a global (multisource)
classification from the constituent modules. Note that the
training of the superstructure is independent of the module
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Fig. 1. Source identification (SID) modular network architecture and its

training procedure.

training; therefore, all components of the SID architecture can
be trained in parallel.

Once all of the source-dependent modules and the SID
superstructure have been trained, the global classification
decision is obtained (Fig. 1) by using the superstructure’s
output state to combine the outputs of the various modules. We
employ one of two combinational schemes: a “winner-take-all”
scheme in which

O; = pri 09

where k is identified by sup, Sk (sup denotes the supremum
operator) and a proportional scheme in which

K
0; = Z Sk * Pk,i 2)
k=1

Fig. 2 illustrates the SID architecture applied to the task
of multispeaker recognition of the voiced-stop phonemes
/b,d, g/. The basic building block of this modular structure
is the TDNN. Three TDNN’s for each of the six speakers
share the same input layer along with the SID combinational
superstructure (which is itself a TDNN with a first hidden
layer (not shown) containing 12 units versus eight for the
“standard” TDNN). For each speaker, one TDNN is trained
with the mean-squared-error (MSE) [3] objective function, one
is trained with the cross-entropy (CE) [12] objective function,
and one is trained with the classification figure-of-merit (CFM)
[9] objective function. The outputs of the three networks
trained on a given individual’s speech are combined using the
three-way summation form of conflict arbitration to produce
the final speaker-dependent, “three-way arbitrated,” outputs*
of each module shown in Fig. 2. The box in the upper right

4Three-way summation arbitration forms a final classification by taking the
average output activations of the three TDNN’s trained with the three different
objective functions. Each of these TDNN’s is viewed as an independent
estimator of the Bayesian discriminant function (see Section III-B) for the
/b,d, g/ task. Hampshire and Waibel [9] describes this arbitration procedure

in detail and shows that it reduces speaker-dependent /b, d, g/ classification
errors by 30%.

FINAL PHONEME OUTPUT

\CTUAL PHONEME
& SPEAKER D,

SOURCE 1.D.
OUTPUT UNITS

3-WAY ARBITRATED
o,d,g/ OUTPUTS

INPUT LAYER

16 MelSCALE

SPECTRAL
COEFFICIENTS

Fig. 2. SID architecture performing multispeaker phoneme recognition
(/b,d, g/ task).

TABLE 1
A COMPARISON OF SiX-SPEAKER /b, d, g/ ERROR RATES FOR ACTUAL AND
ARTIFICIAL COMBINATIONAL SCHEMES USED BY THE SID NETWORK.

Actual Artificial
Normalized
Gross
Winner-take-all | Proportional Sum Gender known | SID known

3-Way Arbitrated

SID 1.9 (+0.5-04)% | 1.7 (+/-0.4)%

Superstructure 212(+-13)% | 55+-071% | 1.3 (+/-04)%
[ Single CFM-trainied

SID 23+-05% | 21(+-05%
LSup

corner of Fig. 2 shows the actual phoneme spoken and the
true identity of the speaker. The true identity of the speaker is
also marked at the module level of the structure by a darkened
gender symbol. Thus, speaker MHT is uttering the phoneme
/g/ in this sample of speech; the SID superstructure correctly
identifies the speaker and passes the MHT-specific phoneme
classification to the global output of the network, yielding a
correct recognition result.

Table I compares the error rates for the combinational strate-
gies of (1) and (2) with the results one would obtain if one were
to use the crude strategy of taking the normalized sum of all of
the speaker-dependent module outputs as the global network
output. Results are also shown for this same strategy when the
gender of the speaker is explicitly given and used to limit the
scope of the normalized sum (e.g., if the speaker is known to
be female, only the outputs of the female modules are summed
to form the global classification output). Finally, we show the
error rate for the ideal case in which the speaker’s identity is
explicitly known (corresponding to perfect discrimination in
the SID superstructure using the winner-take-all combinational
scheme). The error rates for these three schemes (the latter two
of which are artificial) are provided for comparison with the
“winner-take-all” and proportional schemes.

Table T shows that the ideal case in which speaker iden-
tification is perfect yields a multispeaker error rate of 1.3
(+/- 0.4)% —the average of the individual speaker-dependent
recognition rates.’ The “winner-take-all” strategy yields an

5 Numerical error rates are given with +/- deviations that represent the upper
and lower bounds of a 95% confidence interval. This interval is computed
under the assumption that the error rate is binomially distributed [11]. We
judge two error rates to be statistically equivalent if their confidence bounds

overlap. Please see Section VII for more details on the statistical significance
of our results.
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error rate of 1.9 (+0.5/-0.4)% , and the proportional strategy
yields an error rate of 1.7 (+/- 0.4)%  when a three-way
arbitrated combinational superstructure is used. Both of these
error rates are statistically equivalent to the ideal speaker-
dependent rate of 1.3 (+/- 0.4)% . When we use a single
TDNN trained with the CFM objective function (rather than a
three-way arbitrated TDNN) to implement the combinational
superstructure, the “winner-take-all” strategy yields an error
rate of 2.3 (+/- 0.5)% , and the proportional strategy yields
an error rate of 2.1 (+/- 0.5)% . Thus, there is no statistically
significant difference between the two superstructure designs.
We choose the single CFM-trained TDNN superstructure since
it is one third the size and requires one third the training of the
three-way arbitrated superstructure. Note that both the winner-
take-all and proportional schemes outperform the normalized
sum (21.2 (+/- 1.3)% ) by a substantial margin and the gender-
specific normalized sum (5.5 (+/- 0.7)% ) by a statistically
significant margin.

B. Probablistic Rationale

To facilitate the SID network’s probabilistic description, we
view it in the context of the multispeaker phoneme recognition
task wherein each speaker is a unique source. Let us consider
the structure in Fig. 1 as follows: The C global network outputs
Oj . ....O¢ correspond to C possible phonemes to be recog-
nized from the input speech signal (which we will call z).® The
K modules in the structure represent K source-dependent (i.c.,
speaker-dependent) networks trained on the same phoneme
recognition task required of the global structure. The source-
dependent outputs pr1. ... . prc correspond to their global
counterparts 07 . ..., O¢. Let us assume for a moment that
each global output O; represents an estimate of the continuous-
valued a posteriori probability of the phoneme w;, given the
input signal x:’

O; = P(wi|z) (3)

(where P(-) denotes an estimated probability). In reality,
the a posteriori P(w;|z) given in (3) is conditional in na-
ture—oprincipally affected by the dialectal characteristics, vocal
tract properties, physical and emotional states, etc. of the
speaker actually uttering the input signal . We bind all
of these probabilistic conditions into the state variable S
(denoting source) so that (3) is more precisely expressed as

0; = Plwilz. S). 4

Clearly, the SID network yields optimal discrimination if O; in
(4) is indeed an accurate estimate of the Bayesian discriminant
function P(w;|z, S) (see pp. 16-23 {5]) for all C sources.
Having pointed out the conditional nature of the Bayesian
discriminant function, we revert to the notation of (3).

%Strictly speaking, z is a random vector sequence (see Section 1-C).

7References [5], [1), [45], [22]. [6], [35], [2], [42]. and [37] prove this
assumption for classifiers trained with the mean-squared error objective
function. Reference [7] extends the proof to two broad families of objective
functions; proofs therein are given for all objective functions used in each
“conflict arbitrated” module and/or combinational superstructure described in
Sections III-A and IV-B.

If we consider pi; (the ¢th output of the kth source-
dependent module) in the same probabilistic light in which
we view O;, then

pri = Pwi|z. Sk) %)

which is the probability of phoneme w;, given that the input
signal is , and the k th source’s characteristics are accurately
modeled by the % th source-dependent module.

It is possible to form an arbitrary probability density func-
tion (PDF) by the principle of linear superposition (i.e., one
can form an arbitrary PDF by taking a normalized composite
of a sufficiently large number of independent PDF’s).? Thus,
we can express the a posteriori probability P(w;|z) as linear
combination of the source-dependent a posterioris:

P(wi|z) % Y P(wi|z. Sk) - P(Sk|z) (6)
=
. P(w;, z, Sk) - P(z, Sk)
N ; P(z. S;) - P(z)
_ Plw;. 3)
~ P(z)
= P(w;|x).

Note, (6) assumes that K modules are sufficient to model
any P(w; |x). This assumption is valid for a multisource
recognition task, wherein the number of sources is relatively
small and the test and training sources are the same. Section
VII-C considers the necessary conditions for the assumption
to hold in a source-independent recognition task.

Using the proportional combinational scheme of (2) leads
to the following interpretation of the SID network’s outputs
(see [7])%

Sk = P(Sk|z). Y

Thus, in the Bayesian context, the SID network estimates
the multisource Bayesian discriminant function by learning
to compute estimates of the likelihoods P(S;|z) V& so that
it can form a robust approximation of the a posteriori class
distributions P(w;| z) Vi in (3) via the relationship of (6). The
reader should note that Nowlan presents a similar probabilistic
rationale for his connectionist approach to associative mixture
models in [25] and [27].

The winner-take-all combinational strategy of (1) allows
only one nonzero term in the classifier’s estimate of the
mixture in (6), whereas the proportional scheme of (2) allows
all K terms to be nonzero. It is interesting to note that the gross
summation scheme in Table I is equivalent to a proportional
scheme in which all the source likelihood estimates P(S| )
in (7) are equal. This uninformed mixture model performs
adequately (if indeed a 21.2 (+/- 1.3)% error rate can be
considered adequate) over the six sources but at a cost in terms
of its discrimination on any particular source—an exaggerated

8Note that [38] and [23] employ the principle of linear superposition of
independent Gaussian PDF’s in a connectionist framework to estimate the

(arbitrary) PDF of a random vector. Nowlan uses a probabilistic mixture model
for a connectionist approach to regression in [26].

9Note that S;. denotes the kth output of the SID combinational superstruc-
ture, whereas S denotes the Ath source.
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yet clear example of the acuity/generality tradeoff described
in Section II-A.

IV. THE META-PI PARADIGM

It would be helpful if the SID combinational superstructure
could somehow link its module selection process with a
performance assessment for the modules themselves, that is, if
the combinational superstructure could somehow know when a
source-dependent module provided an ambiguous or erroneous
output, it could avoid using that module to recognize the input
pattern in question, thereby avoiding (or at least suppressing)
errors made at the module level. In training the SID superstruc-
ture to recognize a source’s identity, we give the network no
information regarding the global objective of accurate pattern
recognition. As a result, the SID superstructure’s training is
completely independent of the global pattern recognition ob-
jective; there is no linkage between module discrimination and
module selection. A review of the SID architecture’s global
discrimination on the multispeaker phoneme recognition task
shows that it is very common for more than one source-
dependent module to classify any given input correctly. Given
the probabilistic relationships of Section III-B, this is not
surprising. The phenomenon leads us to envisage an SID-
like combinational superstructure that is no longer trained
explicitly to perform source identification; instead, it is trained
to use any combination of source-dependent modules that will
classify a given phone correctly. In fact, it is possible to use
the SID network’s global phoneme recognition performance
to learn this optimal combinational function. This change
leads to the Meta-Pi paradigm. Architecturally, the Meta-
Pi network is identical to the SID network (Fig. 1), but
its training procedure is different. The difference has two
elements: a difference of probabilistic interpretation and a
resulting procedural difference, both of which pertain to the
combinational superstructure.

A. Probablistic Rationale

In the SID network, each of the combinational superstruc-
ture’s outputs Sp is an estimate of the probability that the
input pattern x has been generated by the kth source Sy
(see (7). In the Meta-Pi network, each of the superstructure’s
outputs M, is viewed as the probability that the kth source-
dependent model M, is relevant'® to classifying the input
pattern correctly. The distinction here is subtle but important.

Again, let us assume that each global output O; repre-
sents an estimate of the continuous-valued probability of the
phoneme w;, given the input signal z (again, see [7]):

0; = P(wi|z) ®)
However, we now consider pg; (the ith output of the kth
source-dependent module) as the probability of phoneme w;,
given that the input signal is z, and the kth source-dependent
module is being used to classify z:

pri = Plwi|z, My) 9

10The term “relevance”™—as it pertains to modular connectionist sys-
tems—was coined by Hinton.
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Thus, we can express the a posteriori probability P(w;|z)
as a linear combination of the source-dependent a posterioris,
just as we did in (6):

Purlz) ~ = 3 Plwiz, My) - B(My[z)  (10)

B

Note that the kth output of the Meta-Pi combinational super-
structure M, (see Fig. 3) is a measure of the relevance of
the kth source-dependent module, given z. In the probabilistic
context, this kth superstructure output is an estimate of the
probability that the kth source-dependent module will correctly
classify the input:

My, = P(Mj|z) an

Because it is possible (albeit unlikely) for all K source-
dependent modules to be relevant for a given input, we
normalize the outputs of the Meta-Pi combinational super-
structure by %, where

H2 S P(My|z) (12)
K
>0
0<PMilz) < 1 Vk
in (10), and
(13)

> My =i
K

This ensures that the normalized aggregate relevance of the
sources % Y-k P(My|z) is unity, as required by the Bayesian
formalism of (10).' Note—as with (6)—that (10) assumes
that K modules are sufficient to model any P(w; | z). Again,
Section VII-C considers the necessary conditions for this
assumption to hold in a source-independent recognition task.
"'The scaling factor L is not merely a theoretical nicety; it is a practical

necessity. Omitting it leads to poor discrimination with Meta-Pi backpropa-
gation.
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Thus, the Meta-Pi network approximates the Bayesian
discriminant function by learning to estimate the relevance
P(M;,| ) VK so that it can form a robust approximation of
the a posteriori class distributions P(w;|z) Vi in (8) via the
relationship of (10). It is important to note that the Meta-
Pi network learns to compute these relevance coefficients
without any explicit knowledge of the input source identity.
The Meta-Pi combinational superstructure’s parameters are
adjusted solely on the basis of how well the global network
performs the global classification task—this is consistent with
the Bayesian maximum a posteriori (MAP) description of the
Meta-Pi paradigm presented in Section IV-B. As a result, there
is only indirect supervision of the Meta-Pi network as it learns
its combinational function.

B. Meta-Pi Training

As mentioned earlier, the difference of probabilistic inter-
pretation between the Meta-Pi and SID training procedures
leads to a procedural difference in the combinational super-
structure’s training.

1) Procedural Differences between Meta-Pi and SID Train-
ing: A comparison of Figs. 1 and 3 illustrates the procedural
difference between SID and Meta-Pi training when the task
is speech recognition. The SID training procedure involves
training a set of source-dependent classifiers on the desired
task and independently training a combinational superstructure
using a training set comprising all of the source-dependent
training data (Fig. 1 inset). For the Meta-Pi training proce-
dure, source-dependent modules are trained the same way
they are for the SID procedure before the combinational
superstructure is trained (Fig. 3 inset). The combinational
superstructure is then trained. Initially, its parameters are in
an arbitrary random state. The superstructure performs its
combinational function on the outputs of the source-dependent
modules—each module processes each training sample and
presents a classification output to the Meta-Pi superstructure.
The superstructure processes the same training sample and
produces a global classification output by forming a linear
combination of the module outputs. As the combinational
superstructure’s parameters are initially random, so is the
linear combination forming the global output. Training the su-
perstructure therefore involves searching its parameter space to
optimize the metric used to evaluate the global performance of
the structure. In this way, the parameters of the combinational
superstructure are altered so that the linear combination of (10)
yields a valid classification for each training token. Thus, the
a posteriori probability associated with the correct phoneme
in (10) is maximized, and the Meta-Pi paradigm constitutes a
connectionist MAP learning procedure.

Since we use TDNN MLP classifiers for the modules and
the combinational superstructure of the Meta-Pi architecture,
the training procedure requires an alteration of the backprop-
agation algorithm.

2) Meta-Pi Backpropagation: Fig. 3 illustrates the Meta-Pi
modular structure used to combine the C outputs of K source-
dependent modules trained to perform the same classification

task. The layout of this figure is analogous to that of Fig. 1.1

Thus
— Z P - Mz,

where, again, /i is given in (12) and (13).

The continuous-valued Meta-Pi output unit 0 < M,, < 1
modulates or gates the continuous-valued output pi; (0 <
pki < 1) to form the global output O;. Much as the Meta-
generalized delta rule {31] uses one connection (or synapse)
to modulate the value of another connection, the Meta-Pi
network uses its continuous output state as a connection that
modulates the output state of another network. Owing to
the probabilistic motivation of Section IV-A, the output unit
O; of the global structure does not perform a thresholding
or “squashing” function. O; is a linearly scaled version of
pi,i—the output of a connectionist structure previously trained
to perform the same classification task demanded of the global
network. Intuitively, one would expect the Meta-Pi network to
learn to pass the output pg; through to the global output O;
when p; ; represents a correct classification of the input and
to withhold py ; from the global output when it represents an
incorrect classification.

For the case in which one is using an error measure objective
function [7] E, based on the global outputs Oy, ..., O¢
(such as the mean-squared-error (MSE) or cross-entropy (CE)
objective function)

0; = (14)

oF _O0FE a0
oM., ~— 90 OM,,
=[VoE]" - Vi, 0. (15)
One uses the expression az?i and the backpropagation chain

rule to determine'®> V,, E. One then adjusts the parameters

(“weights” or “connections”) of the Meta-Pi network to opti-

mize the global output O;. Thus, Meta-Pi backpropagation is

quite similar in form to cascaded backpropagation [29].
From (14) and (15)

00;
OM,
If Dy, .... D¢ represent the target global output state of the

Meta-Pi structure in Fig. 3, and one uses the modified MSE
expression & [36], [3] where

= < [ons - 01 (16)

£e Ly - S use 7)
2~ 2
then
OF
= 0; - D 18
30, (18)
and (15), (16), and (18) combine to yield
1
- i — O 19
6Mrk 3 Z [Pk, i} (19)

12 A more tutorial description of Meta-Pi backpropagation can be found in
(8].

137 . E denotes the Meta-Pi network’s parameter-space gradient of the
error function E.
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c
N log, |1 + (¢ — A)* - A; <0
CFMyp=q €7 Z [ ( ) ] ¢ (32)
i FET
0 C—A; >0
dCFMuyr {M S a0 (- A <0
=4 C-1 1+(C—A) g Vi . 33
aA; 0 C— A >0 iET (33)
For the cross entropy objective function (e.g., [12])
c A 1 .
yE—— Vi 30
CE=-3" {Dilog(0;) + (1 ~ D) log(1 — 0,)} v eoai0 V17 o
-1 From (23), (25), (27), (29), and (30)
op @0 sorM, 1 op
_ Di 1-D oM, ¢ u
30; ;{Oil—Oi} 1) ’

and (15), (16), and (21) yield

OCE 1 ¢ D; 1 - D,
oM, - _5 ; {[a 1z Oi:l “(prs — 01)}
@)

For objective functions M based on differences between the

global outputs {A;, ..., Ac_;} such as the CFM objective
function [9] for which

ALO, -0, i#T

(23)
O; = the global output representing
the correct classification of the input
O; = the global output representing the ith
incorrect classification of the input signal  (24)
we find
oM oM oA
oM., ~ 89A OM,,
= [VaM]T - Oy, B (25)
Note that
1 .
Ai== 0 (Prr = pri) - Mn, Yi#T (26)
K
0A; 1 .
oM, & ((pr,r = pri) — D] Vi#ET 27

The standard (sigmoidal) CFM objective function is given by
[9]14

C
a1 a
VTR S S
B #T

OCFM, 1
=Byl — ) Vi 29
A, e P ul —y) ViFgT (29

where

14One can omit the scaling factor of El—_l for computational efficiency,

making a commensurate adjustment in the objective function’s derivatives.

-1
C
kreli=1

{v:i(1 = w) - [or,r — pri) — A}

G

The maximally flat CFM objective function is given by

[9].° (See (32) and (33) at the top of this page.) From (23),
(25), (27), (32), and (33)

OCFMMF _ 1 Zaﬁ
oM., C—-1 a
Lo 1+ (¢ - A%
c—Zﬁ:<0

: [(pk,r - Pk,i) - Ai]}- (34)

Equations (15) and (25) are general expressions describing
the global error signal’s propagation from the global output
back to the Meta-Pi combinational superstructure’s output
stage (note the gray arrows in Fig. 3). As mentioned before, the
standard backpropagation chain rule governs the propagation
of the error signal back through the Meta-Pi network from this
point; from its output units M, , ..., My, back to its input
stage, the Meta-Pi network is a standard MLP—in our case,
a TDNN.

V. MULTISPEAKER PHONEME RECOGNITION
USING THE META-PI ARCHITECTURE

Table II compares the error rates of the Meta-Pi and
SID networks. There is no significant difference between the
discrimination of three-way arbitrated and single CFM-trained
Meta-Pi combinational superstructures. For this reason, we
limit our analysis to the single CFM-trained superstructure
since it is one third the size of and requires one third the
training time of the three-way arbitrated superstructure.

150ne can omit the scaling factor of '~ for computational efficiency,

making a commensurate adjustment in the objective function’s derivatives.
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TABLE II
A COMPARISON OF SIX-SPEAKER /b, d, g/ ERROR RATES FOR
THE META-P1 AND SID COMBINATIONAL SUPERSTRUCTURES.

Artificial
Actual Combinational Schemes Combinational Schemes |
Normalized T
SID SID Gross
Meta-Pi Proportional ‘Winner-take-all Sum Gender known ‘ SID known
3-Way Arbitrated Sup
[ 176r00% | 176/-04% [ 1960500% [ 2124 19% | 55(/-07% | 13 (/- 04%
Single CFM-trained Superstructure
with [ 19 (+0.5-04)% | 21(+-05% | 23(+/-05% 6 speakers
MHT 0.8 (+0.8/-0.7)% 0.6 (+0.8/-0.6)% | 0.6 (+0.8/-0.6)% MHT
module || 21 (+-05)% | 24 (+06/05% | 27(+-06% other S speakers
without 26 (+/-05)% 80 (+/-09% 6 speakers
MHT | 5.8(+20-18)% | 372 (+39/38)% MHT
module 1.9 (+/- 0.5)% 23(+/-05)% other 5 speakers

The Meta-Pi network’s error rate of 1.9 (+0.5/-0.4)% is
statistically equivalent to the SID network’s 2.1 (+/- 0.5)% ;
both of these rates are statistically equivalent to the 1.3 (+/-
0.4)% average error rate of the speaker-dependent modules,
which has been obtained for the ideal case in which the
speaker’s identity is explicitly known (“SID known” column).

The Meta-Pi combinational superstructure learns early dur-
ing the training phase that gender plays a critical role in
accurate phoneme recognition. As a result, it learns—without
direct supervision—to group speakers by gender. Fig. 4 illus-
trates this phenomenon. The figure shows the unique connec-
tions between the input layer of the Meta-Pi combinational
superstructure and its first hidden layer.!® Twelve groups of
connections depict the weights linking three 16-coefficient
specira (48 units) of the input layer to each of 12 first-
hidden-layer units. Positive connections are white, negative
connections are black, and the magnitude of each connection
is proportional to the size of its corresponding rectangle.
It is clear from Fig. 4 that the input to first-hidden-layer
connections are block like (i.e., positive and negative con-
nections to each first-hidden-layer unit are clustered in regular
blocks). These blocks tend to correspond to formant!” locations
for the various speakers. The figure illustrates two formant
features (F'2/ F'3 separation and the presence of low-frequency
(LF) energy) that the Meta-Pi combinational superstructure
has learned to use for detecting male speech. Likewise, the
superstructure has learned that a relatively high-frequency
third formant (F'3) indicates a female’s speech. It has learned
to rely on formant characteristics in order to minimize its
global error rate. Fig. S illustrates the connection strengths
and state formed by the SID combinational superstructure
described in Section III for the same utterance shown in
Fig. 4. There are notable similarities between Figs. 4 and 5
despite the fact that the Meta-Pi combinational superstructure
was not explicitly trained to perform speaker identification,
whereas the SID superstructure was. An interesting feature
that distinguishes the SID combinational superstructure from
the Meta-Pi superstructure is the finer detail of its connections.
Where the Meta-Pi connections are block like, suggesting that
the superstructure relies on relatively gross formant features to

16See [19], [40] for details of the TDNN’s temporally constrained connec-
tion topology.

7Formants are resonances in the vocal tract of a speaker. They are
abbreviated Fi, where F'1 denotes the formant with the lowest center
frequency [28].
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Fig. 4. Meta-Pi network’s input-to-hidden-layer connections use gross for-
mant features of the speech input signal to form an estimate of the a posteriori
class probabilities of (10).
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Fig. 5. SID network’s input-to-hidden-layer connections. These connections
evolved from explicitly learning the task of speaker identification. Note the
similarities with the Meta-Pi network’s connections in Fig. 4.

perform its combinational function, the SID superstructure’s
connections are less regular. We surmise that this is because
the SID superstructure has learned a number of speaker-
dependent spectral characteristics that are more detailed than
the gross formant features learned by the Meta-Pi superstruc-
ture.

Fig. 4 illustrates that the Meta-Pi combinational superstruc-
ture is capable of specific speaker identification (only the
output associated with speaker FKN is active). The percentage
of utterances for which the superstructure identifies a single
module for the global recognition task is actually low—Iless
than 30%. Fig. 6 illustrates a much more typical mode of
operation. In this figure, the speech token is actually uttered
by female FSU, but the superstructure associates the input
signal with both female modules and produces a correct global
recognition result. Apparently, the combinational superstruc-
ture has learned to perform explicit speaker identification
when the input signal possesses features that are unique to
a particular individual. In addition, it has learned that many
utterances are prototypical of a group of speakers (e.g., males
or females). In cases where the utterance is prototypical, the
Meta-Pi combinational superstructure attributes the speech to
the collection of speakers it associates with the prototype.
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Fig. 6. Meta-Pi superstructure attributes a /b/ phone to both female
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Figs. 4 through 6 give empirical evidence that the Meta-Pi
network does indeed constitute a Bayesian MAP classifier ca-
pable of robust multisource pattern recognition. Furthermore,
the figures suggest that the combinational superstructure uses
a more general, less specific model of source (speaker) type
when the input signal is prototypical and a more specific model
of the source when the input signal is unique. These observa-
tions are consistent with the probabilistic differences between
(6) and (10). The question remains: “Does the more general
Meta-Pi combinational function produce a global system that
is intrinsically extensible to novel sources?” There is evidence
that suggests the answer to this question is affirmative. Fig.
7 illustrates the Meta-Pi network processing the voiced stop
/d/ uttered by speaker MHT. A notable aspect of this figure
is that the Meta-Pi combinational superstructure does not use
the MHT module to recognize this utterance. In fact, when
fully trained, the superstructure never uses the MHT module
to classify speech tokens from any of the other five speakers,
and it rarely uses the MHT module to classify tokens from
speaker MHT. Indeed, it learns to model speaker MHT most
often with a dynamic combination of other male speakers and,
in so doing, still achieves a 0.8 (+0.8/-0.7)% error rate on
the speech of MHT. An analysis of this phenomenon leads to
the following explanation.

Speaker MHT is a very clear speaker. Using a single TDNN,
we can recognize all but 0.2 (+0.5/-0.2)%  of this male’s
speech [9]. This suggests that the a posteriori distributions
of his voiced-stop phonemes are nearly separable (thus, our
“clear” characterization). However, a TDNN trained on MHT
but used to recognize the speech of another speaker (MAU)
does quite poorly (21.9 (+3.3/-3.2)% ). Conversely, a TDNN
trained on the speech of MAU and used to recognize the
speech of MHT achieves a 9.4 (+2.4/-2.3)% error rate. During
the training phase, the Meta-Pi combinational superstructure
finds the following:

1. It can usually model MHT’s speech using combinations

of other male modules.

2. There is no utility in using the MHT module to recognize

speech tokens from any of the other speakers. Although
the MHT module’s recognition rate is high for one sixth
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Fig. 7. Meta-Pi superstructure recognizes the speech of male MHT using a

dynamic combination of other male speaker modules.

of the training data (MHT’s speech), it is low for the
remaining five sixths of the training data.

As a result, the Meta-Pi combinational superstructure learns
that there is no marginal utility in using the MHT module.
In effect, it removes the MHT module from its “module
database.” Indeed, Table II shows that if we physically remove
the MHT module from the trained Meta-Pi network, we find
that its error rate for MHT speech increases moderately to
5.8 (+2.0/-1.8)% , whereas the error rate for the other five
speakers remains unchanged (the decrease from 2.1 (+/- 0.5)%
to 1.9 (+/- 0.5)% is not statistically significant). Note that the
SID network’s error rate for MHT increases to 37.2 (+3.9/-
3.8)% when the MHT module is removed. This result has
implications both for source-independent pattern recognition
and for fault tolerance, which we consider in the following
two sections.

VI. A LIMITED SPEAKER-INDEPENDENT
EXPERIMENT WITH THE META-PI ARCHITECTURE

Since the six-speaker Meta-Pi network usually models
speaker MHT with a combination of other source-dependent
modules, it is logical to ask whether a five-speaker Meta-Pi
network—trained on the speech of all the speakers except
MHT—can recognize MHT’s speech in a limited source-
independent experiment. We trained such a five-speaker Meta-
Pi network along with a comparable SID network and a
single TDNN. Fig. 8 shows a comparison of the speaker-
dependent modules (“speaker-dependent averages”), the six-
and five-speaker TDNN’s, and the six- and five-speaker Meta-
Pi and SID networks. Separate error rates are shown for
MHT and the other five speakers. The speaker-dependent
module error rates are shown because they approximate the
best performance achievable. The TDNN error rates are shown
for control purposes since the single TDNN is the monolithic
classifier against which we are comparing the SID and Meta-Pi
architectures. Note that for the multispeaker experiment (i.e.,
the case in which each classifier is trained with the speech
of all six speakers), the TDNN, SID, and Meta-Pi classifiers
all yield MHT error rates that are statistically equivalent to
the MHT-dependent error rate. However, the SID and Meta-
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Fig. 8 Comparison of /b,d, g/ error rates for speaker-dependent modules,
TDNN, SID, and Meta-Pi classifiers.

Pi classifiers yield error rates for the other five speakers that
are statistically equivalent to the 1.3 (+/- 0.4)%  speaker-
dependent average, whereas the TDNN’s error rate for this
group of speakers is significantly higher at 4.7 (+0.8/-0.7)%

As mentioned in the previous section, we see that when the
MHT module is physically removed from the SID and Meta-
Pi networks, the SID classifier’s MHT error rate increases to
37.2 (+3.9/-3.8)% , whereas the Meta-Pi classifier’s error rate
increases to 5.8 (+2.0/-1.8)% . Note that the SID and Meta-
Pi error rates for the other five speakers remain essentially
unchanged at 2.3 (+/- 0.5)% and 1.9 (+/- 0.5)% , respectively,
when the MHT module is removed.

For the limited source-independent experiment, we see that
the five-speaker TDNN exhibits an error rate of 4.1 (+1.7/-
1.6)%  on the novel source (MHT) and an error rate of
5.7 (+/- 0.8)% on the known sources (i.e., the other five
speakers). In contrast, the SID network exhibits an error rate
of 19.8 (+3.2/-3.1)% on the novel source and an error rate of
2.5 (+0.6/-0.5)% on the known sources. Finally, the Meta-
Pi network’s error rates are virtually identical to those for
the SID network: 19.2 (+3.2/-3.1)% for the novel source
and 2.6 (+/- 0.6)% for the known sources. We see for this
limited source-independent experiment that the TDNN’s error
rate on the novel source is comparable with its error rate on the
known sources; both are significantly higher than the source-
dependent error rates for this group of speakers. Although the
SID and Meta-Pi classifiers yield source-dependent error rates
for the known sources, their error rates for the novel source
are approximately one order of magnitude higher. These results
are consistent with the acuity/generality tradeoff described in
Section II-A; we discuss their significance further in Section
VII-C.
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Fig. 9. Short- and long-term adaptation of the five-speaker Meta-Pi network
to the novel speaker MHT. Short-term adaptation uses 5 and 20 training
examples of each phoneme /b,d,g/ for speaker MHT only; long-term
adaptation uses the combined training sets of all six speakers.

It is clear from Fig. 8—at least for this particular sce-
nario—that neither the Meta-Pi nor the SID classifier is
intrinsically extensible to the novel source without any modi-
fication to the combinational superstructure and/or the source-
dependent modules. Because the SID network is explicitly
trained to identify sources, we would have to add an MHT
module to the five-speaker SID network, expand the combi-
national superstructure to handle this new model, and retrain
the superstructure on the speech of all six speakers. This is
tantamount to building the original six-speaker SID network.
We refer to this as very long term adaptation. Because the
Meta-Pi combinational superstructure is not explicitly trained
to identify sources, it is possible (at least in principle) to
adapt the five-speaker Meta-Pi network to the novel source
by modifying the parameterization of the combinational super-
structure alone—something that cannot be done with the SID
architecture.'® Fig. 9 illustrates the results of this adaptation.

In the “short-term adaptation—5 examples” portion of this
figure, we adapt the fully trained five-speaker Meta-Pi com-
binational superstructure to five examples of each of the
three /b,d, g/ phonemes spoken by MHT—a process we
call short-term adaptation. After 150 training epochs (i.e.,
150 iterations of the backpropagation algorithm on these 15
adaptation examples), the Meta-Pi network’s error rate on
MHT’s speech drops from 19.2 (+3.2/-3.1)% to 6.9 (+2.1/-
2.0)% . The reparameterized superstructure’s error rate on the
other five speakers jumps to 35.7 (+/- 1.7)% , but this is not
problematic because we use the reparameterized superstructure
only to recognize MHT. We use the original fully trained five-
speaker superstructure to recognize the known sources. As
we see in the “short-term adaptation—20 examples” portion
of Fig. 9, if we adapt the fully trained five-speaker Meta-Pi
combinational superstructure to 20 examples of each of the
three phonemes, the MHT error rate is 5.0 (+1.8/-1.7)% —not

18 Granted, there are ways in which the SID superstructure could adapt to a
novel source. For example, one could determine which (if any) of the source-
dependent modules correctly classifies each input from the novel source and
train the SID to attribute the input to the module that best classifies the input.

However, such a technique is a crude form of Meta-Pi learning, and therefore,
the resulting structure is no longer an SID architecture.
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significantly better than the “5—example adaptation” result. It
is interesting to compare the impacts of the smaller and larger
short-term adaptation sets on the reparameterized classifier’s
error rate for the other five speakers (note the black error bars
on white backgrounds).

Finally, if we adapt the fully trained five-speaker Meta-Pi
combinational superstructure to all of the MHT training ex-
amples, along with all the training examples for the other five
speakers—a process that we call long-term adaptation—we
achieve an error rate of 2.4 (+1.3/-1.2)% on MHT and an
error rate of 2.9 (+/- 0.6)% on the other five sources. In
all these adaptation experiments, the error rate for MHT is
comparable to the five-speaker TDNN’s rate (the adaptation
result is insignificantly lower) but somewhat higher than the
original six-speaker Meta-Pi’s rate as shown in Fig. 9. In the
long-term adaptation experiment, the 2.9 (+/- 0.6)%  error
rate for the other five speakers is higher than the 1.5 (+0.5/-
0.4)%  speaker-dependent average but is comparable to the
six-speaker Meta-Pi network’s 2.1 (+/- 0.5)% rate and lower
than the five-speaker TDNN’s 5.7 (+/- 0.8)% rate.

Thus, for this particular scenario, both long- and short-term
adaptation (involving reparameterization of the combinational
superstructure without the addition of a source-dependent
module) allow the Meta-Pi network to yield error rates on
the novel source that are comparable to those of a monolithic
classifier (i.e., the five-speaker TDNN control) and slightly
higher than those of a source-dependent classifier. This is
achieved without degrading the source-dependent error rates
obtained on the other five known sources. We discuss these
adaptation results further in Section VII-C.

VII. DISCUSSION

Our discussion of the Meta-Pi and SID paradigms has
three components: a review of the architectures’ connectionist
properties, a discussion of the significance of our experimental
findings, and a review of questions that need to be answered
in order for the Meta-Pi paradigm to be used in real-world
pattern recognition systems.

A. Connectionist Properties

In Section II-B, we outlined a number of properties that we
thought desirable for a modular connectionist classifier. We
now review and compare the SID and Meta-Pi architectures
in the context of these properties.

1. Size of the Meta-Pi and SID Modular Nets: The Meta-
Pi and SID modular networks use three TDNN’s for each
speaker-dependent module and one somewhat larger
TDNN for the combinational superstructure—a total of
19 TDNN’s (or approximately 123 000 connections).
At face value, an increase of almost 1.3 orders of
magnitude in the number of connections for the overall
six-source task of Section V to achieve a 52% error
reduction seems inequitable. We believe the most im-
mediate way to reduce the size of the Meta-Pi structure
studied herein is to eliminate the redundant networks
used for conflict arbitration at the module level. Ongoing
research associated with [9] suggests that we can achieve
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the same source-dependent error rates without conflict
arbitration. Such a six-speaker Meta-Pi structure for the
/b,d, g/ task would have only seven TDNN’s with
48 400 connections. Of these connections, only about
10% would be unique, owing to the architectural struc-
ture of the TDNN. New algorithms for training TDNN’s
allow one to achieve convergence rates proportional to
the number of unique connections in the TDNN when
training is done on continuous (rather than isolated)
speech [43]. Thus, we can expect to implement the six-
speaker Meta-Pi structure with—in effect—fewer than
5000 connections in the future.

2. Training Set Required: Each of the speaker-dependent
modules’” TDNN’s requires roughly 250 training tokens
for each of the three phonemes it must learn to classify
(~ 750 tokens). The SID superstructure uses all the
tokens used to train the six speaker-dependent modules
(~ 4500) to learn its speaker-identification task. The
training set for the Meta-Pi network is virtually identical
to that for the SID network. The theoretical results of
[7] along with empirical studies in [9] suggest that it is
not possible to reduce the size of the source-dependent
modules’ training sets and/or the SID combinational
superstructure’s training set without an appreciable in-
crease in error rate. However, the adaptation results
of Section VI suggest that it may be possible to train
the combinational superstructure of the Meta-Pi classi-
fier with fewer examples than the number obtained by
combining all the source-dependent training sets. Further
research is necessary to make a conclusive statement on
this point.

3. Training Time: The speaker-dependent module TDNN's
train relatively quickly; therefore, it is possible to train
all the modules in a matter of hours on the WARP
systolic array, which has a maximum sustained rate of
17 million connections/s [30]. Because the SID/Meta-
Pi combinational superstructures are somewhat larger
than the module TDNN’s and their training set size
is six times that of a single module’s TDNN’s, their
total training time is comparable with the time re-
quired to train all of the module subnets. Thus, the
overall training time for the modular structure is pro-
portional to the number of modules combined by the
superstructure—this represents a reasonable degree of
computational efficiency for this size task.!® Since the
training of the SID combinational superstructure and
its modules is completely independent, it is possible
to train modules and the superstructure simultaneously
on different processors (Fig. 1). Because the Meta-Pi
superstructure requires the output states of its composite
modules as part of its training data, it cannot be trained
independent of its modules. The modules must be trained
first; only then can the combinational superstructure be
trained (Fig. 3). This is a significant difference since
it is, in principle, possible to train the SID modules and

19Waibel er al. [41] compare the computational efficiency of various
monolithic and modular connectionist approaches to consonant recognition
tasks; this comparison serves as the basis for our assertion.
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combinational superstructure simultaneously on different
processors; such a scheme would not be possible for the
Meta-Pi architecture.

During training, the Meta-Pi superstructure takes ap-

proximately three times as long as its SID counterpart
to converge to its optimal parameterization (the six-
speaker SID combinational superstructure converges in
approximately 150 epochs; the equivalent Meta-Pi super-
structure converges in approximately 450 epochs). This
disparity can be attributed to the fact that the error signal
propagated back through the SID network is based on a
unique input-to-output mapping specified by the explicit
source identification objective. For the Meta-Pi network,
there is usually a manifold of input-to-output mappings
that yield the correct global classification output for any
given input. Since most training tokens have a nonunique
optimal Meta-Pi superstructure state, the point in the
Meta-Pi superstructure’s parameter space that is optimal
for all training tokens is in a broad region of near-optimal
parameterizations. This leads to small gradient terms in
Meta-Pi backpropagation using gradient descent, which
in turn account for the slower convergence rate.
Ease of Modification: The SID and Meta-Pi modular
structures are easily modified in very long-term adapta-
tion. A new speaker-dependent module can be trained
independently and then added to the module layer; the
combinational superstructure can then be expanded to
account for the new module—beginning with the previ-
ously learned connections corresponding to the original
set of modules—and retrained on the expanded global
SID training set. Thus, the computational cost of a very
long-term modification to both modular architectures is
equal to the cost of training one source-dependent mod-
ule and one combinational superstructure. As the number
of modules increases, this cost becomes a proportionally
smaller fraction of the cost of retraining a monolithic
classifier. It seems unlikely, however, that the discrimi-
nation of the SID superstructure would remain robust if
the number of modules it combines were to grow large;
the speaker identification task would probably become
confounding and result in a degradation of global system
discrimination. Additionally, the limited extensibility of
the SID structure (see below) does not bode well for the
architecture’s discrimination in a speaker-independent
mode.

We expect that problems would also arise with a
comparably large Meta-Pi network for the simple reason
that the combinational superstructure would eventually
suffer from its own form of the acuity/generality tradeoff
described in Section II-A. Specifically, the same sound
can represent different phonemes for different speakers.
Using the techniques outlined in (10) and [7], it is
relatively straightforward to show that a single Meta-
Pi superstructure trained on the speech from a large
body of heterogeneous speakers would yield ambigu-
ous phoneme classification outputs for an input that
could be associated with different phonemes for different
speakers.

5. Extensibility to Novel Sources: We review the three

levels of adaptation described in Section VI based on
the assumption that the classifier comprises a collection
of source-dependent modules linked by a combinational
superstructure; listed in order of increasing computa-
tional complexity and data requirements, they include
the following:

a.  Short-term adaptation: This adaptation involves
a temporary reparameterization of the combina-
tional superstructure in order to recognize the
novel source. No source-dependent modules are
added to the classifier, and the amount of training
data for the adaptation is limited. The adaptation
process begins with the superstructure’s param-
eters for the known sources. Once the classifier
has finished processing the novel source, the su-
perstructure’s parameters are reset to their values
before the adaptation; as a result, the adaptation
is temporary.

b. Long-term adaptation: This adaptation is similar
to short-term adaptation, except that the amount
of training data for the adaptation is large—as
much data as one would need to build a source-
dependent classifier of the source. This data is
combined with the training data for all the known
sources, and the combinational superstructure is
reparameterized so that it learns to recognize the
novel source using existing models of known
sources. The reparameterized superstructure then
forms a classifier that recognizes all the original
known sources as well as the new source without
using a module trained on the speech of the new
source. This adaptation is permanent.

c. Very long-term adaptation: This adaptation in-
volves adding a source-dependent module for the
new source, expanding the combinational super-
structure, and retraining it to form a new, ex-
panded multisource classifier. It is permanent.

6. The Meta-Pi architecture can perform all three forms

of adaptation, whereas the SID architecture performs
only very long-term adaptation. As illustrated by Section
VI, short-term adaptation can, in some cases, yield
acceptable error rates with few examples of the novel
source. It is also clear from Section VI that some sources
can be modeled effectively with long-term adaptation.
We see this performance characteristic as having the
potential for self-maintaining pattern recognition sys-
tems—systems that can develop and maintain their own
database of known sources, adapting to new sources
when possible, spawning new source-dependent learning
processes when necessary, and eliminating redundant or
obsolete source-dependent modules when appropriate.

. Error Propagation and Fault Tolerance: Because the

SID superstructure is trained independent of the speaker-
dependent modules that it combines, it simply selects the
module to decode the given utterance, independent of
whether or not the module correctly classifies the input
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signal. In contrast, the Meta-Pi superstructure learns to
form its final classification decision from only those
source-dependent modules that correctly classify the
input signal. This difference appears to be significant
if the modular structure is damaged by the failure of
a source-dependent module. We found that the Meta-Pi
classifier could still recognize speaker MHT reasonably
well when the MHT module was removed, whereas the
SID network had a relatively large increase in its MHT
error rate. We do not claim that the Meta-Pi network will
maintain low error rates for every known source whose
module is removed from the structure; to the contrary,
we think this unlikely. However, we do feel the MHT
results show that the Meta-Pi structure is more tolerant
of such failures than its SID counterpart.

B. Significance of Results

As mentioned early on, the error rates we quote throughout
this paper are estimates based on each classifier’s recognition
of a random test sample that is disjoint from the sample used
to train the classifier. We assume that the estimated error
rate is binomially distributed and quote the upper and lower
bounds of a 95% confidence interval based on this assumption
[11]. Two error rates are judged statistically equivalent if their
confidence intervals overlap. This gives the reader a picture of
the statistical significance of the results for each classifier,
given the particular a posteriori class distributions on the
input RV z and a particular parameterization for the classifier.
However, it gives no assessment of the classifier’s expected
discrimination given a training set with any a posteriori class
distributions on z and any parameterization judged to be best
for that training set.’ That is, perhaps the a posteriori class
distributions on z happen to be unusually easy (or hard)
to model, or perhaps we have been particularly lucky (or
particularly unlucky) in training the classifier.

Distribution-independent confidence bounds on the devia-
tion of empirical from true best error rates for MLP classifiers
based on training sample size are still being debated (see
the works of Baum, Cover, DeVroye, Haussler, and Vapnik-
Chervonenkis). Therefore, rather than compute theoretical
bounds, we refer the reader to [9]. Based on experiments
detailed therein, we doubt that the error rates estimated for
source-dependent modules in this paper deviate from the true
best error rates by more than 1.5%. It is less clear what the
maximum deviation of the empirical from true best error rates
are for the overall Meta-Pi and SID classifiers. In the limited
number of six- and five-speaker superstructure training runs
we have made, the error rates on the five known sources for
the overall classifier have been tightly clustered (+0.6/-0.3%)
around 2.0% (eight trials).

Beyond the statistical significance of our results is their
importance to larger real-world pattern recognition systems.
We caution the reader that our experiments to date are not
sufficiently complex, nor do they involve a sufficiently large

20Devroye makes an important distinction between the best error rate a
particular family of classifiers can achieve and the optimal error rate achieved
by the Bayesian discriminant function [4].
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number of heterogeneous sources, to be viewed as typi-
cal of the Meta-Pi classifier’s discrimination for the general
multi-source and source-independent pattern recognition tasks.
Instead, they should be viewed as a feasibility study——a set
of experiments to determine if further research aimed at
implementing the Meta-Pi paradigm for a large-scale multi-
source/source-independent pattern recognition tasks is worth-
while. Based on our results, we conclude that further study is
warranted; there are many issues to be explored.

C. Remaining Questions

The questions that must be answered in order to evaluate
the Meta-Pi classifier for large real-world multisource/source
independent tasks include the following:

Are the multisource and source-independent results achieved
in this study representative of the Meta-Pi network’s charac-
teristics for much larger multisource and source-independent
tasks? Our opinion is that the multisource and source-
independent results for speaker MHT are likely better than
those for the typical case, owing to the nice statistical
properties of the subject’s speech. Speaker MHT was the only
speaker among the six we studied whom we could model using
only other source-dependent modules. Attempting this with
any of the other speakers yielded unacceptably high error rates.
How well the Meta-Pi network does in classifying patterns
from a novel source undoubtedly depends on the number of
source-dependent modules it has.

Does the disparity between a monolithic and modular clas-
sifiers’ error rates change for larger tasks? If so, does this
change argue for or against the modular approach? The
operative equation governing the comparison of a modular
and monolithic classifiers’ error rates is

P(Error) = P(Error | Known source) P(Known source)
+ P(Error | Unknown source) P(Unknown source)
= [P(Error | Unknown source)
— P(Error | Known source)] P(Unknown source)
+ P(Error | Known source). (35)

This error rate is not only a function of each classifier’s error
rate for known and unknown sources, it is also a function
of the probabilities of the two types of sources. Clearly, if
the probability of encountering an unknown source is zero
(as would be the case in a multisource task), (35) reduces to
P(Error) = P(Error |Known source). Thus, if the Meta-
Pi paradigm scales well to large multisource classification
tasks, the acuity/generality tradeoff introduced in Section II-A
and detailed in the Appendix assures that it will yield better
discrimination than a monolithic classifier. This is because the
acuity/generality tradeoff shows that the monolithic classifier’s
error rate for known sources will increase to the level dictated
by the multisource a posteriori distributions derived from
all the sources used to train the classifier. As the coliection
of training sources grows large and representative of the
ensemble (i.c., all possible sources), the monolithic classifier’s
error rates for known and unknown sources will converge
to the same value. For heterogeneous sources, this value
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will be significantly higher than the average source-dependent
error rate for the ensemble, as shown in the example of the
Appendix.

Using (35), one can show that the necessary condition for a
modular classifier to yield (on average) better discrimination
than a monolithic classifier is

P(Unknown source) <

[P(Error | Known source),monofithic
— P(Error | Known source)modular]

[[P(Error | Unknown source)

— P(Error | Known source)] m o dular

— [P(Error | Unknown source)

-1
— P(Error | Known Source)]monolithic] . (36)

Using (36) and the data depicted in Fig. 8, it is straightfor-
ward to show that the five-speaker SID and Meta-Pi classi-
fiers—without any adaptation—will yield a lower overall error
rate than the five-speaker TDNN for the five known and one
novel speaker, as long as the probability that the novel speaker
is talking does not exceed approximately 0.15—or about one
sixth. If we allow the five-speaker Meta-Pi network to adapt
to five examples of each phoneme from the novel speaker,
it yields better overall discrimination than the five-speaker
TDNN as long as the probability that the novel speaker is talk-
ing does not exceed 0.52—a high probability for an unknown
source. Presumably, sources with high probabilities are known,
and unknown (i.e., novel) sources have low probabilities. As
a result, we would expect that if the Meta-Pi paradigm scales
well to large multisource classification tasks (modeling the
known sources is such a task) and maintains its ability to adapt
rapidly, it will yield better discrimination than the monolithic
classifier by (36).

How many source-dependent modules are necessary for
robust source-independent recognition? Peterson and Barney’s
seminal paper on the formant locations of English vowels
serves as a crude indicator of how many sources are necessary
for a robust speaker-independent Meta-Pi phoneme classifier.
Their speaker population numbered 76, and graphical repre-
sentations of the first two formant locations for the vowels
suggest that one would require Order this number of sources
to build a robust speaker-independent vowel classifier. This
estimate is corroborated by the SPHINX speech recognition
system,; its developers cite 80~100 as the minimum number of
training sources necessary for robust speech recognition [13].

Can a large Meta-Pi structure model some novel sources
without any adaptation phase?

How can a large Meta-Pi structure be designed so that
the combinational superstructure(s) avoid the type of acu-
ity/generality tradeoff outlined in Section VII-B? We think it
unlikely that robust speaker-independent recognition of all
phonemes can be performed by a single Meta-Pi combinational
superstructure operating on Of 100 ] all-phoneme speaker-
dependent modules. If the Meta-Pi paradigm does prove to

be scalable to such a large task, it is likely to take a more
complex hierarchical form.

What quantitative factors should be employed to decide
between using long-term and very long-term adaptation to
incorporate a particular novel source into the collection of
known sources?

How can the computational complexity of the Meta-Pi struc-
ture be reduced as it begins to recognize a particular source
(i.e., how can the number of modules actually used to model
the source be reduced during recognition to minimize compu-
tational requirements)?

Does the Meta-Pi architecture lend itself to a particular
computer architecture for large scale implementations?

VIII. CONCLUSION

In this paper, we have presented the Meta-Pi network—a
modular connectionist classifier for multisource pattern recog-
nition. We have shown how Meta-Pi learning constitutes
a Bayesian MAP training procedure and demonstrated the
paradigm on a multisource (six-speaker) and limited source-
independent (five known speakers, one unknown speaker)
/b,d, g/ phoneme recognition task.

The Meta-Pi classifier yields a source-dependent error rate
of 1.9 (+0.5/-0.4)%  for the multisource task, whereas a
comparable monolithic classifier trained for the same task
exhibits an error rate of 4.1 (+0.7/-0.6)% . Beyond this,
the Meta-Pi architecture can model one of the six speakers
using only the modules of other speakers—an attribute that
has possibilities for pattern recognition systems that are both
fault tolerant and capable of maintaining their own database
of relevant source-dependent models of the input RV.

In the limited source-independent experiment, the Meta-Pi
classifier yields a 19.2 (+3.2/-3.1)% error rate on the speech
of a novel speaker—five times the 4.1 (+1.7/-1.6)% error rate
of a comparable monolithic classifier. However, this Meta-Pi
classifier’s 2.6 (+/- 0.6)% error rate for five known sources
is half the monolithic classifier’s 5.5 (+/- 0.7)% error rate for
the known sources. Furthermore, the Meta-Pi architecture can
adapt to the novel source with five examples of each of the
three phonemes, yielding a 6.9 (+2.1/-2.0)% error rate on the
novel source that is statistically equivalent to the monolithic
classifier’s rate. Longer-term adaptation allows the Meta-Pi
classifier to model the novel source at source-dependent error
rates.

These results indicate that further study of the Meta-Pi
paradigm is warranted to determine if it can be a useful compo-
nent of robust real-world multisource and source-independent
pattern classifiers—classifiers that model the source being
recognized with an adaptive combination of known source-
dependent models.

APPENDIX
A FORMAL STATEMENT OF THE
ACUITY/GENERALITY TRADEOFF

A formal description of the acuity/generality tradeoff is best
begun with a review of Bayesian discrimination. Simply stated,
the Bayesian discriminant function associates the random
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Fig. 10. PDF’s for the buoyancy of ash, maple, and a mixture of the two.

feature vector (RV) z with the “best”—by which we mean
the most likely—class wy.

Consider a two-class real-valued scalar random variable
problem for which the class-conditional densities p(z |w;)
are unimodal, and there exists only one optimal boundary
between the two classes. We assume that all values of z to
the left of the class boundary on the real number line belong
to class one (w1), and all values of x to the right of the class
boundary belong to class two (wp). Fig. 10 illustrates three
such problems; the density associated with w; is shown in
white, the density associated with wo is shown in dark gray,
and the region on z, where the two densities overlap, is shown
light gray.

Given this discrimination task, one can determine the prob-
ability of making a classification error, given some value of
the class boundary zp:

oC
L,

B
+ /
—oc
One can use Leibnitz’s rule to differentiate (37) with respect
to g in order to determine the value of zp that yields the

minimum error rate. This minimum error rate is that yielded
by the Bayesian class boundary B, which is achieved when

p(zlwr) P(wr) = p(zlws) Plwz).  (38)

For the C-class problem wherein « is a random vector with
dimensionality N (i.e., z € RY), the result of (38) can be
generalized. The Bayesian class boundaries for the ith class
in such a problem are described by a set of N -dimensional
hypersurfaces®! for which

p(e|w:) Plws) =

P(Error|zp) = p(z|wy) P(wy) dx

p(zlwz) P(ws) dz. (37)

B =1 st

sup plalw;) Pwj) (39
Jj#

21 The ith set of such hypersurfaces may have no members, a finite number
of members, or an infinite number of members. For the case in which the set
is empty, the Bayes classifier will never associate = with the /th class.

767

where sup denotes the “supremum” operator. When N = 2,
these “hypersurfaces” are curves on £; when N = 3, they are
surfaces, etc.

Inside each hypersurface in the ith set satisfying (39)

p(x|w;) P(wi) > plalw;) Plw;) Vi #1i

and the Bayes classifier associates £ with the ith class w;.
Any classifier forming class boundaries that deviate from those
described above will yield an error rate that is higher than that
of the Bayesian discriminant function. A classifier that forms
class boundaries as described above is said to implement the
Bayesian discriminant function. Some form of these results
can be found in all reference texts on pattern classification
(e.g., Section 2.5 of [5]).

Now, let us apply these results to the case in which z is
generated by any one of a number of statistically heteroge-
neous sources. To simplify the analysis, we will revert to an
example of the simple two-class scalar-input problem describe
above. Consider for a moment a hypothetical classification
task in which a lumber mill must distinguish between healthy
and diseased wood,?? based on the buoyancy of logs being
floated downriver from the point of harvest. Healthy logs
have relatively low buoyancy (z), whereas diseased logs (e.g.,
those affected by wood-boring insects) have relatively high
buoyancy. Using appropriate probabilistic models, the mill
foreman computes a profile of healthy and diseased samples of
the hardwoods ash and maple, as shown in Fig. 10 (front and
middle images, respectively). The foreman notices that B in
(38) is different for each species of wood. He recognizes that
each species of wood represents a source with unique statistical
properties. He therefore denotes source with the variable §
and expresses the probability of misclassifying samples from
a particular source Sy, given a class boundary z g, as

P(Error|zp, Si) = /

B
&L B
o
—00
Thus, Bayes error rate for the jth source is yielded by the
Bayesian class boundary By:

p(zlw, Sk) P(wy) = plzlwz, Sk) P(w2).

“42)
If the foreman classifies ash with the maple threshold (Bmaple)
or maple with the ash threshold (Bygp), he finds that his
percentage of misclassifications rises sharply:

(40)

oc

p(z|w1, Sk) P(wr) dz

[)(II:‘U}Q, Sk) P(L/JQ) dl‘.(41)

Bk =T s.t.

P(Error\Bmaple, Sash) > P(Error|Bygh, Sash) (43)

P(Error| Bgh, Smaple) > P(Error| Bpapje: Smaple)'
(44)

This is illustrated in Fig. 10, where Bmaple is superimposed
on the ash model (front image); the dark gray area to the left
of Bmaple represents the increase in error rate when the maple
model is used to classify ash. Likewise, the white area to the
right of B,g, (middle image) represents the increase in error
rate when the ash model is used to classify maple.

22 A variation on the theme by Duda and Hart (see Section 2.1 of [5]-
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P(Error|Bmaple, Sash) P(Error| Bpix, Sash) P(Error|Bygh, Sash)
+ > + > +
P(Error| Bygp,, Smaple) P(Error| By, Smaple) P(Error]Bmaple7 Smaplc)
(worst case) (best case). (45)
The foreman decides to build a single probabilistic model REFERENCES

of buoyancy for ash and maple, hoping that this model
will be adequate for both species of wood. The resulting
ash/maple mixture densities are shown in the back image of
Fig. 10. When the foreman classifies ash and maple with
this mixture density-based threshold (Bmix is superimposed
on the ash and maple models in Fig. 10), he finds that his
percentage of misclassifications is lower than when he uses
the wrong species-dependent model to classify a log. However,
for both species of wood, the mixture density-based threshold
still yields more misclassifications than the species-dependent
thresholds originally computed (note the position of Bix
relative to the source-dependent optimal boundaries on the ash
and maple models; see (45) at the top of this page). Indeed,
the foreman realizes that there is a tradeoff between the acuity
of a single classifier (i.e., its ability to discriminate between
healthy and diseased wood with accuracy) and its generality
(i.e., its applicability to a wide variety of wood species). In
short, he can do reasonably well classifying both species with
one model or very well classifying each species with its own
model, but he cannot do very well classifying both species
with a single model. Thus, the only way to achieve optimal
discrimination between diseased and healthy wood across all
species is to first determine the species of the log and then
apply the appropriate species-dependent classification model.

Our hypothetical mill foreman has discovered an optimal
strategy for classifying random samples obtained from multi-
ple heterogeneous sources (species of wood, in this example).
An understanding of this acuity/generality tradeoff is directly
applicable to speech recognition and other pattern recognition
processes in which the probabilistic nature of the feature
vector is source dependent. However, there is an important
caveat: It is not always possible or practical to model each
possible source of the input RV. In such cases, we attempt to
approximate Bayesian discrimination by using some method
of adapting our classifier to the statistical properties of the
(unknown) source that generates z.
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