
GLR* {An E�cient Noise-skipping Parsing AlgorithmFor Context Free GrammarsAlon Lavie and Masaru TomitaSchool of Computer Science, Carnegie Mellon University5000 Forbes Avenue, Pittsburgh, PA 15213email: lavie@cs.cmu.eduAbstractThis chapter describes GLR*, a parser that can parse any input sentence by ignoringunrecognizable parts of the sentence. Using an e�cient algorithm, the parser is capable of�nding and parsing a maximal subset of the original input that is parsable, and thereforereturn the parse with fewest skipped words. The parser returns some parse(s) for any inputsentence, unless no part of the sentence can be recognized at all.Formally, the problem can be de�ned in the following way: Given a context-free grammarG and a sentence S, �nd and parse S0 - the largest subset of words of S, such that S0 2 L(G).The algorithm described in this chapter is a modi�cation of the Generalized LR (Tomita)parsing algorithm (Tomita, (1986)). The parser accommodates the skipping of words byallowing shift operations to be performed from inactive state nodes of the Graph StructuredStack. A heuristic similar to beam search makes the algorithm computationally tractable.The modi�ed parser, GLR*, has been implemented and integrated with the latest versionof the Generalized LR Parser/Compiler (Tomita et al., (1988), Tomita, (1990)).We discuss an application of the GLR* parser to spontaneous speech understanding andpresent some preliminary tests on the utility of the GLR* parser in such settings.1. IntroductionIn this chapter, we introduce a technique for substantially increasing the robustness of parsersto two particular types of extra-grammaticality: noise in the input, and limited grammar cov-erage. Both phenomena cause a common situation, where the input contains words or frag-ments that are unparsable. The distinction between these two types of extra-grammaticalityis based to a large extent upon whether or not the unparsable fragment, in its context, canbe considered grammatical by a linguistic judgment. This distinction may indeed be vagueat times, and of limited practical importance.Our approach to the problem is to enable the parser to overcome these forms of extra-grammaticality by ignoring the unparsable words and fragments and focusing on the maximalsubset of the input that is covered by the grammar. Although presented and implementedas an enhancement to the Generalized LR parsing (GLR) paradigm, our technique shouldbe applicable to most phrase-structured based parsing formalisms. However, the e�ciency ofour parser is due in part to several particular properties of GLR parsing, to which there maynot be direct equivalents in other parsing formalisms.1



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 2The problem can be formalized in the following way: Given a context-free grammar Gand a sentence S, �nd and parse S 0 - the largest subset of words of S, such that S 0 2 L(G).A naive approach to this problem is to exhaustively list and attempt to parse all possiblesubsets of the input string. The largest subset can then be selected from among the subsetsthat are found to be parsable. Such an algorithm is clearly computationally infeasible, sincethe number of subsets is exponential in the length of the input string. We thus devisean e�cient method for accomplishing the same task, and pair it with an e�cient searchapproximation heuristic that maintains runtime feasibility.The algorithm described in this chapter, which we have named GLR*, is a modi�cation ofthe Generalized LR (Tomita) parsing algorithm. It has been implemented in Lucid CommonLisp as an updated version of the GLR Parser/Compiler (Tomita et al., (1988), Tomita,(1990)).There have been several other approaches to robust parsing, most of which have beenspecial purpose algorithms. Some of these approaches have abandoned syntax as a major toolin handling extra-grammaticalities and have focused on domain dependent semantic methods(Carbonell and Hayes, (1984), Ward, (1991)). Other systems have constructed grammar anddomain dependent fall-back components to handle extra-grammatical input that causes themain parser to fail (Stallard and Bobrow, (1992), Sene�, (1992)).Our approach can be viewed as an attempt to extract from the input the maximal gram-matical structure that is possible, within a domain independent setting. Because the GLR*parsing algorithm is an enhancement to the standard GLR context-free parsing algorithm, allof the techniques and grammars developed for the standard parser can be applied as they are.In particular, the standard LR parsing tables are compiled in advance from the grammar andused \as is" by the parser in runtime. The GLR* parser inherits the bene�ts of the originalparser in terms of ease of grammar development, and, to a large extent, e�ciency propertiesof the parser itself. In the case that the input sentence is by itself grammatical, GLR* returnsthe exact same parse as the standard GLR parser.The remaining sections of the chapter are organized in the following way: Section 2presents an outline of the basic GLR* algorithm itself, followed by a detailed example ofthe operation of the parser on a simple input string. In section 3 we discuss the searchheuristic that is added to the basic GLR* algorithm, in order to ensure its runtime feasibil-ity. We discuss an application of the GLR* algorithm to spontaneous speech understanding,and present some preliminary test results in section 4. Finally, our conclusions and furtherresearch directions are presented in section 5.2. The GLR* Parsing AlgorithmIn this section, we provide an informal outline of the basic GLR* parsing algorithm. Thisalgorithm is designed to �nd and parse all possible grammatical substrings of a given input. Asan extension of the GLR parsing algorithm, GLR* uses the same data structures. Particularly,GLR* uses the same parsing tables that are pre-compiled from the grammar. It is only therun-time parsing part of the algorithm that is di�erent.The key di�erence between GLR and GLR* is in their use of the Graph Structured Stack(GSS). GLR uses the GSS as an extended version of a stack, where only the active nodesat the top of the stacks are accessible. GLR*, on the other hand, views the GSS as a chartthat records partial parses and the state of the parser when they were created. GLR* thusmaintains a structure representing the complete GSS throughout the parsing process, and



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 3allows access to all nodes in this structure, not merely the active ones.GLR* pursues the parses of all possible subsets of the input by allowing the parser to skipover words of the input in a controlled way. With an LR style parser that uses lookaheadsinto the input, allowing the parser to skip over words has implications on the lookaheads usedby the parser, which complicates the algorithm considerably. However, a number of studieshave demonstrated that with practical natural language grammars, using a GLR parser withextended lookaheads can in fact damage the parser's e�ciency (Billot and Lang, (1989)).For these reasons, GLR* was designed to work with no lookaheads. It therefore uses LR(0)parsing tables.GLR* accommodates skipping words of the input string by allowing shift operations to beperformed from inactive state nodes in the GSS. Shifting an input symbol from an inactivestate is equivalent to skipping the words of the input that were encountered after the parserreached the inactive state and prior to the current word being shifted. Since the parser isLR(0), reduce operations need not be repeated for skipped words (the reductions do notdepend on any lookahead). Information about skipped words is maintained in the symbolnodes that represent parse sub-trees.2.1. INFORMAL OUTLINE OF THE BASIC GLR* ALGORITHMWe now present an informal high-level outline of the basic GLR* parsing algorithm. Similarto the GLR algorithm, GLR* parses the input on a single left-to-right scan of the input,processing one word at a time. The processing of each input word is called a stage. Eachstage consists of two main phases, a reduce phase and a shift phase. The reduce phase alwaysprecedes the shift phase. The outline of each stage of the algorithm is shown in Figure 1.RACT(st) denotes the set of reduce actions de�ned in the parsing table for state st. Similarly,SACT(st,x) denotes the shift actions de�ned for state st and symbol x, and AACT(st,x)denotes the accept action.The last stage of the algorithm, in which the end-of-input symbol \$" is processed, issomewhat di�erent. The READ, DISTRIBUTE-REDUCE and REDUCE steps are identical to thoseof previous stages. However, a DISTRIBUTE-ACCEPT replaces the DISTRIBUTE-SHIFT step. Inthe DISTRIBUTE-ACCEPT step, accept actions are distributed to all state nodes st in the GSS(active and inactive), for which AACT(st,$) is true. Pointers to these state nodes are thencollected into a list of �nal state nodes. If this list is not empty, GLR* accepts the input,otherwise, the input is rejected. Finally, a GET-PARSES step creates and returns a list of allsymbol nodes that are direct descendents of the �nal state nodes. These symbol nodes arethe roots of the parse forest.2.2. AN EXAMPLETo clarify how the GLR* algorithm actually works, we present a step by step runtime example.Figure 2 contains a simple natural language grammar that we use for this example. Theterminal symbols of the grammar are depicted in lower-case, while the non-terminals are inupper-case. The grammar is compiled into an SLR(0) parsing table, which is displayed inTable 1. Note that since the table is SLR(0), the reduce actions are independent of anylookahead. The actions on states 10 and 11 include both a shift and a reduce.To understand the operation of the parser, we now follow some steps of the GLR* parsingalgorithm on the input x = det n v n det p n. This input is ungrammatical due to thesecond \det" token. The maximal parsable subset of the input in this case is the string that



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 4(1) READ:Read the next input token x.(2) DISTRIBUTE-REDUCE:For each active state node st, get the set of reduce actions RACT(st) inthe parsing table, and attach it to the active state node.(3) REDUCE:Perform all reduce actions attached to active state nodes. Recursivelyperform reductions after distributing reduce actions to new active statenodes that result from previous reductions.(4) DISTRIBUTE-SHIFT:For each state node st in the GSS (active and inactive), get SACT(st,x)from the parsing table. If the action is defined attach it to the statenode.(5) SHIFT:Perform all shift actions attached to state nodes of the GSS.(6) MERGE:Merge active state nodes of identical states into a single active statenode. Figure 1: Outline of a Stage of the Basic GLR* Parsing Algorithmincludes all words other than this second \det".In the �gures ahead, we graphically display the GSS constructed by the parser in variousstages of the parsing process. The following notation is used in these �gures:� An active state node is represented by a black circle with the state number indicatedabove it. Actions attached to the node are marked on the right.� An inactive state node is represented by a clear circle. The state number is indicatedabove the node and attached actions are indicated above the state number.� Symbol nodes are represented as squares. The symbol label is marked above the node.� Reduce actions are denoted by rn, where n is the index number of the grammar rule.� Shift actions are denoted by shn, where n is the new state into which the parser movesafter the shift action.We follow the GSS of the parser prior to the reduce and shift phases of each stage ofthe algorithm, while processing the input string. The initial GSS contains the single activestate node of state 0. Since there are no reduce actions from state 0, the �rst reduce phaseis empty. With the �rst input token being \det", the DISTRIBUTE-SHIFT step attaches theaction \sh3" to state node 0. Figure 3 shows the GSS following this DISTRIBUTE-SHIFT stepand just prior to the SHIFT step of stage 1.In the following SHIFT step, the \det" is shifted, a symbol node is created and the parsermoves into a new active state node of state 3. The algorithm then proceeds to the next stageto process the next input token \n". Since there are no reduce actions from state 3, the



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 5(1) S! NP VP(2) NP! det n(3) NP! n(4) NP! NP PP(5) VP! v NP(6) PP! p NPFigure 2: A Simple Natural Language GrammarReduce Shift GotoState det n v p $ NP VP PP S0 sh3 sh4 2 11 acc2 sh7 sh8 5 63 sh94 r35 r16 r47 sh3 sh4 108 sh3 sh4 119 r210 r5 sh8 611 r6 sh8 6Table 1: SLR(0) Parsing Table for Grammar in Figure 1reduce phase of this stage is empty. In the following DISTRIBUTE-SHIFT step, shift actionsare distributed by the algorithm to both the active node of state 3 and the inactive node ofstate 0. Figure 4 shows the GSS after this step, just prior to the SHIFT step of stage 2.In the following SHIFT step, the input token \n" is shifted from both state nodes, creatingnew active state nodes of states 9 and 4. The shifting of the input token \n" from state 0corresponds to a parse in which the �rst input token \det" is skipped. Stage 3 begins toprocess the next input token \v". First, in the DISTRIBUTE-REDUCE step, reduce actions aredistributed to the existing active nodes. Figure 5 shows the GSS at this point in time, justprior to the REDUCE step of stage 3.The following REDUCE step reduces both branches into noun phrases. The two \NP"s arepacked together by a local ambiguity packing procedure. In the following DISTRIBUTE-SHIFTstep, shift actions for the input token \v" are distributed to all the state nodes. However, inthis case, only state 2 allows a shift of \v" (into state 7). The resulting GSS, prior to theSHIFT step of stage 3, is displayed in Figure 6.The following SHIFT step creates an active state node of state 7. The next stage beginsby reading the next input token \n". The state 7 node is the only active node at this point.Since no reduce actions are speci�ed for this state, the following reduce phase is empty. Shiftactions are then distributed in the DISTRIBUTE-SHIFT step. The resulting GSS is shown inFigure 7.



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 6
0

sh3Figure 3: GSS Prior to SHIFT Step of Stage 1
0 det 3

sh9

sh4Figure 4: GSS Prior to SHIFT Step of Stage 2The subsequent SHIFT step then shifts the input token \n" from the three nodes that weremarked with shift actions. The next input token is \det". Figure 8 shows the GSS justprior to the next REDUCE step and Figure 9 after the REDUCE and DISTRIBUTE-SHIFT steps,just before the SHIFT step. Note that the current input token \det" cannot be shifted fromeither of the two active state nodes at this point. A GLR parser would have thus failed atthis point. However, the GLR* algorithm succeeds in distributing the shift actions to twoinactive state nodes in this case. The token \det" is then shifted from these two nodes.The next stage then begins, and the input token \p" is read. Since no reduce actionscan be distributed to the active state node 3, the reduce phase is empty. DISTRIBUTE-SHIFTthen distributes shift actions to all state nodes. The GSS at this point is shown in Figure 10.Note that once again, shift actions could not be distributed to the active state node, sincethe grammar does not allow \p" to follow \det". However, a shift action was distributed tothe node of state 10. This branch skips over the previous \det", and eventually leads to thedesired maximal parse.For the sake of brevity we do not continue to further follow the parsing step by step. The�nal GSS, following the DISTRIBUTE-ACCEPT step, is displayed in Figure 11. Several di�erentparses, corresponding to di�erent subsets of skipped words are actually packed into the \S"symbol node seen at the bottom of the �gure. The parse that corresponds to the maximalsubset of the input is one in which the second \det" is the only word that was skipped.2.3. EFFICIENCY OF THE PARSERE�ciency of the parser is achieved by a number of di�erent techniques. The most importantof these is a sophisticated process of local ambiguity packing and pruning. A local ambiguityis a part of the input sentence that corresponds to a phrase (thus, reducible to some non-terminal symbol of the grammar), and is parsable in more than one way. The process ofskipping words creates a large number of local ambiguities. For example, the grammar inFigure 2 allows both determined and undetermined noun phrases (rules 2 and 3). As seen inthe example presented earlier, this results in the creation of two di�erent noun phrase symbolnodes for the initial fragment \det n". The �rst node is created for the full phrase after areduction according to the �rst rule. A second symbol node is created when the determineris skipped and a reduction by the second rule takes place.Locally ambiguous symbol nodes are detected as nodes that are surrounded by commonstate nodes in the GSS. The original GLR parser detects such local ambiguities and packsthem into a single symbol node. This procedure was extended in the GLR* parser. Locally



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 7
0 det 3 n 9

n 4

r2

r3Figure 5: GSS Prior to REDUCE Step of Stage 3
0 det 3 n 9

n 4

NP 2
sh7Figure 6: GSS Prior to SHIFT Step of Stage 3

0 det 3 n 9

n 4

NP 2 v 7

sh4

sh4 sh9

Figure 7: GSS Prior to SHIFT Step of Stage 4
0 det 3 n 9

n 4

n 9

r3

NP 2 v 7
n 4

r4Figure 8: GSS Prior to REDUCE Step of Stage 5



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 8
0 det 3 n 9

n 9

n 4

NP 2 v 7
n 4

NP 10

VP 5

S 1

NP 2

sh3

sh3

Figure 9: GSS Prior to SHIFT Step of Stage 5



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 9
0 det 3 n 9

n 9

n 4

NP 2 v 7
n 4

NP 10

VP 5

S 1

NP 2

det 3

sh8

sh8

sh8

Figure 10: GSS Prior to SHIFT Step of Stage 6



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 10
0 det 3 n 9

n 9

n 4

NP 2 v 7
n 4

NP 10

VP 5

S 1

NP 2

det 3

p 8 n 4

n 9

NP 11

NP 10

PP 6

NP 2

VP 5

S 1

Acc

AccFigure 11: Final GSS after DISTRIBUTE-ACCEPT Step



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 11ambiguous symbol nodes are compared in terms of the words skipped within them. In casessuch as the example described above, where one phrase has more skipped words than theother, the phrase with more skipped words is discarded in favor of the more complete parsedphrase. This operation drastically reduces the number of parses being pursued by the parser.2.4. SELECTING THE BEST MAXIMAL PARSEThe basic GLR* parsing algorithm constructs parses for all parsable subsets of a given inputsentence. In principle, we are only interested in �nding the maximal parsable subset of theinput string (and its parse). However, in many cases there are several distinct maximalparses, each consisting of a di�erent subset of words of the original sentence. Additionally,there are cases where a parse that is not maximal in terms of the number of words skippedmay be deemed preferable.To select the \best" parse from the set of parses returned by the parser, we use a scoringprocedure that ranks each of the parses found. We then select the parse that was rankedbest 1. Presently, our scoring procedure is rather simple. It takes into account the numberof words skipped and the fragmentation of the parse. Both measures are weighed equally.Thus a parse that skipped one word but parsed the remaining input as a single sentence ispreferred over a parse that fragments the input into three sentences, without skipping anyinput word.We are in the process of enhancing this simple scoring mechanism. We plan on adding toour scoring function several additional heuristic measures that will reect various syntacticand semantic properties of the parse tree. We will measure the e�ectiveness of our enhancedscoring function in ranking the parse results by their desirability.3. The Beam Search HeuristicAlthough implemented e�ciently, the basic GLR* parser is still not guaranteed to have afeasible running time. The basic GLR* algorithm described earlier computes parses of allparsable subsets of the original input string, the number of which is potentially exponentialin the length of the input string. We are interested in �nding parses of maximal subsets ofthe input string (or almost maximal subsets). We have therefore developed and added tothe parser a heuristic that prunes parsing options that are not likely to produce a maximalparse. This process has been traditionally called \beam search".A direct way of adding a beam search to the parser would be to limit the number of activestate nodes pursued by the parser at each stage, and continue processing only active nodesthat are most promising in terms of the number of skipped words associated with them.However, the structure of the GSS makes it di�cult to associate information on skippedwords directly with the state nodes 2. We have therefore opted to implement a somewhatdi�erent heuristic that has a similar e�ect.Since the skipping of words is the result of performing shift operations from inactive statenodes of the GSS, our heuristic limits the number of inactive state nodes from which ainput symbol is shifted. At each shift stage, shift actions are �rst distributed to the active1The system will display the n best parses found, where the parameter n is controlled by the user atruntime. By default, we set n to one, and the highest ranking parse is displayed.2This is due to the fact that state nodes are merged. Therefore, a state node may be common to severaldi�erent sub-parses, with di�erent skipped words associated with each sub-parse.



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 12state nodes of the GSS. This corresponds to not skipping any words at this stage. If thenumber of state nodes that allow a shift operation at this point is less than a predeterminedconstant threshold (the \beam-limit"), then shift operations from inactive state nodes arealso considered. Inactive states are processed in an ordered fashion, so that shifting froma more recent state node that will result in fewer skipped words is considered �rst. Shiftoperations are distributed to inactive state nodes in this way until the number of shiftsdistributed reaches the threshold.Using the beam search heuristic reduces the runtime of the GLR* parser to within aconstant factor of the original GLR parser. Although it is not guaranteed to �nd the desiredmaximal parsable subset of the input string, our preliminary tests have shown that it workswell in practice.The threshold (beam-limit) itself is a parameter that can be dynamically set to any con-stant value at runtime. Setting the beam-limit to a value of 0 disallows shifting from inactivestates all together, which is equivalent to the original GLR parser. In preliminary experi-ments that we have conducted (see next section) we have achieved good results with a settingof the beam-limit to values in the range of 5 to 10. There exists a direct tradeo� betweenthe value of the beam-limit and the runtime of the GLR* parser. With a set value of 5, ourtests have indicated a runtime that is within a factor of 2-3 times that of the original GLRparser, which amounts to a parse time of only several seconds on sentences that are up to 30words long.4. Parsing of Spontaneous Speech Using GLR*4.1. THE PROBLEM OF PARSING SPONTANEOUS SPEECHAs a form of input, spontaneous speech is full of noise and irrelevances that surround themeaningful words of the utterance. Some types of noise can be detected and �ltered out byspeech recognizers that process the speech signal. A parser that is designed to successfullyprocess speech recognized input must however be robust to various forms of noise, and beable to weed out the meaningful words from the rest of the utterance.When parsing spontaneous spoken input that was recognized by a speech recognitionsystem, the parser must deal with three major types of extra-grammaticality:� Noise due to the spontaneity of the speaker, such as repeated words, false beginnings,stuttering, and �lled pauses (i.e. \ah", \um", etc.).� Ungrammaticality that is due to the language of the speaker, or to the coverage of thegrammar.� Errors of the speech recognizer.We have conducted two preliminary experiments to evaluate the GLR* parser's ability toovercome the �rst two types of extra-grammaticality. We are in the process of experimentingwith the GLR* parser on actual speech recognized output, in order to test its capabilities inhandling errors produced by the speech recognizer.4.2. PARSING OF NOISY SPONTANEOUS SPEECHThe �rst test we conducted was intended to evaluate the performance of the GLR* parseron noisy sentences typical of spontaneous speech. The parser was tested on a set of 100sentences of transcribed spontaneous speech dialogues in a conference registration domain.The input is hand-coded transcribed text, not processed through any speech recognizer. The



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 13Robust ParserParsable 99Unparsable 1Good/Close Parses 77Bad Parses 22Table 2: Performance of the GLR* Parser on Spontaneous Speechgrammar used was an upgraded version of a grammar for the conference registration task,developed and used by the JANUS speech-to-speech translation project at CMU [Waibel etal. 1991]. Since the test sentences were drawn from actual speech transcriptions, they werenot guaranteed to be covered by the grammar. However, since the test was meant to focus onspontaneous noise, sentences that included verbs and nouns that were beyond the vocabularyof the system were avoided. Also pruned out of the test set were short opening and closingsentences (such as \hello" and \goodbye"). The transcriptions include a multitude of noisein the input. The following example is one of the sentences from this test set:"fckn2_10 /ls/ /h#/ um okay {comma}then yeah I am disappointed {comma}*pause* but uh that is okay {period}"The performance results are presented in Table 2. Note that due to the noise contaminatingthe input, the original parser is unable to parse a single one of the sentences in this testset. The GLR* parser succeeded to return some parse result in all but one of the testsentences. However, since returning a parse result does not by itself guarantee an analysisthat adequately reects the meaning of the original utterance, we reviewed the parse resultsby hand, and classi�ed them into the categories of \good/close" and \bad" parses. Theresults of this classi�cation are included in the table.4.3. GRAMMAR COVERAGEWe conducted a second experiment aimed exclusively on evaluating the ability of the GLR*parser to overcome limited grammar coverage. In this experiment, we compared the results ofthe GLR* parser with those of the original GLR parser on a common set of sentences using thesame grammar. We used the grammar from the spontaneous speech experiment for this testas well. The common test set was a set of 117 sentences from the conference registration taskof the JANUS project. These sentences are simple synthesized text sentences. They containno spontaneous speech noise, and are not the result of any speech recognition processing.Once again, to evaluate the quality of the parse results returned by the parser, we classi�edthe parse results of both parsers by hand into two categories: \good/close parses" and \badparses". The results of the experiment are presented in Table 3.The results indicate that using the GLR* parser results in a signi�cant improvement inperformance. The percentage of sentences, for which the parser returned good or close parsesincreased from 52% to 70%, an increase of 18%. Fully 97% of the test sentences (all but3) are parsable by the GLR* parser, an increase of 36% over the original parser. However,this includes a signi�cant increase (from 9% to 27%) in the number of bad parses found.Thus, fully half of the additional parsable sentences of the set return with parses that maybe deemed bad.



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 14Original Parser Robust Parsernumber percent number percentParsable 71 61% 114 97%Unparsable 46 39% 3 3%Good/Close Parses 61 52% 82 70%Bad Parses 10 9% 32 27%Table 3: Performance of the GLR* Parser vs. the Original ParserThe results of the two experiments clearly point to the following problem: Compared withthe GLR* parser, the original GLR parser, although fragile, returned results of relativelygood quality, when it succeeded in parsing the input. The GLR* parser, on the other hand,will succeed in parsing almost any input, but this parse result may be of little or no value ina signi�cant portion of cases. This indicates a strong need for the development of methodsfor discriminating between good and bad parse results. We intend to try and develop somee�ective heuristics to deal with this problem. The problem is also due in part to the ine�ec-tiveness of the simple heuristics currently employed for selecting the best parse result fromamong the large set of parses returned by the parser. As mentioned earlier, we are currentlyworking on developing more sophisticated and e�ective heuristics for selecting the best parse.5. Conclusions and Future Research DirectionsMotivated by the di�culties that standard syntactic parses have in dealing with extra-grammaticalities, we have developed GLR*, an enhanced version of the standard GeneralizedLR parser, that can e�ectively handle two particular problems that are typical of parsingspontaneous speech: noise contamination and limited grammar coverage.Given a grammar G and and input string S, GLR* �nds and parses S 0, the maximal subsetof words of S, such that S 0 is in the language L(G). The parsing algorithm accommodatesthe skipping of words and fragments of the input string by allowing shift operations to beperformed from inactive states of the GSS (as well as from the active states, as is done by thestandard parser). The algorithm is coupled with a beam-search-like heuristic, that controlsthe process of shifting from inactive states to a limited beam, and maintains computationaltractability.Most other approaches to robust parsing have su�ered to some extent from a lack ofgenerality and from being domain dependent. Our approach, although limited to handlingonly certain types of extra-grammaticality, is general and domain independent. It attemptsto maximize the robustness of the parser within a purely grammatical setting. Becausethe GLR* parsing algorithm is a modi�cation of the standard GLR context-free parsingalgorithm, all of the techniques and grammars developed for the standard parser can beapplied as they are. In the case that the input sentence is by itself grammatical, GLR*returns the same parse as the standard GLR parser. The techniques used in the enhancementof the standard GLR parser into the robust GLR* parser are in principle applicable to otherphrase-structure based parsers.Our preliminary experiments on the e�ectiveness of the GLR* parser in handling noisecontamination and limited grammar coverage have produced encouraging results. However,they have also pointed out a need for developing e�ective heuristics that can select the bestparse result from a potentially large set of possibilities produced by the parser. Since the



GLR* { An Efficient Noise-skipping Parsing Algorithm for CFGs 15GLR* parser is likely to succeed in producing some parse in practically all cases, successfulparsing by itself can no longer be an indicator to the value and quality of the parse result.We are therefore developing additional heuristics for evaluating the quality of the selectedbest parse.We are in the process of conducting extensive experiments with speech recognized inputto evaluate our system and guide its further development. We are also investigating thepotential of the GLR* parser in several other application areas and domains.ReferencesBillot, S. and Lang, B., The Structure of Shared Forests in Ambiguous Parsing. In Proceedings of the 27thAnnual Meeting of the Association for Computational Linguistics (ACL-89), Vancouver, BC, Canada, June1989.Carbonell, J. G. and Hayes, P. J., Recovery Strategies for Parsing Extragrammatical Language. TechnicalReport CMU-CS-84-107, 1984.Sene�, S., A relaxation method for understanding spontaneous speech utterances. In Proceedings of DARPASpeech and Natural Language Workshop, pages 299{304, February 1992.Stallard, D. and Bobrow, R., Fragment processing in the DELPHI system. In Proceedings of DARPA Speechand Natural Language Workshop, pages 305{310, February 1992.Tomita, M., Mitamura, T., Musha, H., and Kee, M., The Generalized LR Parser/Compiler - Version 8.1:User's Guide. Technical Report CMU-CMT-88-MEMO, 1988.Tomita, M., E�cient Parsing for Natural Language. Kluwer Academic Publishers, Hingham, Ma., 1986.Tomita, M., The Generalized LR Parser/Compiler - Version 8.4. In Proceedings of International Conferenceon Computational Linguistics (COLING-90), pages 59{63, Helsinki, Finland, 1990.Ward, W., Understanding spontaneous speech: The Phoenix system. In Proceedings of IEEE InternationalConference on Acoustics, Speech and Signal Processing (ICASSP), pages 365{367, April 1991.


