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ABSTRACT

We demonstrate the applications of Markov Chains and

HMMs to modeling of the underlying structure in sponta-

neous spoken language. Experiments with supervised train-

ing cover the detection of the current dialog state and iden-

ti�cation of the speech act as used by the speech transla-

tion component in our JANUS Speech-to-Speech Transla-

tion System. HMM training with hidden states is used to

uncover other levels of structure in the task. The possi-

ble use of the model for perplexity reduction in a contin-

uous speech recognition system is also demonstrated. To

achieve improvement over a state independent bigram lan-

guage model, great care must be taken to keep the number

of model parameters small in the face of limited amounts of

training data from transcribed spontaneous speech.

1. INTRODUCTION

In spoken language understanding productive interpreta-

tion of an utterance has to incorporate the underlying lin-

guistic structure in a dialog. This structure comprises the

current topic, discourse state, speech act, and common

phrases. It has been shown [4] that if topic or speech act

is known, the perplexity of the task can be reduced sig-

ni�cantly. Furthermore a good estimate of the most likely

speech acts for a given sentence helps to reduce ambiguities

in language understanding and speech translation.

A variety of approaches use knowledge based techniques

like discourse trees, plan-recognition, �nite state grammars

and other linguistic structures, by conditioning statistical

language models on the detected linguistic state. While

such methods do lead to signi�cant perplexity reduction,

they involve the de�nition and analysis of useful linguistic

structure and the development of grammars to detect and

parse relevant constituents. Both tasks are labor intensive

and there is no guarantee of optimality.

As an alternative, we propose in this paper an approach in

which we treat linguistic structure as states in a Markov

Chain. Section 2 gives an overview of the task used for the

experiments. Section 3 shows how supervised training can

be used to model transitions between known constituents

like dialog states or speech acts. Section 4 shows how hid-

den linguistic states and their meaning can be learned and

optimized by the familiar HMM forward-backward learning

procedure. These hidden states are then used to build state

dependent language models for perplexity reduction.

2. THE SPONTANEOUS SCHEDULING TASK

All experiments have been performed on transcribed text

taken from the English section of the Spontaneous Schedul-

ing Task (ESST). This task consists of human to human

dialogs recorded in an o�ce environment. A push-to-talk

button was used to avoid crosstalk. Each dialog contains

10-15 utterances of two speakers trying to schedule a two

hour meeting within a given two week scenario.

190 transcribed ESST dialogs were available for training

and testing. The training Data (155 Dialogs) contained

50,000 tokens with a vocabulary size of 1200 words.

3. SUPERVISED TRAINING

3.1. Modeling Dialog States with Markov Chains

To automatically build a dialog structure graph, we used a

Markov Model to learn the transition probabilities between

dialog states.

The six dialog states choosen for this task were:

state example

opening: well I think we need to meet for another

two hours to discuss this matter

suggest: well I'm free on Monday; how does the be-

ginning of June look for you

constraint: Wednesday through Friday I'm like in a in

seminars all day

accept: wonderful looks like we have a date

reject: no I'm sorry but that is a bad week for me

closing: see you later then

The transition probabilities a

ij

between these states were

computed on 15 manually labeled dialogs.
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The discourse model in �gure 1 was then derived automat-

ically by starting with a fully interconected model and re-

moving all transitions that fall below a threshold.

This procedure not only eliminates the need to draw dialog

charts, it also assigns a probability to each transition that

can be used to prune alternatives.
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Figure 1. Transition Probabilities

The probability of observing a word in a given dialog state,
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(k) is given by the frequency of observing that word in

that state. It's the emission probability in the Markov

Chain.
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With both transition and emission probabilities, we can

compute the probability of being in a given dialog state at a

given point of a new dialog. This information can be either

combined with other knowledge sources (eg. the probabil-

ity of a parse given a certain dialog state), or the best state

sequence can be used to assign each word the best possible

dialog state.

To keep amount of required labeled data small, we clustered

the input vocabulary into classes and had the Markov Model

operate on the clusters, which yields better generalization; a

clustering algorithm clustering words with similar contexts

[7, 8] was compared to classes manually designed to suit the

task. Though the classes found by the algorithm seemed less

intuitive at times, the results showed that it's not necessary

to manually build classes.

Table 1 shows the percentage of words assigned with the

correct dialog state.

correct classi�cation

without clustering 69.4%

100 classes 73.6%

200 classes 70.0%

400 classes 73.9%

400 hand build classes 74.1%

Table 1. Classi�cation of the current state

3.2. Modeling Speech Acts with Markov Chains

The experiment of section 3.1 was repeated for the speech

acts used in the translation component of JANUS, our

speech-to-speech translation system [1, 2].

The training and test data for this experiment was taken

form handwritten Interlingua structures used for parser-

evaluation. The Interlingua structure contains a semantic

representation for a sentence, including speech acts to rep-

resent the global intention. For this task, 15 speech acts

were used. The parser itself sometimes does a poor job

identifying the speech act, because they heavily depend on

context and the parser only looks at one sentence at a time.

correct classi�cation

without clustering 61.2%

400 hand build classes 62.3%

Table 2. Classi�cation of the current speech-act

The speech acts suggest-time and state-constraintwere most

confusible, because they sometimes only di�er by a single

word in the previous state:

A: i'm free on Monday except for ten to twelve

B: i'm busy on Monday except for ten to twelve

The words except for ten to twelve are constraints in exam-

ple A but suggest a time for a meeting in example B.

Here a higher level structure that gives the likelihood of

the word except in the state suggest-time given that the

previous state was suggest-time will be needed to resolve

the ambiguity.

4. UNSUPERVISED TRAINING { HMMS

4.1. State Dependent Monograms

The models derived by training on labeled data will always

be suboptimal as they depend on the states chosen and on

the consistency of the labeling.

A forward backward training algorithm that converges to-

wards states that optimize the probability of the training

utterances yields a model with optimum perplexity reduc-

tion. As no lables are required, the amount of training data

available is usually substantially larger.

Language model Perplexity

Monogram Language Model 144

6-state MM build on 15 labeled Dialogs 136

6-state HMM trained on 15 Dialogs 124

6-state HMM trained on 155 Dialogs 94

Table 3. Testset Perplexity of a MM trained on 15 labled dialogs

vs. HMM trained 15 dialogs and on 155 dialogs

As shown in �gure 2 and table 3, the perplextity reduc-

tion for state-dependent monograms in a 6-state model is

much larger for unsupervised training than for supervised

training, especially as more training data can be used.
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Figure 2. Perplexity reduction of a 6-stateMarkovModel trained

on 15 labled dialogs vs. HMM trained on 15 dialogs and on 155

dialogs

For small numbers of hidden states (3-10), the model learns

to build phrases. Each state specializes on a di�erent part

of the utterances. A plot of the state activations for an

example dialog is given in �gure 5 at the end of this paper.

Example: Phrases learned by a 6-state hmm:

0: starting a suggestion, opinions

{ I think, I guess, do you think

{ the only time I have

1: days

{ in the morning, in the afternoon

{ Monday, on Monday, Tuesday, the rest of the week

2: yes, no, maybe

{ okay, yeah, yes

{ no, I'm afraid, well

3: times and occupations

{ anytime after two, three to �ve, at noon, up until

three o'clock

{ I have a seminar, i've got a meeting, I'm out of

town

4: accept or reject

{ sounds �ne to me, that sounds good to me, would

be alright, wouldn't be too bad

{ would be bad, that's not too good

5: closing remarks, locations

{ see you later, okay see you then

{ thanks

{ I send you mail regarding the location

For large numbers of hidden states (30-200), the model

converges to a cluster-bigram model, where the transition

probabilities between states are the transition probabilities

between classes. Unlike in cluster algorithms traditionally

used for langugage modeling, each word can be in several
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Figure 3. Perplexity of State-DependentMonograms in an HMM

with 6,40 and 80 states trained on 155 Dialogs

classes at a time. As the number of hidden states increase

the perplexity falls below the bigram perplexity, given that

the amount of training data is large enough to estimate all

parameters. However the computational e�ort for the HMM

training rises fast, making e�cient algorithms mandatory

[5]. The perplexity reduction for a 6, 40 and 80 state HMM

is shown in �gure 3.

4.2. State Dependent Bigrams

While the results on state dependent monograms are en-

couraging, state dependent bigrams require much more

training data. Results on topic-dependent bigram language

models reported by other groups [3] were usually obtained

on corpora with over 1,000,000 training tokens. Using only

the available ESST training data of 50,000 training tokens

with a vocabulary size of 1200 words, severe overlearning

occured. The testset perplexity was be reduced by 2-3% at

best, the training set perplexity by 20-25%.
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The lack in training data could be compensated by combin-

ing the HMM-Bigram Model with clustering techniques.

Though the small reduction in perplexity yields virtually no

reduction in the recognition errorrate, recognition output

using this language model is often semantically correct and

seems to provide a better basis for speech-to-speech trans-

lation than a shorter range language model. This needs to

be evaluated further.

5. SUMMARY

Our approach has been successfully used to

� automatically derive dialog state transition diagrams

from labled data

� �nd the best constituent sequence for prede�ned con-

stituents on the example of dialog states and speech

acts

� automatically uncover structure using hidden states

which can be used to signi�cantly reduce the mono-

gram perplexity but also to build more complex state-

dependent language models.
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0: 1: 2: 3: 4: 5:

CAN: ### . . . . .

WE: ### . . . . .

MEET: ### . . . . .

ON: . . ### . . .

THE: . ### . . . .

THIRTY: . ### . . . .

FIRST: . ### . . . .

IN: . ### . . . .

THE: . ### . . . .

MORNING: . ### . . . .

$: . . . . . ###

+LS+: . . . . . ###

+H#+: . . ... . . lll

NO: . . lll . . ...

I'M: . ... lll . . .

OUT: . ### . . . .

OF: . ### . . . .

TOWN: . ### . . . .

FROM: . ### . . . .

THE: . ### . . . .

THIRTY: . ### . . . .

FIRST: . ### . . . .

TO: . ### . . . .

THE: . ### . . . .

SECOND: . ### . . . .

+UM+: . . . . . ###

+LS+: . . . . . ###

+H#+: . . . . . ###

WE: ### . . . . .

COULD: ### . . . . .

MEET: ### . . . . .

ON: . . ### . . .

THE: . ### . . . .

THIRD: . ### . . . .

IN: . ### . . . .

THE: . ### . . . .

AFTERNOON: . ### . . . .

+CLICK+: . . . . . .

+NONHUM+: . . . . . .

$: . . . ;;; . .

+LS+: . . . ;;; . .

YES: . . ... ;;; . ...

THAT'S: . . . . ### ...

FINE: . . . . ### ...

BY: ... . . . ### lll

ME: ... . . . ... lll

BYE: . . . . . ###

+CLICK+: . . . . . ###

$: . . . . . ###

Figure 5. State Activations of an HMM in an Example Dialog.

Symbols used: ### = very high activation, lll = high activa-

tion, ;;; = low activation, : : : = very low activation, . = no

activation;

Possible State Interpretations:

0: starting a suggestion, opinions,

1: days,

2: yes, no, maybe,

3: times and occupations

4: accept and reject,

5: closing remarks.


