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ABSTRACT

The word accuracy of the decoder is improved from 59:1%
to 61:1% by a new method for the unsupervised acquisition
of a structural text model. Well recognized sentences even
show an improvement from 84:8% to 91:1%.

This method is based on new algorithms for the classi�-
cation of words and phrases by their context and on new se-
quence �nding procedures. These procedures are designed
to work fast and accurately on small and large corpora.
They are iterated to build a structural model of a corpus.

Further applications in language processing, which ex-
ploit the structure �nding capabilities of this model, such
as preprocessing for neural networks and (hidden) markov
models, are proposed.

1. CLASSIFYING ENTITIES FROM CONTEXT

VIA ITERATED REESTIMATION

The most widespread criterion for the classi�cation of words
and phrases in linguistics is the replacement test, which
states, that two linguistic entities are the same, if they can
be mutually substituted in sentences where they appear.
[Fin93] extended this criterion and states, that linguistic
entities, that have similar context should be assigned sim-
ilar categories. Our de�nition still goes further and says
that a linguistic entity and its context are the same. As
the context of an entity itself consists of entities this de�-
nition is somewhat circular: If we know a categorization of
linguistic entities, we can construct the context and hence
a classi�cation of these entities.

As an initial classi�cation, we assign each of the most
frequent n-1 entities a singleton class while all other entities
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are collected in a \rubbish" class. This initial assignment
is motivated by the fact, that the most frequent entities
usually cover most of the corpus, e.g. 89% of the English
Scheduling Task is covered by just 200 words { this behavior
is predicted by Zipf's law [Zip35]1. A given classi�cation
may be improved by classifying the context-vectors of the
entities. The context-vectors are calculated by counting the
classes of the entities in �xed intervals around an entity.

Assume we want to calculate the context vector of the
word town with the context-intervals [1; 1] resp. [�3;�1].
The context-vector consists of the counts of the classes
found one word after resp. one to three words before the
word town in the corpus. To get a context vector for the
context speci�cation [1; 1]; [�3;�1] the vectors for these in-
tervals are concatenated. Usual context speci�cations are
[�1;�1]; [1; 1] and [�3;�1]; [�1;�1]; [1; 1]; [1; 3].

This classi�cation procedure is iterated, and under cer-
tain restrictions to the classi�cation procedure, an EM-
algorithm [DLR77, Rie94] is obtained. The idea behind
the EM formulation is that the classes used to calculate
the context vectors and the classes found using the clus-
tering algorithm are the same. Further restrictions on the
context-vectors and the choice of the classi�cation proce-
dure lead to the classi�cation criterion of class-based bi-
grams [BdP+92, Rie94]. If we would not iterate the classi-
�cation this procedure would be equivalent to [Fin93] { our
algorithm is therefore a proper generalization of [BdP+92]
and [Fin93]. The iterative process improves the classi�ca-
tion performance compared to [Fin93] especially on small
corpora (<50.000 words), as the estimation of the context
is better { it is based on classes, that have much higher
probabilities than words. The speed of [Fin93] is main-
tained in our implementation, and we need approx. 10 min
for 8 iterations of the classi�cation process on a standard
workstation for a corpus of 50.000 words and 100 classes.
The algorithm is expected to scale up sublinear in practice

1Zipf's law states fr �
1

r
, where fr is the frequency of the

r-most probable entity. As the number of entities is very high
this distribution of word frequencies is highly skewed and we will

never get enough data to estimate parameters of entities, that
occur seldom. This can be prevented only by clustering entities

with similar properties together and hence limiting the number
of entities involved.
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as the speed of the classi�cation procedure itself is not af-
fected by the size of the corpus. [BdP+92] is improved by
allowing wide context windows and the classi�cation is sped
up considerably.

In our implementation the classi�cation is done by an
extension of a hill-climbing procedure (c-means), which im-
proves the variance criterion directly [SL77]. As any in-
cremental clustering algorithm needs an initial class assign-
ment, we may use the classi�cation of the last step as the
initial class assignment of the next step. This simple tech-
nical trick is crucical to improve the classi�cation and also
results in considerable speed up. As suggested by [Fin93],
we preprocess the context vectors by calculating the ranks
of their entries. [Rie94] also extends the calculation of con-
text vectors to a more general class including fuzzy classi-
�cation [Yan93].

2. SEQUENCE MEASURES AND SEQUENCE
IDENTIFICATION

Marking sequences of entities, which are tied together, may
be divided into two steps: First, we assign each sequence a
score (the sequence measure), which determines their likeli-
hood of being a sequence, and second, we use this measure
to identify the sequences, that are present in some actual
portion of the corpus by a sequence identi�cation procedure.

The �rst type of sequence measures may be called in-

direct sequence measures, as they make use of a usual mea-
sure of coincidence co(X;Y ) between random variables X

and Y . The mutual information MI(X;Y ) has proven to
be a good choice as a measure of coincidence in our studies.
The indirect sequence measure of the sequence he1; : : : ; eni
is

s(he1; : : : ; eni) =mini co(he1; : : : ; eii; hei+1; : : : ; eni)

If we use MI(�; �) as a measure of coincidence the sequence
measure of an entity is the minimal MI(�; �) between a
pre�x and the rest of that entity.

This formulation of a sequence measure is motivated by
the idea that a sequence of words occurring in the corpus
is an uninteresting sequence, if it is found as the su�x and
the pre�x of neighboring interesting sequences.

The second class of measures are direct measures and
are not linked to measures of coincidence. The only direct
measure found in the literature was [Suh73], but it did not
proof as e�ective as the indirect measure based on mutual
information. Suhotins measure is

1

2n

n�1X

i=1

Pr(he1 : : : ; enijhe1; : : : eii _ hei+1; : : : eni)

Assume, though, that we already had a procedure that
marks the sequences found in a corpus. We may then take
the counts of the sequences found in the corpus as a di-
rect sequence measure. The calculation of the sequence
measure and the sequence identi�cation procedure may be
iterated and we call the resulting measure iterated mark-

ing frequency. Note that we still need indirect measures or
[Suh73] to have an initial sequence marking, and that the
iterated marking frequency depends on it crucially.

elements elements
D B D F G SCH A A I O U
CH N CH NG AEH E AI AU EU AEH UEH
R K P R UE AE OE UE OEH
T L M S T IE AH EH ER IE OH UH
H H J V Z SIL +K QK +EH +H#

+GH +GN SIL

Figure 1: Phoneme Classi�cation: This is an example of
a classi�cation of phonemes in the English Scheduling Task.
The classi�cation was made with 10 classes and the context
was [�1;�1]; [1; 1]. The classes seem to reect acoustic sim-
ilarities, though the only information available to the clas-
si�cation algorithm was the phonetic transcription of dia-
logues.

The most e�ective sequence identi�cation procedure we
found, may be stated rather simple:

1. Rank all sequences found in the corpus by the as-
signed sequence measure.

2. Take the highest scoring sequence and replace any
occurrence of it in the corpus by a new and unique
symbol representing this sequence. The words, that
make up this sequence, can be used in successive join
steps, if all words in the sequence are used in the join.

3. Delete this sequence from the list of sequences and
goto 2, unless no sequence is left.

Calculating the indirect measures takes approx. 1 min
on a standard workstation for a 50.000 words corpus, using
the iterated marking frequency adds another 2 min.

This sequence identi�cation with the indirect measure
based on MI(�; �) may be compared with [MM91]. Instead
of using two word sequences plus their context to search
for sequence boundaries we are looking for the sequences
themselves. This has proven [Rie94] more e�ective than
the corresponding approach to search for boundaries with
sequences of length greater than 2. Context also plays a
signi�cant role in our approach: Assume we want to process
the sequence A B C and use the sequences A B and B C to
join A B C. If A B has a higher sequence measure than B C,
the left context A of B C prohibits their join.

3. COMBINING CLASSIFICATION AND

SEQUENCE IDENTIFICATION

There are two alternatives, how classi�cation and se-
quence identi�cation may be combined. The �rst one would
be to rede�ne context in terms of sequences and may be
seen as an idea to include more global information into the
entity classi�cation process. The second one would be to
identify the sequences based on word classes. In our cur-
rent studies we only pursued the second possibility since
the performance of the word classi�cation procedures are
satisfactory without the use of long distance knowledge.

The process of entity classi�cation and sequence identi-
�cation may be iterated to build a structural model of the
corpus by the following procedure:
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specif specif no i'm +ls+ + you li +h#+ +h#+

+uh+ +uh+
okay okay

i gues i i
guess guess

seem i i
need need
to to
meet meet
with with
you you

+ls+ m +ls+ m for for
aftern about about

two two
hours hours

though during during
the the
week week

it is +um+ m or wel here's +um+ +um+

+muell +muell+

Figure 2: Iterated sequence identi�cation: The clas-
si�cation/identi�cation procedure was iterated eight times,
the entity context vectors chosen according to the inter-
vals [�1;�1][1;1], the classi�cation resulted in 400 classes
and 4000 sequences were used in each run. An identi�ed
sequence is indented, and each sequence is represented by
a truncated identi�er. The original words are printed in
boldface.

1. Classify the entities.

2. Identify sequences of entities by identifying sequences
of their respective classes found in step 1.

3. Replace each identi�ed sequence of entities by a new
unique symbol representing the classes in the sequence.

4. Goto 1 or Stop.

4. CALCULATING THE PERPLEXITY AND
LM SCORES

The entity classi�cation and sequence measure, which is
obtained by one iteration of the classi�cation/identi�cation
procedure, may be used to transmit a corpus by the follow-
ing procedure:

1. Run the sequence �nding algorithm based on the pre-
determined sequences and classes.

2. Transmit the corpus obtained by replacing each iden-
ti�ed sequence of classes by a unique symbol.

3. For each class: Transmit the corpus, that consists of
all words, that are found in marked sequences and
belong to this class.

The transmission of the testset is done similar to a mono-
gram model: Each word w on the testset is transmitted
with a code of length log2(pw), where pw is the probabiliy
of w on the trainingset. To transmit the corpus with the

iterated model the corpus in step 2 may again be transmit-
ted with its own structural model. This process must of
course terminate and the last corpus must be transmitted
with a monogram model. The perplexity PP is calculated
straightforward from the number of bits log2(PP ) to trans-
mit a word using the structural model on the testset. This
corresponds to the usual de�nition of PP for n-gram mod-
els. The number of bits obtained to transmit all words in a
sentence is used as a measure for rescoring.

The unknown word is modeled by linear discounting.
In some rare cases a chunk is used to join sequences of
words, but is always superseeded by longer sequences in
the training. So we had to modify the sequence �nding
algorithm to always generate known sequences.

5. EXPERIMENTS

The main experiments were done on an English Schedul-
ing Task (ESST), which consists of spontaneous speech di-
alogs concerning appointment scheduling2 . We rescored
the n-best list of the 1000 best hypotheses delivered by
the JANUS recognizer. We separated the original acoustic
model (AM) score from the decoder output and added the
score derived as described above. We also wanted to know,
how the system performs on good and bad hypotheses. We
therefore selected good recognized sentences as those, that
contain a hypothesis in the n-best list, that has a minimum
word error (WE) of 0 or a minimum WE �5. We used 1000
sequences and 800 classes for the structural model evalu-
ated here. The sequence measure was the indirect measure
based on mutual information. As can be seen from this list,
well recognized sentences get most improvement out of this
techniques while all lattices show some improvment. This
indicates that this language modelling technique could im-
prove the decoder output even more when the recognizer
gets better.

#lattices baseline structural model
all lattices 240 59.1 61.1
min. WE �5 123 74.5 78.9
min. WE 0 26 84.8 91.1

6. CONCLUSION AND FURTHER
APPLICATIONS

The structural model has been shown to improve the word
accuracy on the ESST. This was achieved by classifying
entities and joining them into larger sequences. At the core
of the improvement is the idea, that this template of classes
is tied together and uttered as a whole. The only variation
that is possible, is the actual instance, the surface form of
this template, that results from instantiating the words into
the template. The transmission policy of the data is thereby
rather simple { we just transmit monograms. Our model
cannot replace an n-gram model in the recognizer currently,
as these must work incrementally. The actual inuence of
this model on the recognizer performance is still an open

2In the original paper we mentionedPP reductions, that were

incorrect. Indeed, the PP of the model reported here is higher
than the trigram PP.
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question, as the mechanisms applied are rather di�erent.
The �rst experiments show the feasibility of this approach.

Current work on the structural model includes tight
coupling with n-gram models and the improved handling
of unknown words. We are working also on lattice parsing
and have developed other parsing and classi�cation pro-
cedures than the ones reported here. We will also try to
investigate the notion of government and binding in our
model, that is used in modern linguistic theory. It might
be reformulated as a special connection between instances
of a template. Simple examples as the genus agreement be-
tween article and noun in German may already be captured
by introducing bigram information in our model.

The authors believe, that the structure, which performs
the reduction, may also be used to enhance the power of
other non-symbolic methods. [Rie94] has shown how to
produce 1 out of n and distributed representations of words
for the usage in connectionists parsing. The same holds for
sequences, that may introduce long distance information
by providing a parse stack visible to the network. [WW94]
used (hidden) markov models for speech-act modeling and
reported, that the word classi�cation using our techniques
is almost as powerful as handmade word classes and outper-
forms the approach without classes considerably. Another
application of the word classi�cation procedures is the gen-
eralization to bilingual word classi�cation [Rie94].

7. REFERENCES

[BdP+92] Peter F. Brown, Peter V. deSouza, Vincent
J. Della Pietra, Robert L. Mercer, and Jen-
nifer C. Lai. Class based n-gram models of
natural language. Computational Linguistics,
18(4):467{479, 1992.

[DLR77] A. P. Dempster, N.M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statis-

tical Society B, 39:1{38, 1977. with discussion.

[Fin93] Steven Finch. Finding Structure in Language.
PhD thesis, University of Edinburgh, 1993.

[MM91] David M. Magerman and Mitchell P. Marcus.
Distituent parsing and grammar induction. vol-
ume D-91-09, pages 122a{122e. DFKI, March
1991.

[Rie94] Klaus Ries. Korpusbasierte Techniken zum
Lernen von �ubersetzung spontan gesprochener
Sprache (Corpus-Based Techniques for Learning
the Translation of Spontanous Speech, in Ger-
man). Diploma thesis, Universit�at Karlsruhe,
1994.

[Ris89] J. Rissanen. Stochastic Complexity in Statistical

Inquiry. World Scienti�c Publishing, 1989.

[SL77] Detlef Steinhausen and Klaus Langer. Cluster-

analyse. de Gruyter, 1977.

[Suh73] B. V. Suhotin. Methode de dechi�rage, outil
de recherche en linguistique. TA Informationes,
2:3{43, 1973.

[SW94] B. Suhm and A. Waibel. Towards better lan-
guage models for spontaneous speech. In ICLSP,
volume II, pages 831{834, Yokohama, Japan,
1994.

[WW94] Monika Woszczyna and Alex Waibel. Inferring
linguistic structure in spoken language. In Pro-

ceedings of the International Conference on Spo-

ken Language Processing. ASJ, 1994.

[Yan93] Miin-Shen Yang. On a class of fuzzy classi�ca-
tion maximum likelihood procedures. Fuzzy Sets
and Systems, 57:365{375, 1993.

[Zip35] G. Zipf. The Psycho-Biology of Language.
Houghton Millin, 1935.


