
LANGUAGE MODELS FOR A SPELLED LETTER RECOGNIZER

Martin Betz and Hermann Hild

Interactive Systems Laboratories

University of Karlsruhe | 76128 Karlsruhe, Germany

Carnegie Mellon University | Pittsburgh, USA

ABSTRACT

In some speech recognition applications, it is rea-

sonable to constrain the search space of a speech rec-

ognizer to a large but �nite set of sentences. We demon-

strate the problem on a spelling task, where the recog-

nition of continuously spelled last names is constrained

to 110,000 entries (= 43,000 unique names) of a tele-

phone book. Several techniques to address this prob-

lem are compared: recognition without any language

model, bigrams, functions to map a hypothesis onto a

legal string, n-best lists, and �nally a newly developed

method which integrates all constraints directly into

the search process within reasonable memory and time

bounds. The baseline result of 56% string accuracy is

improved to 62, 85, 88, and 92%, respectively.

To appear in: Proc. IEEE International Conf. on Acoustics,

Speech, and Signal Processing, Detroit, USA, May 1995.

1. INTRODUCTION

Spelled letter recognition is an essential subtask of many

speech recognition systems. Applications include spel-

ling of arbitrary sequences (e.g. \license plates"), \re-

pair" or \new word" dialogues for interactive recogniz-

ers, and spelling of names or addresses. In the latter

two categories the search space can be constrained to

a large dictionary of words or names. Constraints can

become e�ective within the search process as n-grams

or in a fully constrained search. They also can be used

to postprocess the recognized hypotheses by mapping

them onto legal strings, or by �nding the highest rank-

ing legal hypothesis in an n-best list. In this paper, we

will demonstrate our letter recognizer and the e�ects

of various language models and search techniques on

the task of spelled name recognition. Related work on

isolated letters was reported by Cole et. al.[2].

2. THE LETTER RECOGNIZER

The Multi-State Time Delay Neural Network

(MS-TDNN) [3, 5] integrates the time-shift invariant

architecture of a TDNN and a nonlinear time align-

ment procedure (DTW) into a high accuracy word-level

Input Layer

16 melscale FFT

coe�cients at a 10

msec frame rate

Hidden Layer

15 hidden units

Phoneme L.

59 phoneme units

(only 9 shown)

DTW Layer

27 word templates

(only 4 shown)

Word Layer

27 word units

(only 4 shown)

-
-

-

unity weights

5 time delays

3 time delays

Figure 1: The MS-TDNN recognizing the excerpted

word `B'. Only the activations for `SIL', `A', `B', and `C'

are shown.

classi�er. Figure 1 shows an MS-TDNN in the process

of recognizing the excerpted word `B', represented by

16 melscale FFT coe�cients at a 10-msec frame rate.

The �rst three layers constitute a standard TDNN,

which uses sliding windows with time-delayed connec-

tions to compute a score for each phoneme-like state

in every frame. These scores are the activations in the

\Phoneme Layer". In the \DTW Layer", each word to

be recognized is modeled by a sequence of phonemes,

and an optimal alignment path is found for each word.

The activations along these paths are then collected in

the word output units. The error derivatives are back-

propagated from the word units through the alignment

path and the front-end TDNN.

3. EXPERIMENT SETUP

The \Telephone Directory" used to constrain the search

space contained 111,882 entries, with a total of 32,267

unique last names. After accounting for multiple pro-

nunciation alternatives of some letters, the �nal list

of names contained 43,181 strings, referred to as the

string set S = fs

1

; s

2

; :::g. The recognizer was trained

with 8,133 strings (55,449 letters) spelled by 70 speak-

ers. The test set consists of 1,316 strings 2 S (8,661

letters) spelled by 23 additional speakers. Speech data

were sampled at 16 kHz with a Sennheiser close-talking

microphone. Except for the language modeling, the

same test setup was used for all experiments.

4. BASELINE RESULTS

As a baseline experiment, the recognizer was tested

without any language model, i.e. any letter can follow

any other letter with the same probability. The results

improve only slightly if bigrams are used, as shown in

table 1.

string acc. (%) word acc. (%)

no LM 56.4 90.1

bigrams 62.1 92.0

Table 1: Results with no and weak language models.

5. POSTPROCESS SEARCH RESULTS

If the plain recognizer returns a hypothesized name h

which is \illegal", i.e. h 62 S, we can either try to �nd

a \best match" in S, or ask the recognizer to provide

more hypotheses, hoping that one of them will match.

5.1. Closest Match

If h is the hypothesized string returned by the recog-

nizer, we are interested in the name s

�

which is \clos-

est" to the recognized string, i.e.

s

�

= s

i

�

; i

�

= argmin

i

fd(h; s

i

)g

where d(h; s

i

) is a distance measure between strings

h and s

i

. A reasonable choice for d(h; s

i

) is simply

to count the minimum number of insertions, deletions

and substitutions necessary to convert h into s

i

, which

can be found by an DTW alignment procedure. In

addition, one can exploit the fact that some letters are

more easily confused than others. For example, B is

closer to D than to X, therefore d(B; D) should be smaller

than d(B; X). Instead of simply using penalties of 0 and

1, we de�ne

pen(w

i

jw

j

) = 1:0� p(w

i

jw

j

)

where p(w

i

jw

j

) is the probability (estimated from con-

fusion statistics on the training data) that the correct

word is w

i

given that w

j

was recognized. As shown in

table 2, this simple measure is quite e�ective.

closest match string acc. (%) word acc. (%)

0 / 1 penalties 75.6 92.8

1� p(w

i

jw

j

) pen. 85.0 95.2

Table 2: Results for mapping the hypotheses to the

best matching entry in the string list.

80.0
82.0
84.0
86.0
88.0
90.0
92.0
94.0
96.0
98.0

100.0

0 100 200 300 400 500 600 700 800 9001000

%
 w

or
d

 /
 s

tr
in

g
ac

cu
ra

cy

n

word accuracy
string accuracy

Figure 2: String and word accuracy as a function of

the size of the n-best list.

5.2. N-Best

If an n-best list is used, the recognizer returns a (best-

to-worst) sorted list H = (h

1

; h

2

; : : :h

n

) of hypotheses.

From this list the best hypothesis h

�

matching an entry

in the string list S is selected (or the �rst-best if no

match):

h

�

=

�

h

1

if H \ S = ;

h

i

�

; i

�

= minfijh

i

2 Sg otherwise

The recognition accuracy increases with the size of

the n-best list. For n = 50, the string accuracy is

85%. Saturation occurs at approx. n = 500 at 88%

string accuracy, as shown in �gure 2. In most cases

(60.7%), the �rst-best choice matches an entry in the

list. About 5% of these �rst-best choices are incorrect.

In 5.1% of all cases, none of the n hypotheses has a

match in the dictionary. As expected, the percentage

of misrecognitions increases as the �rst match occurs

further down the n-best list. More detailed statistics

are shown in table 3.

position % correct incorrect

1 60.7 763 36

2 10.5 130 8

3 5.1 54 13

4 2.4 28 4

5 1.2 15 1

6 1.1 14 1

7 1.3 11 6

8 1.0 11 2

9 0.8 9 1

10 1.1 10 5

11 - 20 3.6 35 13

21 - 30 2.1 19 8

31 - 40 1.3 11 6

41 - 50 0.7 7 2

51 - 60 0.7 7 2

61 - 70 0.5 5 2

71 - 80 0.5 4 3

81 - 90 0.1 1 0

91 - 100 0.2 1 1

none 5.1 0 67

Table 3: The histogram shows with which frequencies

the best matching hypothesis was found at various po-

sitions in the n-best list.

6. FULLY CONSTRAINED SEARCH

In the previous section, constraints were applied after

the hypotheses were already generated; in this section

we propose a method to integrate all constraints di-

rectly into the search process. For that purpose a �nite

state grammar (FSG) is constructed which represents

exactly the strings in S. The naive approach is to use

an FSG with one transition for every letter, which re-

sults in 345,570 transitions. A more economic solution

is to represent S as a tree (141,066 transitions), or to

construct a minimal graph (minFSG, 57,713 transitions)

(Figure 3).

ListFSG

M A I E R

M A Y E R

M E I E R

M A Y

TreeFSG I

E R

M

A
Y

E R

E I E R

MinFSG

I
E

M
A

Y

E
R

E I

Figure 3: Di�erent types of graphs to represent the

strings MAYER, MAIER, MEIER, MAY.

Every transition in the graph represents a word in

a di�erent context. For example, in the minFSG graph,

the letter E occurs in over 5,800 transitions. Since

the full left context of a string is considered during

the search, each transition may have a di�erent in-

dividual accumulated search score. Therefore, if the

conventional one-stage dynamic time warping (DTW)

search[6] is employed, one individual word model is

needed in the DTW search matrix for every transition

in the minFSG graph. With a total of 57,713 transi-

tions, this results in a prohibitively time and mem-

ory consuming search process. To remedy the prob-

lem, we use a technique similar to the \Two-Level DP-

Matching" [7]: The letter E occurs in over 5,800 dif-

ferent contexts, but the partial optimal score through

its word model is independent of the search context.

This can be exploited by precomputing optimal partial

score s(w

k

; t

i

; t

e

) for all words w

k

, where t

i

and t

e

are

the points in time where the path enters and leaves the

word. The search can also be viewed as a graph search

problem through the minFSG graph, as explained in �g-

ure 4.

e - e�

�

�

�

�

�*

H

H

H

H

H

Hj

e

e

M

A

E

s(M;t

i

; t

e

)

s(A; t

i

; t

e

)

s(E; t

i

; t

e

)

Figure 4: The fully constrained search viewed as a

graph search problem. The goal is to �nd an optimal

path through the graph. Each transition corresponds

to one letter. The partial score of a transition depends

on t

i

and t

e

.

Figure 5 illustrates some implementational details.

For each frame, the search keeps a list of k partial

hypotheses, in which the position in the minFSG(the

search history), the accumulated score, and some other

housekeeping data are stored. At time t, each hypoth-

esis is expanded to all allowed successor words w

suc

,

which means that all hypotheses at frames

t

e

= ft+mindur(w

suc

); ::: t+maxdur(w

suc

)g

are updated. Good results are achieved with k >= 40

active hypotheses. Signi�cant loss in performance was

observed with k < 20 hypotheses. With beam search,

the \Forward-Backward Algorithm" [1] and some other

pruning techniques, the search time could be reduced

from 12 sec/string to about 3 secs/string (on a HP 735

workstation), still achieving 92.7% string and 97.7%

word accuracy. However, this is still almost one order

of magnitude slower than the recognition without any

language model.

W1

W2

W3

W1

W2

W3

time

time

One list with
k actual hypotheses
at each frame

Figure 5: Top: Conventional DTW search technique.

The matrix contains the prohibitive amount of 57,713

word models, one for each letter in the minFSG. Bot-

tom: Two level search with only one word model for

each letter in the alphabet, but an expensive precom-

putation of partial scores. At each frame, a list with

the active search hypotheses is kept.

7. CONCLUSIONS

In this paper we compared several techniques to con-

strain speech recognition to a given large list of strings.

The task was to recognize spelled letters from a tele-

phone book with 43,000 unique last names.

Bigrams provide only weak constraints. The \n-best"

and \closest-match" techniques postprocess hypotheses

that were found by the plain recognizer without lan-

guage model constraints. The best results were achieved

with a newly developed technique which allows the in-

tegration of all constraints directly into the search pro-

cess. Table 4 summarizes the results.

Acknowledgements

This research was partly funded by SIEMENS AG and

by grant 413-4001-01IV101S3 from the German Min-

istry of Science and Technology (BMFT) as a part

of the VERBMOBIL project. The authors would like

to thank all members of the Interactive Systems Labs

string acc. (%)

No language model 56.4

Bigrams 62.1

Closest match 85.0

N-best 88.1

Full constraints 92.7

Table 4: Summary of results for di�erent language

models and search techniques.

who contributed with discussions and support, espe-

cially Monika Woszczyna for helping out with the n-

best search module from the JANUS[8] speech recog-

nizer, and Alex Waibel.

8. REFERENCES

[1] S. Austin, R. Schwartz, and P. Placeway. The Forward-

Backward Search Algorithm. In Proc. of the Interna-

tional Conference on Acoustics, Speech and Signal Pro-

cessing. IEEE, 1991.

[2] R. A. Cole, M. Fanty, Gopalakrishnan, and R. D.

Janssen. Speaker-Independent Name Retrival from

Spellings using a Database of 50,000 Names. In Proc. of

the International Conference on Acoustics, Speech and

Signal Processing, Toronto, IEEE, May 1991.

[3] P. Ha�ner, M. Franzini, and A. Waibel. Integrating

Time Alignment and Neural Networks for High Perfor-

mance Continuous Speech Recognition. In Proc. Inter-

national Conference on Acoustics, Speech, and Signal

Processing. IEEE, May 1991.

[4] H. Hild and A. Waibel. Multi-Speaker/Speaker-

Independent Architectures for the Multi-State Time

Delay Neural Network. In Proc. International Conf. on

Acoustics, Speech, and Signal Processing. IEEE, 1993.

[5] H. Hild and A.Waibel. Speaker-Independent Connected

Letter Recognition With a Multi-Sate Time Delay Neu-

ral Network. In 3rd European Conf. on Speech, Com-

munication and Technology, Sept. 1993.

[6] H. Ney. The Use of a One-Stage Dynamic Program-

ming Algorithm for Connected Word Recognition. In

Transactions on Acoustics, Speech, and Signal Process-

ing, pages 263{271. IEEE, April 1984.

[7] H. Sakoe. Two Level DP-Matching { A Dynamic

Programming-Based Pattern Matching Algorithm for

Connected Word Recognition. In Transactions on

Acoustic, Speech, Signal Processing, volume ASSP-27,

pages 588{595, Dec. 1979.

[8] M.Woszczyna, N.Aoki-Waibel, F.D.Bu�, N.Coccaro,

K.Horiguchi, T.Kemp, A.Lavie, A.McNair, T.Polzin,

I.Rogina, C.P.Rose, T.Schultz, B.Suhm M.Tomita,

A.Waibel Janus 93: Towards Spontaneous Speech

Translation. In Proc. International Conf. on Acoustics,

Speech, and Signal Processing. IEEE, May 1994.

