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ABSTRACT 2. SYSTEM DESCRIPTION 

We present recent work on improving the performance of 
automated speech recognizers by using additional visual in- 
formation (Lip-/Speechreading), achieving error reduction 
of up to 50%. This paper focuses on different methods 
of combining the visual and acoustic data to improve the 
recognition performance. We show this on an extension 
of an existing state-of-the-art speech recognition system, a 
modular MS-TDNN. We have developed adaptive conibi- 
nation methods at several levels of the recognition network. 
Additional information such as estimated signal-to-noise ra- 
tio (SNR) is used in some cases. The results of the differ- 
ent conibination methods are shown for clean speech and 
data with artificial noise (white, music, motor). The new 
combination methods adapt automatically to varying noise 

In the basic set-up, we record, in parallel, the acoustic 
speech and the corresponding serieij of mouth images of the 
speaker. The speaker and his lip!; are found and tracked 
automatically. 

We use speaker-dependent continuous spelling of German 
letter strings (26 letter alphabet) as our task. Words in our 
database are 8 letters long on average. 

I noise signal-to-noise ratio I 
clean 

motor 25 dB and 10 dB 

Table 1. Acoustic environments tested (dB SNR). conditions making hand-tuned parameters unnecessary. 

1. INTRODUCTION A modular MS-TDNN 113, 141 is used to perform the 

Automated speech recognition systems still perform poorly 
in real-world applications. Most approaches are very sensi- 
tive to background noise or fail totally when more than one 
speaker talks simultaneously (cocktail party effect). 

I t  is well known that hearing-impaired listeners and those 
listening in adverse acoustic environments rely heavily on 
the visual input to disambiguate among acoustically con- 
fusable speech elements. The usefullness of lip movement 
information stenis in large part Goni its rough complemen- 
tariness t o  the acoustic signal 11, 2, 31. 

Therefore, it is only natural to try to supplement the 
acoustic data with lip movement information. Related work 
on this concept was published by other researchers in [4, 5 ,  
6, 7, 8, 91. Our own work in this area has been previously 
reported in [lo, 11, 121. 

In this paper we focus on combining the acoustic and vi- 
sual input data to improve recognition performance. The 
merging of the two information sources is very important for 
the final results. With only visual input our recognizer ob- 
tains recognition rates of up to 55%. Since the pure acous- 
tic recognition accuracy on clean data is over 90% the vi- 
sual part should presumably be given lower weighting under 
undisturbed conditions. On the other hand the acoustic- 
only recognition rate decreases when background noise is 
present. Here making more use of the visual information 
seems appropriate. A combination dynamically adapting 
to the circumstances ought to produce optimal recognition 
results. 

recognition. combining visual and acoustic data is done on 
the phonetic layer (Fig. 1) or on lower levels (Fig. 3). 

As visual input we use Linear Discriminant Analysis co- 
efficients of the gray-scale pictures of the lip region. (top 32 
coefficients per image Game). For acoustic preprocessing 16 
Melscale coefficients are used. 

We have trained the recognizer on 170 sequences of acous- 
tic/visual data from one speaker and tested on 30 sequences 
of the same person. For each combination method below we 
have trained the nets on clean acoustic data. We separately 
trained an acoustic TDNN on the same sequences of clean 
and corrupted data with white noise at  16 dB SNR. For 
testing we also added different types of artificial noise to  
the test-set of clean data (see Tab. 1). As performance 
measure word accura,cy is used (where a spelled letter is 
considered a word): 

1 (1) #SubError+#InsError+#DelError 
#Letter 

WA = 10O%(l - 

3. COMBINATION ON P'HONETIC LAYER 
In the basic system (Fig. 1) an acoustic and a visual TDNN 
are trained separately. The acoustic net is trained on 63 
phonemes, the visual on 42 visemes'. 

'viseme = visual phoneme, smallest part of lipmovement that 
can be distinguished. Several phonemes are usually mapped to 
each viseme. 
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The combined activation ( h y p ~ v )  for a given phoneme is 
expressed as a weighted summation of the phoneme layer 
activations of this phoneme and the corresponding viseme 
unit: 

1LypAv = XAILYPA + Xvhypv and AA + A V  = 1 (2) 

The weights AA and A V  for this combination are depen- 
dent on the quality of the acoustic data. If the quality is 
high, i.e. no noise exists, the weight AA should be high. In 
the case of significant acoustic noise, a higher weight AV for 
the visual side has been found to give better results. 

output layer 

DTW 

combined layer 

.1.. 1 ...................... 
phoneme layer 

hidden layer 

input layer 

................................................................... __, 
acoustic TDNN visual TDNN 

Figure 1. Combination on the phonetic layer. 

3.1. Entropy Weights 
One way to determine the weights for the combination (2)  is 
to compute the entropy of the phoneme/viseme layer. The 
'entropy weights' XA for the acoustic and AV for the visual 
side are given by: 

X A = b +  sv - , ancl AV = 1 - AA (3) 

The entropy quantities SA and SV are computed for the 
acoustic and visual activations by normalizing these to sum 
to one (over all phonemes or visemes, respectively) and 
treating them as probability mass functions. High entropy 
is found when activations are evenly spread over the units 
which indicates high ambiguity of the decision from that 
particular modality. The bias b pre-skews the weights to fa- 
vor one of the modalities. In the results shown here, we have 
optimized this parameter by setting it by hand, depencling 
on the quality of the actually tested acoustic data. 

3.2. SNR Weights 
The quality of the speech data is generally well described by 
the signal-to-noise-ratio (SNR). Higher SNR means higher 
quality of the acoustic data and therefore the consideration 
of the acoustic side should increase for higher and decrease 
for smaller SNR-values. 

We used a piecewise-linear mapping to adjust the acoustic 
and visual weights as a function of the SNR (see middle of 

A S m a z - o v e r - d a t a  

Fig 2). The SNR itself is estimated automatically every 500 
nis from the acoustic signal. Linear interpolation is used to 
get an SNR value for each frame (i.e. every 10 ms). In sev- 
eral experiments we obtained best results with a maximum 
and a minimum weight hmaz: = 0.75 and Ltnin. = 0.5 for 
high (33dB) and low (OdB) SNR respectively and a linear 
interpolation between them. Fig. 2 shows on an example 
from the test set, the values of the weights as they vary 
with the estimated SNR which is shown on top (for more 
information about this algorithm see [15]). 
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Figure 2. Determining the weights by using the SNR. 

3.3. Learning the weights 
Another approach is to use a neural network to compute the 
combination weights at the phoneme level. This method dif- 
fers form the previous in two ways. First the combination 
weights are learned from training data and not calculated 
during the recognition progress. Second, different weights 
AA and A V  are computed for different features, i.e. for ev- 
ery phoneme/viseme, instead of a weighting common to  all 
phoneme/viseme pairs for a given time-frame as it is in the 
entropy and SNR-weight cases. The motivation behind this 
lies in the complementariness of the acoustic and the visual 
signal: some phonemes which are high confusable even in 
quiet have corresponding visenies that  can be distinguished 
reliably. So it is only natural to prefer the visual classifica- 
tion for phonemes unclear acoustically and vice versa. 

We have used a simple backprop net with two input layers 
(phonemes and visems), one output layer (phonems), and 
no hidden layer. Each unit of the combination layer is fully 
connected with the corresponding acoustic and visual frame. 

4. LOWER LEVEL COMBINATION 

The combination of acoustic and visual information on the 
phonenie/viseme layer offers several advantages. There is 
independent control of two modality networks, allowing for 
separate training rates and number of training epochs. I t  
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is also easy to test uni-modal performance simply by set- 
ting A A  and A V  to zero or one. On the other hand, this 
method forces us to develop a viseme alphabet for the visual 
signal, as well as a one-to-many correspondence between 
the visemes and phonemes. Unlike phonemes, visenies have 
proven much more difficult to define consistently exept for 
a few fairly constant sets. Combination of phonemes and 
visenies further prevents the recognizer from taking advan- 
tage of lower level correlation between acoustic and visual 
events such as inter-modal timing relationships. 

pha” layer 

hidden layer 

input layer 

hiddui layer 

input layer 

methods, i.e. computing the bias b of the entropy weight 
fiom the SNR instead of setting it by hand. The results 
were approximately the same as with hand-optimized en- 
tropy weights. 

Both combination methods have the disadvantage that 
they do not take into consideration t8he inherent confusabil- 
ity of some phonemes and visemes, but use a single weight 
in each acoustic/visual time frame depending only on the 
quality of the acoustic data. The .approach which uses a 
neural network for combination relies on the fact that some 
phonemes are easier to recognize acoustically while some 
can be more reliably distinguished from the visual input, 
by using different weights for each phoneme/viseme pair. 
As expected, this method delivers the best results exept in 
the case of high background noise (i.e. motor 10 dB and 
white noise 8 dB). 

Similarly, the hidden- and input-combination recognition 
performance suffers more in these cases. However, when 
evaluating the different approaches, one has to remember 
that the neural net Combination, just as the hidden- and 
input-combination, has no explicit information about the 
quality of the acoustic input data which can be used during 
the recognition progress as it is done by the combination at 
the phonetic level with the entropy- and the SNR-weights. 

1. 
100 

Figure 3. Lower level combination: (a) hidden layer (b) hidden 
layer and SNR (c) i n p u t  layer (d )  i n p u t  layer and SNR. 

Two alternatives are to  conibine visual and acoustic in- 
formation on the input or on the hidden layer (see Fig 3 (a) 0 40 

30 

1 0  

and (c)). In another approach, we have used the estimated 
SNR of the acoustic data as an additional input to both 
networks (see Fig 3 (b) and (d)). 

p 20 

5 .  RESULTS 
Figure 4 shows the results for the three conibination meth- 
ods on the phonetic layer and on the input ancl hidden 
layer in comparison to the acoustic recognition rate in dif- 
ferent noise environments. All the nets were trained on 
clean acoustic data. The recognition rate on the visual data 
(without acoustic information) was 55%. The architectures 
in Fig. 3 (b) and (d) were not trained with the clean dataset 
because the additional information (SNR) does not appear 
in this training set (i.e. the SNR is approximately constant 
for all the words in this database). So recognition iniprove- 
ments from this kind of architecture could not be expected 
in this case of training data. 

With all combination methods we get an iniprovenient 
compared to the single acoustic recognition, especially in 
the case of high background noise. We obtain the best re- 
sults using the conhination on the phonetic layer. Using 
the entropy weights yields good recognition results but has 
a great disadvantage: a bias b which is necessary to preskew 
the weights is needed and has to be optimized by hand. In 
contrast, the SNR weights were determined automatically. 
They result in roughly the same performance without hav- 
ing to ’hand-optimize’ any parameters during the recogni- 
tion progress. We have also tested a combination of this two 

dean motor music music white motor white 
33 dB 25 dB 20 dB 16 dB noise 10 dB noise 

16 dfl 8 dB 

Figure 4. Combination on input ,  hidden. and phone layer; 
trained with clean data. 

Motivated by this we have trained the net on a set of clean 
and noisy data, i.e. the 170 sequences used before and with 
the same sequences with 16 dB white noise. The results are 
presented in Fig. 5 .  Here we also trained the architectures 
from Fig. 3 (b) and (d), i.e. hidden and input Combination 
with additional input of the SNR. In some cases we get small 
improvements with that kind of combination. 

On the slightly noisy data we get improvements in coni- 
parison to the results achieved with the clean training data 
set. The improvenienls in the case of white noise are pre- 
dictable since the training data contains utterances contani- 
inated with 16 dB SNR white noise. The improvements ob- 
tained with the motor 10 dB SNR t,est set are most remark- 
able. Here an error reduction of about 50% was found in 
the case of phonetic combination .with entropy- and SNR- 
weights compared to the results olbtained with the exclu- 
sively clean training data set. Unfortunately the combina- 
tion with a neural network did not lead to such a good error 
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reduction in this case. 

acoustic 0 Entropy s\R 0 NN 

a hidden input  BBi input SNR 

clean motor music music white motor white 
33 dB 2 5  dB 20 d6 16 dB noise 10 dB noise 

16 dB a dB 

Figure 5. 
trained with clean data and artificial noise. 

Combination on i n p u t ,  hidden, and phone layer; 

6. C O N C L U S I O N  

In this paper we have presented different types of sensor 
fusion for automatic speech recognition and Lip-/Speech- 
reading We get an error reduction of up to 50% in conipar- 
ison to the acoustic-only recognition results. The adaption 
to different noise environments is done automatically. The 
investigated methods differ in the combination level (high 
or lower layer of the TDNN) at  which they are invoked and 
in the method of computing the combination weights (frame 
and feature dependent). Another difference is the fact that 
some combination methods (entropy- and SNR-weights on 
phonetic-level-combination) make use of automatically ex- 
tracted information about the quality of the acoustic data 
during the recognition process. 

Good results were obtained with the combination via neu- 
ral network on the phoneme level. This kind of high level 
combination with different weights for different features (i.e. 
phonemes/visemes) yields good results although it does not 
use information about the quality of the acoustic data dur- 
ing the recognition process. 
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