
JANUS-II: Towards Spontaneous Spanish Speech RecognitionPuming Zhan, Klaus Ries, Marsal GavaldaDonna Gates, Alon Lavie, and Alex WaibelInteractive Systems LaboratoriesCarnegie Mellon UniversityPittsburgh, PA 15213Email: fzhan,ries,marsal,dmg,alavie,ahwg@cs.cmu.eduABSTRACTJANUS-II is a research system for investigating various issuesin speech-to-speech translations and has been implementedfor speech-to-speech translations on many languages [1]. Inthis paper, we address the Spanish speech recognition part ofJANUS-II. First, we report the bootstrap and optimizationof the recognition system. Then we investigate the di�erencebetween push-to-talk and cross-talk dialogs, which are twodi�erent kinds of data in our database. We give a detailnoise analysis for the push-to-talk and cross-talk dialogs andpresent some recognition results for the comparison. We haveobserved that the cross-talk dialogs are harder than the push-to-talk dialogs for speech recognition, because they are morenoisy than the latter. Currently, the error rate of our Spanishrecognizer is 27% for push-to-talk test set and 32% for cross-talk test set. 1. IntroductionToday, most of the state of the art speech recognition sys-tems are based on Hidden Markov Model (HMM) techniques,which were �rst applied to speech recognition about twentyyears ago. The HMM based systems are quite successfulon reading speech recognition task. However they are farfrom satisfactory for spontaneous speech recognition. Muchresearch in this �eld has been directed to the recognitionand understanding of spontaneous speech in recent years.Compared to reading speech, spontaneous speech usuallycontains much more noises and disuencies, such as humannoise, background noise, simultaneous speaking, mispronun-ciations and repetitions. Therefore, it is well know that thespontaneous speech is much harder than the reading speechfor speech recognition. In this paper, we report how to boot-strap and improve JANUS-II speech engine for spontaneousSpanish speech recognition. Then we analyze the disuen-cies of the push-to-talk and cross-talk dialogs, and comparetheir performance in speech recognition.2. DatabaseThe JANUS system is built for and evaluated on the ap-pointment scheduling task. The details of this Database,

including English, German, Korea, Japanese and Spanishdata, can be found in [1]. The Spanish Database consists oftwo di�erent kinds of data: push-to-talk dialogs and cross-talk dialogs. More than a half of the data in the databaseare cross-talk dialogs. Although they are all human to hu-man dialogs, these data are recorded in very di�erent styles.Briey, in push-to-talk recording, two speakers have to inter-face with a computer and push the \return" key to speak, sothat simultaneous speaking can be avoided. In the cross-talkrecording, two speakers can interrupt each other at any time,so that simultaneous speaking is possible. Table 1 is a sum-mary of the database used for development of the Spanishspeech recognizer.training set push-to-talk cross-talkutterances 1090 7740words 42142 73617words per utt 38.6 9.5hours 5 7Table 1: Spontaneous Spanish Scheduling Task DatabaseOn average, there are 38.6 words per utterance for the push-to-talk dialogs and 9.5 for the cross-talk dialogs, indicatingthat the length of cross-talk utterance is, in general, muchshorter than the push-to-talk utterance. Because of the lackof the training data, we use the push-to-talk and cross-talkdialogs together to train the acoustic models, but keep anindividual test set for each of them. The push-to-talk test setconsists of 13 dialogs, three male and four female speakers,which contains 86 utterances. The cross-talk test set consistsof 6 dialogs, three male and three female speakers, whichcontains 117 utterances. The test vocabulary consists of 3911unique words in the training set. For both test sets, the outof vocabulary word rate is 1.6%.3. PreprocessingThe feature we are using is Perceptual Linear Predictive(PLP) coe�cients, which are generated based on [3]. Thespeech signal is sampled with 16KHz rate. After passingthrough a preemphasis �lter and Hamming window as usual,128 points FFT spectrum is calculated. The FFT spectrum



is integrated with a critical band in Bark-scale, and oper-ated with the cube 0.33 cubic-root amplitude compression.After such kind of perceptual processing, 21 coe�cients areobtained and used to generate 13 LPC coe�cients and then13 LPC-Driven Cepstrum coe�cients. We combine 13 cep-strum coe�cients with its Delta and Delta-Delta coe�cientstogether to generate a 39-dimension feature vector. Finally,this feature vector is transformed by a 39x39 matrix which isgenerated by Linear Discriminant Analysis [2]. The �rst 16components of the transformed vector are kept as the �nalfeature vector. Our experiments showed that the above PLPis better than the Mel-Frequency-Scale Coe�cients (MFSC).The word accuracy with PLP feature is about 1.5% betterthan that with MFSC feature.4. JANUS-II Spanish speechrecognition system4.1. Speech engineThe JANUS-II Spanish speech engine is based on Contin-uous Density Hidden Markov Model (CDHMM). We useGaussian-Mixture density as the output probability of eachCDHMM's state. The mixture-order, called codebook sizein semi-continuous density HMM, is chosen according to theamount and separability of the training samples which arealigned to this mixture density. Thus we can make surethat every component of the mixture density has enoughsamples for its training, and meanwhile the mixture-orderis reasonable large in order to keep the model's accuracy.We use the Viterbi algorithm for acoustic model trainingand update the parameters of the best matched componentof Gaussian-Mixture density. For recognition, we use thestandard JANUS-II decoder which includes three passes, i.e.Tree-pass, Flat-pass and Lattice-pass [1, 6]. All results wereport in this paper are obtained from the Flat-pass, withwhich word accuracy is about 1.5% - 2.5% better than theTree-pass and 0.5% - 1.5% lower than the Lattice-pass. Wehave used two di�erent trigram language models. One is gen-erated with the standard LM Tools at CMU, which is basedon the standard backo� algorithm. The other is generated byusing the Knesey/Ney backo� algorithm [4]. We found thatKnesey/Ney's algorithm gives us about 4% error reduction.Therefore we keep using this language model in the paper.4.2. Bootstrapping the context depen-dent phone modelsWhen porting a existing speech recognition system towardsa new language, the �rst thing to be done is to choose a suit-able speech units of the target language as acoustic models.Spanish is a phonological language and its phoneme numbersis in the same range as English, so we �rst choose Context-Independent (CI) phones as speech units for acoustic models,then extend the CI phone models into Context-Dependent(CD) phone models. We use 40 CI phones as the CI acousticmodels for the Spanish speech recognition system. The ini-

tial parameters of the Spanish acoustic models are obtainedfrom the corresponding acoustic models of JANUS-II Englishspeech recognizer. From CI to CD acoustic phone models,the within-word-triphones are used without position tag. Wesimply choose the triphones according to their frequencies inthe training set. There are two typical methods for context-dependent model clustering: the data-driven algorithm anddecision-tree algorithm. The purpose to cluster the triphonesis to make the acoustic models cover more context-dependentinformation and at the same time keep the number of acous-tic models in a reasonable level so that we can train them wellwith the limited data. Therefore, there is always a trade-o�between accuracy and robustness of the acoustic models inthe condition of limited training data. Compared to choos-ing the triphones according to their frequencies in the train-ing set, the data-driven method did not give us substantialimprovement. Because our training and testing data are re-stricted in the same domain, the scheduling task, we canget better result by just using the high frequent triphones asacoustic models. In Table 2 and Table 3, we present someresults based on di�erent number of CI to CD phone mod-els and di�erent dimensions of the PLP feature vectors. Allthese results were obtained with the push-to-talk test set.phones 48(CI) 245 421 596 684WA 61.2% 67.5% 71.3% 72.3% 72.1%Table 2: Word accuracy with di�erent number of triphonesIn Table 2, we keep using a 16-dimensional PLP feature vec-tor, full covariance matrix in the Gaussian Mixture densityand Trigram language models. The triphone numbers in Ta-ble 2 includes 8 special phones as the noise models. It showsthat 596 triphones as acoustic models give us the best wordaccuracy. The word accuracy with di�erent number of acous-tic models depends on the acoustic model's complexity andthe amount of training data. With more data, we may getbetter word accuracy with more acoustic models.Dimension eigen-ratio Diagonal Full12 44.3% 66.7% 67.8%16 53.2% 71.0% 72.3%20 61.6% 71.7% 71.9%24 69.9% 72.2% 71.5%Table 3: Word accuracy with di�erent dimensions of featureand di�erent type of covariancesIn Table 3, we keep using 596 triphones as acoustic modelsin the recognizer. The table shows that the best result isobtained from the system which uses a 16-dimensional fea-ture vector and full covariance. The dimension of the featurevector was increased from 16 to 24, the word accuracy alsohad slight increase for the system with diagonal covariance,but decrease for the system with a full covariance. We needto mention that we compare the diagonal and full covariancesystem based on the principle of same parameter num-



bers. The principle means that we choose the mixture num-bers to keep the two systems have nearly the same numberof parameters in their acoustic models. For example, in thecase of using 16-order feature vector in Table 3, the averagenumber of Gaussian mixtures for each acoustic model is ninein the diagonal covariance system, and two in the full covari-ance system. Because of symmetry of the covariance matrix,there is only a little extra computational complexity in thefull covariance system. Therefore we choose 16-order PLPfeature, 596 triphones and full covariance in the Gaussianmixture density as our standard system for the remainingexperiments. The sum of eigenvalues of the diagonal LDAmatrix is a measure of separability of the classes with whichthe LDA matrix is generated. Table 3 shows that if we choosethe �rst 16 coe�cients from the 39-order feature vector, wecan keep 53.2% separability of the original vector. Actu-ally, projecting a feature vector to a lower space with theLDA technique usually leads to a better performance, be-cause with limited data, we can get more robust model inthe reduced space.5. Optimization of the LDAtransformation matrixLinear Discriminant Analysis (LDA) is a traditional tech-nique for pattern recognition [2]. It has been used in speechrecognition systems as a preprocessing method for severalyears. But how to embed the LDA matrix into the trainingprocess of speech recognition is still a open problem [5]. TheLDA transformation matrix is created based on the classesof the patterns. The goal is to build a linear transforma-tion matrix, with which the feature can be projected intoits subspace, and meanwhile keep or increase the separabil-ity of the patterns. In speech recognition system, the LDAmatrix is usually generated based on the label �le which con-tains the alignment of the training samples with the acousticmodels, hence the phone classes. Once the LDA matrix isbuilt, it is rarely updated, because the current training algo-rithm (Viterbi or Baum algorithm) does not include trainingthe LDA matrix. Obviously, this is not optimal. The LDAmatrix is entirely based on the alignment of the trainingsamples. Every time the acoustic model is updated in train-ing process, the alignment is changed. Therefore, the LDAmatrix should be updated too. The training algorithm canbe divided into two steps: dynamic match and model up-date. The alignment of the training samples is obtained inthe dynamic match step, and model is updated based on thealignment. Our idea is to insert a LDA matrix updating stepbetween the dynamic match and model update step. Afterthe dynamic match or force-alignment, we �rst update theLDA matrix according to the alignment, then update themodels. Finally, the new models are obtained by projectingthe updated models into a new space based on the new LDAmatrix. [5] gives a rigorous algorithm for the LDA optimiza-tion, but did not get signi�cant improvement. Compared toit, our method is simple and suboptimal. But we got 5%-7%error reduction from it.

6. Comparison of push-to-talk andcross-talk dialogsIn this section, we �rst analyze the noise distribution ofthe two databases, then describe the noise model genera-tion and compare the performance of the two database inspeech recognition.6.1. Noise analysisGenerally speaking, noises fall into three classes: (a) distor-tion of the recording equipment, such as channel and mi-crophone distortion; (b) human and nonhuman made noiseswhich occur exactly between the real words, such as /LS//H#/ W1 W2 /MM/ W3 /EH/. . . , where /LS/ is lip smack,/H#/ is breathing; (c) human and nonhuman made noiseswhich occur at the same time that the user is speaking to therecognizer, i.e. the noises overlap with the real speech sig-nal, such as /BEGIN-LAUGH/ W1 W2. . . /END-LAUGH/;Most of the noises in class (c) are background noises, and asof our knowledge, there is no existing very e�ective methoddealing with them. Using special microphone is one of theways to reduce the e�ect of such background noises, but it islimited by practical environment. Besides, there is a lot offalse-starts, repetitions, mispronunciations, and simultane-ous talking in the spontaneous speech, which heavily a�ectthe speaking rate, amplitude and prosody, and are very di�-cult to handle. In our system, we use the Mean-Subtractiontechnique to eliminate the channel distortions, i.e. the noisesin class (a). Table 4 contains some statistical analyses of thenoises in class (b) and (c). Ratio1 is noises/(words +noises), where the noises are those in class (b). We did notinclude false-starts into the noise count, because we treatedthem as real words. But we included the mispronouncedwords into the noise rate calculation, because they are oneof the worst noises and very hard to be recognized. Ra-tio2 is words-covered-by-noise/words, which gives us akind of measurement for the noises in class (c). The words-covered-by-noisewas counted according to the noise marksin the transcription �les. Only the real words which are be-tween the noise beginning and ending marks were counted,and the noises in class (b) were excluded, because they werealready considered in Ratio1.Database Utts Words Ratio1 Ratio2push-to-talk 1090 42142 17.94% 9.8%cross-talk 7740 73617 19.32% 30.5%Table 4: Statistics of the noisesTable 4 illustrates that there is no signi�cant di�erence be-tween the Ratio1 of the cross-talk dialogs and push-to-talkdialogs. But we noticed that among 19.32% noise rate of thecross-talk dialogs, the mispronunciation rate is 2.67%, whichis signi�cantly higher than 0.87% mispronunciation rate ofthe push-to-talk dialogs. Obviously, the Ratio2 of the cross-talk dialogs is much higher than that of the push-to-talk



dialogs. Among 30.5% rate of noise covered words in thecross-talk dialogs, the rate of words covered with simultane-ous speaking is 5.2%, compared to zero in the push-to-talkdialogs.6.2. Noise model generationThe noise acoustic models described in this section are forthe noises in class (b). We count the human and nonhumanmade noises in the training database and pick up severalsorts of noises according to the rank of their frequencies toassign special acoustic models for them. Two general noisemodels are used for the remaining human and nonhumannoises. We found that the high frequency noises in the push-to-talk and cross-talk dialogs are almost the same, thoughtheir noise rates are di�erent. The major di�erence is thatthere are a lot of Key-Click noises in the push-to-talk di-alogs and no such noises in the cross-talk dialogs. Thus weuse the same noise models for both data. We also assign ageneral acoustic model to those words which were mispro-nounced (most of them were pronounced incompletely, i.e.some phonemes in the word were not pronounced). Table5 gives the word accuracy with respect to di�erent numberof noise models. The results depend on the database sizeNo. of Noise Models push-to-talk cross-talk2 69.2% 64.4%4 70.5% 65.7%8 72.3% 67.4%11 71.7% 67.1%Table 5: Word accuracy with di�erent No. of noise modelsand the statistical distribution of the noises. In our case,the best word accuracy is obtained with 8 noise models. Wetried to merge some noises which likely have similar voicetogether, such as, /MM/ /NN/, and also tried to use morenoise models, but did not get signi�cant improvement. Wefound that some noises, which have low amplitude and shortduration, such as lip smacks, glottal noises, do not a�ect theperformance of the system very much, though they occurwith high frequency. The noises which have high amplitudeand long duration, such as laugh, mispronunciations, EH orHUH with long duration, and long silence, heavily a�ect theperformance of the system.6.3. Comparison in speech recognitionIn this section, we give a comparison of the word accuracy forthe push-to-talk and cross-talk dialogs. Table 6 contains theresults of speech recognition for the push-to-talk and cross-talk test set. We use di�erent number of acoustic models inthe recognition systems for this experiment, but keep using8 noise models according to the results in Table 5.Table 5 and Table 6 indicates that because of the high noiseand disuency rate, as we showed in Table 4, the word ac-curacy of the cross-talk dialogs is consistently lower than
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