
Learning to Parse Spontaneous Speech

Finn Dag Bu� and Alex Waibel

Interactive Systems Laboratories
University of Karlsruhe (Germany)

Carnegie Mellon University (USA)

finndag@ira.uka.de

ABSTRACT

We describe and experimentally evaluate a system, FeasPar,
that learns parsing spontaneous speech. To train and run
FeasPar (Feature Structure Parser), only limited handmod-
eled knowledge is required.
The FeasPar architecture consists of neural networks and
a search. The networks spilt the incoming sentence into
chunks, which are labeled with feature values and chunk re-
lations. Then, the search �nds the most probable and con-
sistent feature structure.
FeasPar is trained, tested and evaluated with the Sponta-
neous Scheduling Task, and compared with two samples of
a handmodeled GLR* parser, developed for 4 months and
2 years, respectively. The handmodeling e�ort for FeasPar
is 2 weeks. FeasPar performes better than the GLR* parser
developed 4 months in all six comparisons that are made and
has a similar performance as the GLR* parser developed for
2 years.

1. Introduction

When building a speech parsing component for small do-
mains, an important goal is to get good performance. If low
hand labor is involved, then it's even better.

Uni�cation based formalisms, e.g.[6, 10, 13], have been very
successful for analyzing written language, because they have
provided parses with rich and detailed linguistic information.
However, these approaches have two major drawbacks: �rst,
they require hand-designed symbolic knowledge like lexica
and grammar rules, and second, this knowledge is too rigid,
causing problems with ungrammaticality and other devia-
tions from linguistic rules. These deviations are manageable
and low in number, when analyzing written language, but
not for spoken language. The latter also contains sponta-
neous e�ects and speech recognition errors. (On the other
hand, the good thing is that spoken language tend to con-
tain less complex structures than written language.) Several
methods have been suggested compensate for these speech
related problems: e.g. score and penalties, probabilistic
rules, and skipping words [5, 15, 11, 8].

A small community have experimented with either purely
statistical approaches[2, 14] or connectionist based ap-
proaches [1, 12, 9, 16]. Their main advantages are learn-
ability and robustness. All connectionist approaches to our
knowledge, have su�ered from one or more of the following
problems: One, parses contains none or too few linguistic at-
tributes to be used in translation or understanding, and/or
it is not shown how to use their parse formalism in a to-
tal NLP system. Two, no clear and quantitative statement
about overall performance is made. Three, the approach has
not been evaluated with real world data, but with highly
regular sentences. Four, millions of training sentences are
required.

In this paper, we present a parser that produces complex fea-
ture structures, as known from e.g. GPSG[6]. This parser
requires only minor hand labeling, and learns the parsing
task itself. It generalizes well, and is robust towards sponta-
neous e�ects and speech recognition errors.

The parser is trained and evaluated with the Spontaneous
Scheduling Task, which is a negotiation situation, in which
two subjects have to decide on time and place for a meeting.
The subjects' calendars have conicts, so that a few sugges-
tions have to go back and forth before �nding a time slot
suitable for both. The data sets are real-world data, con-
taining spontaneous speech e�ects. The training set consists
of 560 sentences, the development test set of 65 sentences,
the evaluation set of 120 sentences, and the �nal evaluation
set of 350 sentences (99 utterances). The parser is trained
with transcribed data only, but evaluated with transcribed
and speech data (including speech recognition errors). The
parser produces feature structures, holding semantic infor-
mation. Feature structures are used as interlingua in the
JANUS speech-to-speech translation system[7]. Within our
research team, the design of the interlingua ILT was deter-
mined by the needs of uni�cation based parser and gener-
ator writers. Consequently, the ILT design was not tuned
towards connectionist systems. On the contrary, our parser
must learn the form of output provided by a uni�cation based
parser.



This paper is organized as follows: First, we describe the
parser architecture and how it works. Second, we describe
the lexicon and the parser's neural aspects. Third, a search
algorithm is motivated. Fourth, performance comparison
measures are described. Then evaluation, results, and con-
clusion follow.

2. Parser Architecture

([]((speech-act *state-constraint)
(sentence-type *state))
([]((frame *booked))

([who]((frame =*i))
([] i))

([]([] have))
([what]((frame =*meeting))

([]((speci�er inde�nite)) a)
([] meeting))

([when/end]((frame *simple-time)
(../frame *interval)
(../incl-excl inclusive))
([] till)
([]((hour =12)) ([regc] twelve)))))

Figure 1: Chunk parse (chunk relations shown in boldface)

\i have a meeting till twelve"

?
3 segmentation NNs

o
Chunker

PPPPPPPPq

@
@@R

�
��	

��������)
word

chunks:
phrase
chunk:

clause
chunk:

sentence
chunk:

? ? ? ?

i

have

a

meeting

till

twelve

LFL

CRF

sentence
chunk

feature NNs
+

sentence
chunks

relation NNs

clause
chunk

feature NNs
+

clause
chunks

relation NNs

phrase
chunk

feature NNs
+

phrase
chunks

relation NNs

word
chunk

feature NNs
+

word
chunks

relation NNs

)
)

PPPPPPPPq

@
@@R

�
��	

��������)
chunk parse (as shown in Figure 1)

?
Consistency Checking Search

?
feature structure (ILT)

Figure 2: FeasPar's architecture for run mode.

FeasPar uses neural networks to learn to produce chunk
parses. It has two modes: learn mode and run mode. In
learn mode, manually modeled chunk parses are split into
several separate training sets; one per neural network. In
run mode, the input sentence is processed through all net-
works, giving a chunk parse, which is passed on to the Con-
sistency Checking Search, see Section 3. In the following,
the three main modules required to produce a chunk parse
are described:

The Chunker splits an input sentence into chunks. It consists
of three neural networks. In total, there are four levels of
chunks: word/numbers, phrases, clauses and sentence.

The Linguistic Feature Labeler (LFL) attaches features and
atomic feature values (if applicable) to these chunks. For
each feature, there is a network, which �nds one or zero
atomic values. Since there are many features, each chunk
may get no, one or several pairs of features and atomic val-
ues. Since a feature normally only occurs at a certain chunk
level, the network is tailored to decide on a particular fea-
ture at a particular chunk level. A special atomic feature
value is called lexical feature value. It is indicated by '='
and means that the neural network only detects the occur-
rence of a value, whereas the value itself is found by a lexicon
lookup. The lexical feature values are a true hybrid mecha-
nism, where symbolic knowledge is included when the neural
network signals so.

The Chunk Relation Finder (CRF) determines how a chunk
relates to its parent chunk. It has one network per chunk
level and chunk relation element.

Further details on the three modules can be found in [4, 3].

2.1. Lexicon and Neural Architecture

FeasPar uses a full word form lexicon. The lexicon consists
of three parts: one, a syntactic and semantic microfeature
vector per word, second, lexical feature values, and three,
statistical microfeatures.

Syntactic and semantic microfeatures are represented for
each word as a vector of binary values. The number and
selection of microfeatures are domain dependent and must
be made manually. For the English Spontaneous Schedul-
ing Task (ESST), the lexicon contains domain independent
syntactic and domain dependent semantic microfeatures. To
manually model a 600 word ESST vocabulary requires 3 full
days.

Lexical feature values are stored in look-up tables, which are
accessed when the Linguistic Feature Labeler indicates a lex-
ical feature value. These tables are generated automatically
from the training data, and can easily be extended by hand
for more generality and new words. An automatic ambiguity
checker warns if similar words or phrases map to ambiguous
lexical feature values. Further information on the lexicon
can be found in [3].



All neural networks have one hidden layer, and are con-
ventional feed-forward networks. The learning is done with
standard back-propagation, combined with the constructive
learning algorithm PCL[9], where learning starts using a
small context, which is increased later in the learning process.
This causes local dependencies to be learned �rst. Further
techniques for improving performance are described in [3].
For the neural networks, the average test set performance is
95.4 %.

3. Consistency Checking Search

The complete parse depends on many neural networks. Most
networks have a certain error rate; only a few networks are
perfect. When building complete feature structures, these
network errors multiply up, resulting in not only that many
feature structures are erroneous, but also inconsistent and
making no sense. To compensate for this, we wrote a search
algorithm. It's based on two information sources: First,
scores that originates from the network output activations;
second, a formal feature structure speci�cation, stating what
mixture of feature pairs are consistent. This speci�cation
was already available as an interlingua speci�cation docu-
ment. Using these two information sources, the search �nds
the feature structure with the highest score, under the con-
straint of being consistent. The search is described in more
detail in [4, 3].

4. Performance Comparison

To show the learning ability of FeasPar, it is compared
with the GLR* parser[7, 11], applying ESST as domain,
and the JANUS speech translation system[7] as environment.
An ESST GLR* semantic grammar only exists for English.
Hence, FeasPar is trained with English.

4.1. PM 1: Parse Quality

The �rst performance measure, PM 1, expresses the parse
quality. PM1 is also called ILT feature accuracy and is
de�ned as:

Ccorr�M

Ccorr

where:

� M is the number of mismatches made, while checking
all features in the correct ILTs and the suggested ILTs
from the parser.

� Ccorr is the number of considerations of existing fea-
tures in the correct ILTs.

It is important to notice that this number can become neg-
ative: if a suggested ILT contains a feature A not present
in the correct ILT, M is counted up, but Ccorr is not. The
latter is only incremented if feature A occurs in the correct
ILT. The advantage of PM 1 is that the measure is computed
automatically and is independent of human judgement. Its

disadvantage is that it is only an indirect indicator for trans-
lation quality, since not all ILT features are equally impor-
tant for the generator.

4.2. PM 2: Translation Quality

The second performance measure, PM 2, is also called the
end-to-end comparison, where the quality of the translated
sentences is measured: A translated sentence is graded as
`acceptable' if all relevant information is conveyed and the
sentence is natural (i.e. perfect), or slightly unnatural, but
clear enough to understand the meaning (i.e. ok). It is
graded as `not acceptable' if incorrect or not all informa-
tion is conveyed, or (with speech data only) an irrecover-
able recognition error occurs. Furthermore, trivial sentences,
whose translations can easily be retrieved by lookup, are ex-
cluded, so that only truly translated sentences are counted.
Two variants exist for PM2: PM 2E is used when the parser
is coupled with an English generator and PM 2G, when the
parser is combined with a German generator. The English
generator was developed longer than the German generator,
which is notable in performance. The advantage of measure
2 is that translation quality is measured directly. Its disad-
vantage is that the grading must be done by humans, i.e. it
depends on human judgement, and is therefore subjective.
Also, grading becomes a fairly time consuming task.

5. Evaluation

For the parsing GLR* grammars for ESST, two samples are
selected: The �rst after 4 months of development, and the
second after two years of development. We compare the
�rst one with FeasPar by applying the �rst evaluation set.
Results are shown in Table 1. As one can see, FeasPar per-

FeasPar GLR* parser
(4 months )

PM1 - T 71.8 % 51.6 %

FeasPar GLR* Parser
(4 months)

PM1 - T 71.8 % 51.6 %
PM1 - S 52.3 % 30.3 %

PM2E - T 74 % 63 %
PM2E - S 49 % 28 %
PM3G - T 49 % 42 %
PM2G - S 36 % 17 %

Table 1: Comparing FeasPar with a GLR* parser hand
modeled for 4 months, S=speech data, T=transcribed data).

forms better than the GLR* parser developed for 4 months
in all six comparison performance measurements that are
made.

In a second comparison, FeasPar is compared with a GLR*
parser developed for 2 years. Evaluation material is another,



FeasPar GLR* Parser
(2 years)

PM2E - T 75.1 % 78.6 %
PM2E - S 60.5 % 60.8 %

Table 2: Comparing FeasPar (old ILT) with a GLR* parser
developed for 2 years.

larger evaluation set. For technical reasons, a comparison
fair to the GLR* parser could only be made with perfor-
mance measure 2E (see [3] for a discussion). All output is
graded by an independent person, being native speaker and
not involved in parser research or development. Grading re-
sults are shown in Table 2. On the larger evaluation set,
FeasPar has a similar performance (60.5 % versus 60.8 %)
as the GLR* grammar developed for 2 years, when measur-
ing the performance for acceptable translations into English
(PM2E) with speech input. One sees that for speech data,
which is the situation for being used in an actual speech-
to-speech translation system, FeasPar and the GLR* parser
have practically the same performance.

6. Conclusion

We described and experimentally evaluated a system,
FeasPar, that learns parsing spontaneous speech. To train
and run FeasPar (Feature Structure Parser), only limited
handmodeled knowledge is required (chunk parses and a lex-
icon).

FeasPar is trained, tested and evaluated with the Sponta-
neous Scheduling Task, and compared with two samples of
a handmodeled GLR* parser, developed for 4 months and
2 years, respectively. The handmodeling e�ort for FeasPar
is 2 weeks. FeasPar performes better than the GLR* parser
developed 4 months in all six comparisons that are made and
has a similar performance as the GLR* parser developed for
2 years.

7. REFERENCES

1. George Berg. Learning Recursive Phrase Structure:
Combining the Strengths of PDP and X-Bar Syntax.
Technical report TR 91-5, Dept. of Computer Science,
University at Albany, State University of New York,
1991.

2. Peter F. Brown, John Cocke, Stephen A. Della Pietra,
Vincent J. Della Pietra, Fredrick Jelinek John D. Laf-
ferty, Robert L. Mercer, and Paul S. Roossin. A Statis-
tical Approach To Machine Translation. Computational
Linguistics, 16(2):79{85, June 1990.

3. Finn Dag Bu�. FeasPar - A Feature Structure Parser

Learning to Parse Spontaneous Speech. PhD thesis, Uni-
versity of Karlsruhe, upcoming 1996.

4. Finn Dag Bu� and Alex Waibel. Search in a Learn-
able Spoken Language Parser. In Proceedings of the 12th

European Conference on Arti�cial Intelligence, August
1996.

5. J. Dowding, J. M. Gawron, D. Appelt, J. Bear,
L. Cherny, R. Moore, and D. Moran. Gemini: A Natural
Language System for Spoken-Language Understanding.
In Proceedings ARPA Workshop on Human Language

Technology, pages 43{48, Princeton, New Jersey, March
1993. Morgan Kaufmann Publisher.

6. G. Gazdar, E. Klein, G. K. Pullum, and I. A. Sag. A the-
ory of syntactic features. In Generalized Phrase Struc-

ture Grammar, chapter 2. Blackwell Publishing, Oxford,
England and Harvard University Press, Cambridge, MA,
USA, 1985.

7. P. Geutner, B. Suhm, F. D. Bu�, T. Kemp, L. May-
�eld, A. E. McNair, I. Rogina, T. Schultz, T. Sloboda,
W. Ward, M. Woszczyna, and A. Waibel. Integrating
Di�erent Learning Approaches into a Multilingual Spo-
ken Language Translation System. In Workshop on New

Approaches to Learning for Natural Language Process-

ing, International Joint Conference on Arti�cial Intelli-

gence, Montreal, Canada, August 1995.

8. Sunil Issar and Wayne Ward. CMU's robust spoken
language understanding system. In Proceedings of Eu-

rospeech, 1993.

9. Ajay N. Jain. A Connectionist Learning Architecture for

Parsing Spoken Language. PhD thesis, School of Com-
puter Science, Carnegie Mellon University, Dec 1991.

10. R. Kaplan and J. Bresnan. Lexical-Functional Grammar:
A Formal System for Grammatical Representation. In
J. Bresnan, editor, The Mental Representation of Gram-

matical Relations, pages 173{281. The MIT Press, Cam-
bridge, MA, 1982.

11. A. Lavie and M. Tomita. GLR* - An E�cient Noise-
skipping Parsing Algorithm for Context-free Grammars.
In Proceedings of Third International Workshop on

Parsing Technologies, pages 123{134, 1993.

12. R. Miikkulainen and M. Dyer. Natural Language Pro-
cessing With Modular PDP Networks and Distributed
Lexicon. Cognitive Science, 15:343{399, 1991.

13. C. Pollard and I. Sag. Formal Foundations. In An

Information-Based Syntax and Semantics, chapter 2.
CSLI Lecture Notes No.13, 1987.

14. Hinrich Sch�utze. Translation by Confusion. In Spring

Symposium on Machine Translation. AAAI, 1993.

15. Stephanie Sene�. TINA: A Natural Language System for
Spoken Language Applications. Computational linguis-
tics, 18(1), 1992.

16. Stefan Wermter and Volker Weber. Learning Fault-
tolerant Spreech Parsing with SCREEN. In Proceedings

of Twelfth National Conference on Arti�cial Intelligence,
Seattle, 1994.


