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Abstract 

In this paper we present ~ template independent knowledge source 

(KS), that uses coarse phonetic information to substantially consttain 

the candidate vocabulary for use in word hypothcsization with very 

large vocabularic-s. l I consists of three parts; the scgmcntcr that breaks 

a test utterance up in to a sequence of coarse phonetic classes. the 

knowledge compiler that gcncrdtes a reference dictionary containing 

the appropriate coarse phonetic rcpresenratfons for each word 

candidate and finally. a matching engine. Coarse phonetic classification 

is pcrfonned using linear discrlminam analysis, more specifically 

percep1ton classification. The knowledge compiler first generates a 

phoncmit representation and segmental durations by rule from a list of 

word c::andidates (i.e .. from tc~t), ~nd then derives coarse phonetic class 

segments. Matching is pcrfonncd by a nonli near Lime alisnment 

·algorithm based on dissimilarity scores between detected and lexical 

coarse class segments. TI1c coarse phonetic KS was tested by compiling 

a word lisL of approximately 1500 words. Using only the coarse classes 

Silence, Plosive, I=ricative, Vocalic, Front Vowel, Dack Vowel, Nasal 

and R, a vocabulary reduction to 5% of the original vocabulary is 

achieved at lower than 5% error rate for three different speakers. 

1. Introduction 

MMt current speech rccog.nition systems today cannot easily be 

extended to large vocabularies of several thousand wc,rds. Some of the 

most serious critical requirements that must be rnct by large vocabulary 

recognition ~ystems arc computational efficiency, pra~irnlity, flexibility 

and robust recognition ac,urac:y. Searchins a large vocabulary for word 

candidaLCS must be done efficiently. Maimaini11g and collecting a 

database of reference word-templates becomes costly for large 

vocabularies and cannot be c~pcctcd from the user of su,h a system. In 

addition, il i.s desirable to flexibly add or subtract new lex!Clll items 
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(dictionary entries) as the language or the needs of the user change over 

time, Finally, highly robust recognition algorithrns must be developed 

10 deal with the increasing acoustic similarity of words 11i a large 

vocabulary. 

Several studies have proposed various methods to overcome some of 

the difficulties cited above. Recognition of smaller atomic units than 

I.he word, e.g., demisyllables [l] or phonemes [2} reduces or eliminates 

the required !lmount of user trainL'lg. It nas also been demonstrated 

that presckction of smaller subvocat,ularics c:ould be ~chievcd by 

means of rclalivcly simple acoustic measures [J] given a reference 

dictionary of word templates, Shipman and Zuc have shown that a 

large vocabulary can be reduced into surprisingly small subvocabularics 

if an erro1 free description of the utterance In 1enns of coarse phonetic 

classes l~ given [4, 5). i\l1cmate acoustic evidence such as 

suprasegmental cues in the signal were also shown to provide powerful 

constraints for search space reduction [6]. 

In the present work we extent the$c previous results and present and 

evaluate a knowledge source (KS) that achieves voc;abul;iry reduction 

based on the detection of coarse phonetic categories and docs not 

require excessive user training. h can be used to either pre,;clcct a 

smaller subvocabulary or lo "raise activation levels" of various word 

candidates. Ttmpla1e independe1"eandj/e:cibility ofthc KS is achieved 

by a rule-based knowledge compiler that compiles an orthographic 

representation (text) of the candidate words into a co:usc phoneLic 

representation. The I<S then compares the sequence of l,;()arsc phonetic 

catcsorics in the incoming unknown utterance against the coarse class 

representation of each lexical item for satisfaction or its constraints. 

In the following ,;cctions we first describe llic cl~_ssificr used to 

rl-cogni1.e scquen,cs of coarse phonetic categories in a test utterance. 

We then discuss the knowledge compiler used l() generate the reference 

dictionary and the matching engine that perfonns the recognition_ 

Finally we present results of recognition experiments using a lSOO word 
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vocabulary. 

2. Coarse Phonetic Classifier 

Proper classification of coarse phonetic categories is ~ critical step for 

the present knowledge source. Out of the many methods !hat could 

accomplish this i:ask we have chosen to use linear classifiers, spcclfically, 

pcn:cptrons, for their simplicity in automatic learning as well as 

recognition. 

An incoming ~pcech tltterance is first sampled at a 16 kH1. sampling tale 

and lowpass l'iltered by a 6.4-kHi antialiaslng filter. We then compute 

a 256·point DFf every 3 ms over 20 ms frames ofHarnming·windowed 

speech. The features used for classification consist of 54 spectral 

coefficients linearly spanning the spectral range as w~ll as 8 coefficients 

spanning the speca-al range logarlthmlcally. In order to obtain a 

smoother contour of frame·by·frame coarse class decisions and 

alternatively to obtain a classifier that captures the typical time varying 

dynamic behavior of certain coarse classes (such as Plosives), three 

frames characteriwig 1S ms of speech arc combined into one feature 

vector. The resulting total of 186 feamrcs in such a feature vector 

contains redundant inter and intra frame In fonnation. In order to 

eliminate such redundant infonnation principal component an~ysis is 

perfonned. An incom!nl;l feature vector is ·urns rotaicd by the 

clr:cnvccwrs of the covariance matrlx derived frorn a set of rnore tl1an 

20.000 training feature ,·cctors. Only the rotated fcarnrcs corresponding 

to the 54 largc~t cigrnvalucs arc considered for further analysis. 

U~ing the feature vectolli obtained in this fashion, coarse phonetic 

cat~gorlcs can he detected using linear discriminant analysis, more 

specifically pcrccptron classifiers (7. 8. 9). To train these classifiers. the 

ra1)1dly converging relaxation method [9] was used. Fifty random 

uueranccs frorn a database of 1500 words, spoken in isolation by three 

different spcakerS were set aside as training data. Each of these 50 

uttcrancc:s was hand l.ahellcd according to the coarse phonetic classes. 

Silence, Fricative, Plosive and Vocalic, as well as additional labels for 

the vocalic pans, Nasal, Front, Bacli:, R.111us M, N. NG were labelled 

Nasal. fron t vowels (e.g., IY, IH, Elfl were labelled Front, bacl<; vowels 

(such as AA. AO, UW) as well as the semivowel Wand the glide L were 

labelled Back. The glide R, was labelled as i~ own category, R. This 

taxonomy was chosen empirically. so that good recognition 

performance could be achieved by the classifiers. 

In a preliminary sortins step, all feature vectors corresponding to 

frames with the same coarse class label .ire collected ln appropriate files. 

An crror-com:cting learning procedure (the relaxation method) 

produces for each coarse class a weight vect0r that defines a lineru

decision hyperplane used for classification. We obtain a total of 8 

hyperplanes. each of which separates one of the cla~s mentioned 

above from all the others. Using the projections of all labelled data 

onto the axes nonnal to the decision hyperplanes. we compute for each 

cla~s the probability of membership in the class as a fitnction of distance 

along the nornial using k
0 
·nearest neighbor estimation techniques (9]. 

Thus. the probability of membership in a given class is obtained by 

computing the scalar product of the weight vector and an incoming 

feature vector and looking up the corresponding probability in a table. 

In the next step, segmentation Into coarse phonetic segment~ and some 

post-proce$slng is pcrfbnned, All adjacent frames of speech data for 

which one of the pcrccptrons fires with clearly maximal probability are 

collapsed to one scgr.1cm and assign~d to one and only coarse phonetic 

class. Unclear _regions art left undefined until subsequent 

p0stprocessing is performed. Context sensitive rul~s 01cn attempt to 

determine the rnust likely identity of ambiguous segments. To 

eliminate 11nlikely segment scquenc;cs or to correct possible 

misclassifcations, higher level rules arc applied. For example short final 

naS!l!i1,td scsmcnlS arc eliminated. a~ well as short fricative segments 

caused by aspiraLion at the end of the utterance. Of course. such rules 

are applied conservatively to minimi1.c the possibility of introducing 

l?xtra errors. Further postproccssing breaks up long segment& into 

smaller subsegments, yielding an average segment duration of 

approximately 30 ms. This is done to achieve optimal performance in 

the matching stage described below. Finally, the resulting segment 

class is encoded into one bylt, specifying the idenLity of the scgmenL 

In order to gain greater computational efficiency we make "hard" 

segmental decisions and could potentially loose important infonnation 

pertaining to lesser ranked candidates. 

3. The Knowledge Compiler 
The knowledge compiler takes a list of orthographic word candidate~ 

(written text) and automatically generates (a) a ~oarsc phonetic 

representation and (b) segment.al durations for each word. In the fi.m 

step, partS of the MIT text-co-speech synthesis system (10] are used to 

hypothc~ize a phonemic representation and segmental durations for the 

word. The derived phonemic representation as well as the segmental 

duraLions are further processed in the second stase, First, consecutive 

segments belonsins to the same coarse phonetk classes are collapsed. 

Conversely, diphthongs describing a move from back to front vowel or 

vlce versa are spilt Into eorresponding coarse classes. Splitting into 

different coarse class segments Is also done for phonemes such as EN, 

EM, ER, etc. Next, alternate pronunciations are derived by rule. This 
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Is useful, for example, for reduced vowels (tha1 arc s1rongly influenced 

by come.xi) and for phonerncs 1ha1 are close 10 coarSc class ca1egory 

boundaries (for example, reduced schwa is near I.he decision boundary 

between front and back and 1ends lO be heavily influenced by comext). 

Alternate pronunciations arc also useful for weak. voiced frica1ivcs, 

such n, the phoneme V, Finally, r,lepcnding on 1he durations oflhe splil 

or collapsed segments. long segments arc broken up into smaller 

subsegments, resulting in an average scgmcni duration of 

approximaiely 30 ms. This is done to ensure that scgmen1s in the 

unknown as well ns 1he reference panern will nm differ mo much in 

duration . This is imporlanl 10 achieve proper matd1ing behavior. 

4 . The Matcher 

The purpose of the maicher in tllis KS is to evaluate the degree of 

rnns1raJm salisfac1ion of individual lexical items with respect to the 

incomins sequence of coarse phonetic evcnt.s. Since this involves 

searching a la rgc corpus of lexical items, this evaluation musL be 

performed efficiently. Using coarse phonetic cla!.',cS grc,1tly reduces 

compucalioual cos1 by requiring maiching LO be done on short 

sequences of segment labels only. To allow for missed or cxu-a 

segments, matching is perfom1cd using a nonlinear time alignment 

algorithm. the dynamic programming algorithm proposed by 

Itakura [11] was chuscn for !his wk. A critical design consideration is 

the choice of the distance mclrle. IL must be simple 10 compu1e and 

provide the discriminaiory information we are seeking. Since In our 

case, only 8 distinct coarse phonetic class~ arc pussibk , all possible 

class· to·class distances can be easily prccompilert intn a look-up table 

for cflicicnt cvaluauon. These class-to-class distances were der'ved 

empirically from training daui incorpora~ing some general heuristics. 

For example, distances between Fricatives, Silences. and Vocalic 

segments receive greater weight lhan diswnccs bc1wecn !he vocalic 

classes Front, Back, Nasal and R. TI1us, substantial computational 

savings can be achieved as well as greater flex ibility in defining the 

distances themselves. In addition, alternate pronunciations can be 

taken care of simply by appropriate definitions in the distance table. 

Variations in temporal bch~vior 3ft, ofcour.:e. corrccled by the warping 

algorithm itself. The algorithm recovers gracefully from missed or extra 

scgmenl~ by means of the dynamic programming alignment. while 

segment confusions become non-fatal lhrough !he use of alternate 

pronunciations and approprintc cla.ss·to·class distance values. Nole that 

an insccura1e sequence of cuaise phonetic classes will lhcrcfurt su11 

lead to acceptable lexical retrieval. dcsplle the fact lha1 hard decisions 

were made at I.he i;cgmen ta! level. 

5. Performance Evaluation 

For Ulc rcr.ogniti(ln experiments reported below, a vocabul~ry of 1478 

word<; was compiled from Lwo word liSl<; containing the 900 most 

frequent writlcn and 900 most frcguenl spoken words in English (l2, 6), 

Three male American SpcakcrS (~SH. MRN and MKD) uttered the 

entire word list once. For each speaker. 50 randomly selected 

unerJnccs were seL aside tu develop the rules fo r the knowledge 

complier and lo lrain the classifiers as described above. The ~now ledge 

compiler was run over the entire word list of 1478 words and thus 

includes 1428 "new" words. The coarse phoneLic KS was then LCSted 

for each speaker on 500 words randomly selected from I.his seL of 1428 

"new" words. The rcsulls of this experiment are given in Figure 1. The 

(hrcc curves show for each speaker !he rc,;ognition score in percem as a 

function uf the number of lop candidates included, up lo 250. The 

graph shows that using only I.he coarse classes Silence, Fricative, 

Plosive, Vocalic, Front Vowel Back Vowel, Nasal and R Glides the 

righL word candidaLe is included in the top 5% of the vocabulary (- 75 

word.<;) more than 95% of the time and in the top 17% of the vocabulary 

( ~ 250 words) mort than 99% of the time. 37 .6% of all the uuerances 

were identified uniquely as !list choice candidates out of the 1500 word 

vocabulary. 
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Fi{:ure t. Recogni1ion Performance for a 1500 Word Vocabulary 

What are Uie theoretical limits on performance one might expect from 

the present approach? We have pooled all lexical iterns thal match 

perfectly with each 01.her imo groups and obtained group sizes ranging 

between I and 17. The expcc1ed group size [12] was 2.8. This result Is 

comparable to statistics reported by Shipman and Zue [4). This would 

suggest that given error free coarse phonetic inpm an average rank of 1.4 

should be expected for Lhc correct word hypolhcsis. The pre~nt 

recognition results indicate an average rank of 6.9. The diffcrtnccs 
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between this theoretical upper bound and the recognition results Are 

due in pan LO compiler errors. i.e., inaccurate coarse phonetic 

descriptions provided by the compiler. or alternate pronunciations that 

\Vere not anticipated by the compiler. A second source of error leading 

LO reduced discriminabili1y Is given by classifier errors and/or the 

variabilitic5 found In human speech including spurious speaker

generated noise (such as pups, clicks, tipsmacks) frequently resulting in 

endpoint dctcclion crtorS, aspiration noise at the end of utterances, 

nasalil-1tion of vowels and the like. Further improvements towards 

classlflcation of acoustic events and further careful snidy of the possible 

acoustic m~nifcstations of English words for better compiler rules might 

improve these resul~ 

6. Summary 

In summary, we have presented a knowledge source for template 

Independent large vocabulary word recognition. The KS uses onlY 

coarse phonetic classes and docs nm require extensive user training, All 

lexical information needed for recognition is automatically generated 

ftom text, For a 1500 word vcteabulary it will include the comet word 

candidate among the 75 ( ~5% of vocabulary) best candidates with an 

error rate of less than 5%. Such a KS is useful to either preselcCl a 

smaller subvocabul:iry or as an independent KS aimed al "raising 

activation lcl'cls" for individual word candidates. We believe that in a 

disuibutcd cooperative arrangement together with prosodic, lexical, 

line phonetic and coarse phonetic KSs, a ~mall stl of word hypotheses 

can be obtained efficiently for 1..;irgc Vocabulary Speech 

Undcrsttmdlng Systems. 
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