
A CONTEXTUAL BLIND SEPARATION OF DELAYED A:ND CONVOLVED 
SOURCES 

Te-Won Lee 

Max-Planck-Society, Fault-Tolerant Computing Group 
in Potsdam, Germany, AND 

the Interactive Systems Group at  Carnegie Mellon 
University, Pittsburgh, PA 15213, USA 

tewon@cs.cmu.edu 

ABSTRACT 
We present a new method to tackle the problem of separat- 
ing mixtures of real sources which have been convolved and 
time-delayed under real world conditions. To this end, we 
learn two sets of parameters to unmix the mixtures and to 
estimate the true density function. The solutions are dis- 
cussed for feedback and feedforward architectures. Since 
the quality of separation depends on the modeling of the 
underlying density we propose different methods to closer 
approximate the density function using some contezt. The 
proposed density estimation achieves separation of a wider 
class of sources. Furthermore, we employ the FIR polyno- 
mial matrix techniques in the frequency domain to invert 
a true-phase mixing system. The significance of the new 
method is demonstrated with the successful separation of 
two speakers and separation of music and speech recorded 
with two microphones in a reverberating room. 

1. INTRODUCTION 
In blind source separation the problem is how to recover 
independent sources given the sensor outputs in which the 
sources have been mixed in an unknown channel. The 
problem has become increasingly important in the signal 
and speech processing area due to their prospective appli- 
cation in speech recognition, telecommunications and med- 
ical signal processing. 

The blind source separation problem has been studied 
by researchers in the field of neural networks and statisti- 
cal signal processing. Comon [6] has defined the concept 
of independent component analysis (ICA) which measures 
the degree of independence among outputs using contrast 
functions approximated by the Edgeworth expansion of 
the Kullback-Leibler divergence. The higher order statis- 
tics is approximated by cummulants up to the 4th order 
and requires intensive computation. Researchers in neural 
computation have developed adaptive learning algorithms 
which are simpler and biologically more plausible [l, 2, 71. 

Recently, Bell and Sejnowski [2] have proposed an infor- 
mation theoretic approach to the blind source separation 
problem. Torkkola has applied this approach to convo- 
lution and time-delays [12]. In [3], we have extended 
Torkkola’s architecture to a full recurrent filter system that 
deals with convolved and time-delayed sources. Pearlmut- 
ter and Parra have reformulated the ICA in a Maximum 
Likelihood framework [lo] where the underlying density 
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is estimated in a context sensitive manner. Although re- 
search in blind source separation has been carried out for 
several years only very few ]papers have addressed the prob- 
lem with real acoustic signals recorded in real reverberating 
environments [14, 12, 91. 

In this paper, we present a new method that combines 
the algorithms for convolved and delayed sources in [3] 
with the context sensitive generalization of ICA [lo]. Two 
unmixing architectures, feedback and feedforward, are pre- 
sented. Although the feedback solution is elegant its struc- 
ture is restricted to non minimum phase inverse systems. 
Therefore, we make use of FIR polynomial matrix tech- 
niques in the frequency domain [8] to approximate a true 
phase inverse solution witlh non causal extensions. Fur- 
thermore, we propose alteimative ways to model the un- 
derlying density: The logistic function can be extended by 
some flexible sigmoids and the generalized Gaussian pro- 
vides good approximation with less parameters. In case 
of a contextual modeling the generalized Gaussian can be 
extended to a sum of Gaussian densities using the Parzen 
window density estimation [13]. Although density estima- 
tion is computationally burdensome it has the advantage 
of separating a wider class of sources (including super- 
Gaussian and sub-Gaussian). The algorithm has been a p  
plied to the difficult problem of separating two speakers 
and one speaker with music in the background recorded in 
a conference room and a normal office environment. 

2. ARCHITECTURE 
Figure 6 shows the mixing A ( z )  and unmixing system 
W ( z ) .  In real world situation the mixing of sources s ( t )  
involves convolution and time-delays as follows: zi( t )  = 

N M-1 EkZO O t j k S j ( t  - Da,? - k) where a t , k  are the fl- 
ter coefficients, D,, denotes time delays and z t ( t )  are the 
observations. The obvious solution to invert the mix- 
ing system A ( z )  is a full feedback matrix of M-taps IIR 
filters with appropriate time delay compensations before 
the cross filters. An inverting system that separates the 
mixtures without deconvolving the sources has been pre- 
sented by Torkkola in [12]. This architecture has been ex- 
tended to deal with deconvolved and time delayed sources 
in [3]. Such a system can be written as follows: u( t )  = 
x ( t )  - Wou(t) - E,”=T’ W~:u(t - IC) WO denotes the lead- 
ing weights and W,,k denotes the unmixing and deconvolv- 
ing filters. The use of IIR filters is restricted to ARMA 
(autoregressive moving average) systems with minimum 
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phase. A non-minimum phase system leads to an instable 
inverse system with poles outside the unit circle. However, 
we can approximate an inverse system using a FIR repre- 
sentation that is capable of a non-causal filter expansion. 
The feedforward architecture can be written as follows: 
~ , ( t )  = C,=, Ck=--M,2 W i j / c z j ( t  - IC) where the leading N MI2 

weights are-placed a t h &  of the filter size M / 2  to allow 
for non-causal expansions. 

3. ALGORITHMS 
3.1. Source Separation Based on Information 

The separation of independent components from a linear 
mixture can be described by a general measure of indepen- 
dence between the pdf of a random variable pu(u) and the 
pdf of its components nz1 pu,(uI).  The Kullback-Leibler 
divergence measures the degree of distance defined by: 

Maximization 

and vanishes if and only if pu(u) factories which leads to 
6(pu(u), nyZl pu, (uI)) = 0. The observation @u(u; C) = 
n:=,pu,(u,) can be obtained using a density estima- 
tor with parameters c. The Kullback-Leibler divergence 
has also the form of the mutual information of U and 
this can be rewritten in terms of entropies as follows: 

Bell and Sejnowski [a] have proposed an information- 
theoretic approach where they maximize the mutual in- 
formation that an output y = g(u) of a neural processor 
contains about its input U. They have shown that for in- 
vertible and continuous deterministic mappings g(u), the 
mutual information between inputs and outputs can be 
maximized by maximizing the entropy of the outputs alone 
where the output pdf satisfies: py(y) = with 
det J(u) being the determinant of the Jacobian J,,, = k. 
Maximizing the output entropy H(y) then implies approx- 
imating the output density in the sense of minimum K L  
divergence, by a uniform density. This corresponds to pro- 
ducing white noise a t  the output of the neural processor 
and at  the same time making the input signals prior the 
transfer function g( U) independent while shaping them ac- 
cording to the derivative ag(u)/au that has higher kurtosis 
than the pdf of the sources. This may be viewed as max- 
imum entropy estimation of the input densities under the 
parameterization of $u(u;c). We can relate py(y) to the 
nonlinear transfer function that gives us the ~ d f  estimate 

6 ( P U ( . ) , @ U ( ~ ; C ) )  = Wpu(u)) - H(pu(u) I Bu(u;C)) 

BUJ 

@u(u;C): ( d e t J ( u ) (  = IdetW(n:=, -*= $u(u;C) 
The logarithmic representation is: 

*= 1 

Evaluating the expected value for eq.2 gives the output 
entropy. We can now maximize the output entropy to de- 
rive two different set of parameters namely W in charge of 
unmixing the signals x and C parameterizing the shape of 

the pdf estimation p;(u,; ci): 

(4) 
Considering the set of parameters W, a better way to max- 
imize entropy in the feedforward and feedback system is 
not to follow the entropy gradient, as in [2], but to follow 
its ‘natural’ gradient, as reported by Amari et al [l]: 

AW a - W ~ W  W Y )  
dW (5) 

This is an optimal rescaling of the entropy gradient. It 
simplifies the learning rule and speeds convergence consid- 
erably. 

3.2. Learning Rules for Feedback and Feedfor- 
ward Systems 

The learning rules for the feedback system has been derived 
in [3] and are as follows: AWo OE -(I + Wo)(I + P u ~ ) ,  
A w k  a -(I+Wk)PuT_k, AdrJ a -6, E,=, a t ~ l j k ~ ( t -  
d,, - IC). Independently, Cichocki et al. [5] have presented 
similar results with a full feedback system. 

The learning rules for a feedforward inverse system can 
be formulated using the FIR polynomial matrix algebra 
as described by Lambert [SI. The methods for computing 
functions of an FIR filter, such as an inverse, involve the 
formation of a circulant data matrix. Due to this nature We 
move to the frequency domain representation where eigen- 
columns of the circularit matrix are the discrete Fourier 
basis functions of the FFT of corresponding length. There- 
fore, by using FIR polynomial matrices we reduce the con- 
volution and deconvolution problem to element wise mul- 
tiplication and element wise division of polynomials. Al- 
though the application of the Fourier transform translates 
the entire FIR filter matrix into the FIR polynomial ma- 
trix and vice versa we need to satisfy a well approximation 
of the double-sided Laurent series expansion which can be 
achieved by pre pending and post pending zeros in the 
time domain to allow for non-causal expansions of non- 
minimum phase roots. The d e s  in eq.3 and eq.5 can be 
reformulated in the frequency domain: 

M-1 2 

where the H superscript denotes the complex transpose. 
Note that the neural processor cl = $ % still operates in 
the time domain and the FFT is applieA at  the output. The 
implementation of the FIR polynomials in the frequency 
domain can be done using block LMS techniques. 

4. CONTEXTUAL DENSITY ESTIMATION 
Eq.2 and eq.4 leave us some degree offreedom as long as 
they are differentiable in choosing a nonlinear function that 
fits the unknown true distribution of U,. Although good re- 
sults have been presented in [2, 3, 121 with a single neuron 
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the question is how well a single sigmoid can approximate 
the pdf of the multidimensional vector. The idea of density 
shape matching with sigmoids has been proposed by Roth 
and Baram [Ill. Pearlmutter and Parra [lo] have extended 
the injomax ICA algorithm to a context-sensitive general- 
ization of ICA where they choose to make pi a weighted 
sum of logistic density functions with variable means and 
scales, and make these means linear functions of the recent 
history of source i as shown in figure 6(b). 

(8) 
where m t k  are the mixing parameters and U : k  are the scal- 
ing parameters. ag/& = g(l  - g)  denotes the derivative 
of the logistic density function. The component means 
f i t k  are linear functions of the recent time samples of the 
source: (;I:k = aik(7)ut(t - T) + b t k  where the linear 
filter prediction coefficients ask  and the bias blk  are also 
elements of the weight set cz. Using the density distribu- 
tion pt and its derivative ap,(ul;ct)/ac, we can apply a 
stochastic gradient descent rule to learn the prediction co- 
efficients a : k ( T ) ,  the bias b I k  and the logistic distribution 
parameters: means m l k  and scales U & .  The exact learning 
rules are derived in [lo]. The contextual ICA requires a 
large number of data points to provide a fairly good pdf 
estimate. A more suitable but computationly burdensome 
way of modeling the underlying true density is using a 
weighted sum of flexible sagmoid functions instead of the 
pure logistic function. The flexible sigmoid is given by the 
differential equation: = g(u)p(l  - g(u))' For exam- 
ple, if p,r > 1 the shape of the pdf turns spikier with 
longer tails and gives a better approximate of speech sig- 
nals. The disadvantage is that we need to build a look-up 
table for each of the given parameters p, r. However, for 
many examples a single flexible sigmoid function may be 
sufficient to estimate the density function. Another class 
of nonlinearity that can be used as a density shaper is the 
generalized Gaussian nonlinearity. We have experienced 
that the initial state of the pdf can be modeled better by 
a generalized Gaussian function. 

(9) 

Eq.9 describes pdf's ranging from impulsive s < 1, Gaus- 
sian s = 2 to more bounded pdf with s >> 1. Our obser- 
vation showed that for real recordings the output entropy 
increased with a decrease in gradient norm when using a 
non-Gaussian nonlinearity beyond initialization. A plausi- 
ble reason for a generalized Gaussian nonlinearity for the 
initial state is that the linear mixing of independent sources 
gaussianize the sources due to the central limit theorem. In 
the optimization process we use a flexible logistic density 
function with variable means and scales. Since the param- 
eters s, r,p cannot be described analytically we learn these 
parameters by gradient ascent of the entropy surface. We 
have also performed experiments with a non-parametric 
density estimation method such as the Parzen window den- 
sity estimation [13]. The basic form of the density is as 

follows: 

where N k  is the width off the window and R(.) is the 
smoothing function. If R( . )  is chosen to be a generalized 
Gaussian density function the pdf can be modeled as a mix- 
ture of generalized Gaussian. Here, the pdf can be as well 
conditioned on the recent history as in the cICA case. The 
nonlinearity is given by the sum of generalized Gaussian 
nonlineari ti es . 

5. EXPERIMENTAL RESULTS 

5.1. Simulation Resul ts  with t h e  Feedback Archi- 
tec ture  

We performed several simuliations with the feedback archi- 
tecture where we chose the mixing system to be min-phase. 
The density shaping method is applied to separate mix- 
tures of super-Gaussian and sub-Gaussian sources. In case 
of two sources one flexible nonlinearity such as the gener- 
alized Gaussian or the flexible sigmoid is sufficient whereas 
for a larger number of source the contextual modeling with 
a sum of sigmoids or sum of generalized Gaussian nonlin- 
earity is necessary. In general, the feedback structure is not 
able to invert real room recordings and limited success is 
observed for recordings where the sources are placed close 
to the microphone. Due to limited space we show figures 
only for the feedforward system. 

5.2. Resul ts  on Real Ftecordings 

In these experiments, we tackle the difficult problem of sep- 
arating two speakers recorded with two microphones in a 
real room. To this end, we use the feedforward architecture 
and employ the algorithms in eq.6 and eq.4. The density 
shape estimator eq.8 is first approximated by a general- 
ized Gaussian nonlinearity in which the s-parameters are 
learned according to eq.4. In the process of optimization 
we switch to the nonlinearity approximated by a flexible 
sigmoids for each ut .  Figure 6 (a) and (b) show the record- 
ings of one person saying the digits one to ten while loud 
music plays in the background. In this experimental setup 
the sources and sensors are placed in a square order with 
60cm distance between the sources and the microphones. 
The algorithm converges after 30 epochs through a lOsec 
recording with 16kHz. The unmixed signals is obtained 
using 256 taps FIR filters which cover a delay of 16ms. 
The separated signals are shown in figure 6 (c) (d) and 
a listening test shows an almost clean separation. In an- 
other example, we could recover two speakers recorded in 
a normal room. A prospective application is given in spon- 
taneous speech recognition tasks where the best recognizer 
may fail completely in the presence of background music 
or competing speakers as in the teleconferencing problem. 
We perform experiments wiith 10 sentences recorded with 
loud music in the background and 10 sentences recorded 
with a competing speaker. After separation, the recog- 
nition rate increases considerably for both cases. Speech 
recognition results are listed in detail in [9]. 
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6. CONCLUSIONS 
We have presented a new method that combines the learn- 
ing rules to blindly recover convolved and delayed sources 
from their mixtures with a contextual density shaping al- 
gorithm which allows a more realistic modeling of the un- 
derlying density. To this end, we have proposed differ- 
ent methods to estimate the density function. Since real 
recordings require a true phase system inverse we employ 
the FIR polynomial matrix technique in the frequency do- 
main with extension to non causal filter solutions. The 
new method has been successfully applied to the separa- 
tion problem of two speakers and speaker separation with 
music recorded in a real reverberating room. These tech- 
niques bring us several steps closer to success on real-world 
data. 
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