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ABSTRACT

In this study, we examine how fast decoding of con-
versational speech with large vocabularies profits from
efficient use of linguistic information, i.e. language
models and grammars. Based on a re-entrant single
pronunciation prefix tree, we use the concept of linguis-
tic context polymorphism to allow an early incorpo-
ration of language model information. This approach
allows us to use all available language model informa-
tion in a one-pass decoder, using the same engine to
decode with statistical n-gram language models as well
as context free grammars or re-scoring of lattices in an
efficient way.
We compare this approach to our previous decoder,
which needed three passes to incorporate all available
information. The results on a very large vocabulary
task show that the search can be speeded up by almost
a factor of three, without introducing additional search
errors.

1. INTRODUCTION

Recent work on search strategies for automatic speech
recognition (ASR) has been directed towards single-
pass decoding, even for large vocabulary tasks [8, 3, 5].
The reasoning behind this research is the potential ad-
vantage of applying all available knowledge sources as
early as possible, which should make it possible to use
tighter pruning thresholds, leading to a more precise
beam search and therefore to more efficient decoding.
Also, a one-pass decoding strategy is usually advanta-
geous with respect to real-time requirements of many
of today’s ASR applications.

However, a careful organization of the search space
is necessary in order to integrate cross-word acoustic
models and long-span language models (LM) in one
search pass. These methods contribute significantly to
a recognizers performance and must therefore be re-
tained when implementing a one-pass search strategy.
Even then, early implementation of full language model
information might be harmful (e.g. inaccurate mod-
els on unmatched domains) on high complexity tasks,

where multi-pass search strategies with different lan-
guage models can be employed.

In this paper, we describe the results of our compar-
ison between a multi-pass search strategy and a one-
pass search strategy on different tasks for the Janus
ASR system. The results show that the proposed
concept of polymorphic linguistic context assignment
applied to a re-entrant pronunciation tree is particu-
larly effective for decoding with very large vocabular-
ies. Smaller systems improve, too, albeit not as much
as larger systems, which are receiving a lot of attention
in the context of unrestricted tasks such as meeting
recognition [4].

The first section of this paper outlines different
strategies employed for time-synchronous beam search
in speech recognition. We describe in detail both multi-
pass and single-pass decoding schemes. The next sec-
tion covers a number of tasks and systems1, that we
tested our two decoders on. These experiments are
described in the following and summarized in the last
section.

2. DECODING STRATEGIES

The two decoding strategies in this paper base on a
lexicon organized as a pronunciation prefix tree (PPT),
where the search tree is traversed in a time synchronous
way. A simple PPT is shown in figure 1. At each time
frame, the active roots, nodes and leafs are expanded
into their children and then pruned.

The main differences between the two approaches
concern the access of linguistic information during the
search and the recombination of different hypotheses
to efficiently use linguistic constrains. These are given
by the language model history in the case of statistical
n-grams or state transitions for context-free grammars.

A PPT is an elegant and compact way to expand
hypotheses within words. When reaching the end of
a PPT (the leafs) it becomes necessary to extend the
search to the following word candidates. This can be

1By this term, we mean a set of acoustic and language models
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Figure 1: A simple pronunciation prefix tree (PPT) for
a system using context-independent acoustic models.

done either by creating a copy of the tree or by re-
entering the tree and keeping track of the word history.

2.1. Multi-Pass Decoding with delayed LM in-
formation

This approach uses a fast first search pass, which uses
linguistic information only in an approximative way to
constrain the search space sufficiently to allow for the
application of more expensive search algorithms in sub-
sequent passes.

The critical part in this approach, which is used in
the standard Janus decoder, is the path recombination
at the tree leafs. On entering a new tree root, only
the best local predecessor word will be connected to
the starting root node. Since the word identity is not
yet known, the language model cannot be applied at
this stage and the best predecessor will be determined
without the language model information. To avoid un-
recoverable search errors, wide beams have to be used
and word segmentation will also be affected, since the
correct starting point for a word depends on the pre-
decessor word, which will be ignored here.

The language model is applied at the tree leafs,
where the word identity is known. However, since
only the local best predecessor is kept in memory, one
can only correctly apply a bigram-LM. For higher-
order language models, the back-pointer table has to be
traced back in order to get the linguistic state (“poor-
man’s trigrams”). The second and third search pass are
therefore used to correct the errors described above. To
avoid additional acoustic score computations in the lat-
ter search passes, the acoustic scores from the first pass
can be cached, which can require a significant amount
of memory. In summary, the search strategy imple-
mented in our old decoder is as follows:

1. search on tree-organized pronunciation lexicon

• aggressive path recombination at word ends

• use linguistic information only approxima-
tive

• generate a list of starting words for each
frame

2. search on flat-organized pronunciation lexicon

• fix the word segmentation from the first pass

3. A-Star lattice re-scoring

• full use of language model

2.2. One-Pass Decoder

To be able to include all available information sources
in one pass, it is necessary to delay the inclusion of the
full language model information until the word iden-
tity is known in the leafs of the tree. Then however,
it is also possible to determine the best predecessor
words, or the linguistic state, as we call it. One way
to achieve this is the tree-copying process as described
in [7, 8, 9, 3]. The idea is to create a separate copy of
the PPT for each surviving linguistic state after path
recombination. Since the number of different linguistic
states (= tree copies) can be a few hundred for a long-
span language model, efficient pruning criteria must
be applied to fit computing and memory constraints.
The search is therefore guided by a language model
lookahead which distributes the language model prob-
abilities over the PPT to allow a more efficient beam
search.

In the following we describe an alternative approach
to the tree copying process which allow a more efficient
handling of the linguistic states. The underlying idea is
to establish a linguistic polymorphism for each node of
the PPT similar to the concept described in [1, 5]. The
search space is then based on one single pronunciation
prefix tree only:

• one copy of tree with dynamically allocated in-
stances of nodes

• early path recombination

• full language model lookahead

• approach allows easy decoding along context-free
grammars

In each node of the PPT, we keep a list of linguis-
tic morphed instances. Each instance stores his own
backpointer and scores for each state of the underlying
Hidden Markov Model (HMM) with respect to the lin-
guistic state of this instance. Since the linguistic state
is known, we can apply the complete language model
information for these scores, given the possible succes-
sor words for that node in the PPT. The LM scores
will be updated on demand based on the compressed
PPT. An example for the linguistic morphed instances
within the PPT framework is shown in figure 2.

The advantage of this search space organization is
that we can apply a beam and topN pruning strategy
for the list of instances in a very easy way. This allows
us to overcome the subtree dominance problem for the
tree-copying approach. If there are two instances of a
node where the linguistic state of one instance cause
a worse LM score for the best possible successor word
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Figure 2: linguistic morphed instances within the PPT
framework. (LCT= linguistic context)

compared to the LM score for the worst possible suc-
cessor given the linguistic state of the other instance,
the instance can already be eliminated.
Additionally, we perform the path recombination
(which is usually done at the word ends) as soon as
the word becomes unique, which is usually a few nodes
before reaching the leaf. This is in particular useful in
combination with the use of cross-word models. It is
important to keep the number of instances in the leafs
as small as possible to reduce the computational effort
due the fan-out of the right context models.
This search space organization offers also advantages
in terms of memory usage. Only a very tiny tree skele-
ton will be created permanently. The main memory
require the instances which will be allocated dynami-
cally on demand. Since the number of instances per
node decrease very rapidally with the tree level, the
search space can be handled very flexible and scalable.
To run the decoder with arbitrary linguistic knowledge
sources as statistical n-grams, context free grammars,
or word graphs, we use an abstract interface between
the decoder and the linguistic knowledge sources. The
interface consists of few functions to manipulate the
linguistic state. The decoder itself works independent
from the actual linguistic knowledge source.

2.3. Cross-Word Modeling

To use cross-word models for the tree roots, we apply
the same concept that we used to handle different lin-
guistic contexts here now at the HMM state level for
different left phonetic contexts. However, we do not
keep really a list of different state instances but only
the local best left phonetic context. The integration
of cross-word models at the tree leafs needs more com-
putational effort, since we have to compute the scores
for each possible right phonetic context. The number
of different right phonetic context instances can be re-
duced by using a dual map between the phonetic con-
text and the unique acoustic models. Depending on the
phones set and the context decision tree, the fan-out
can be reduced by factor of more than two on average.
Another reduction of the fan out can be achieved by
using the early path recombination as described above.

3. EXPERIMENTAL SETUP

The experiments described in this work were conducted
on three tasks, using two different ASR systems for
both English and German.

The first task is is the final test-set of the German
Verbmobil-II project (“GSST”); it features conversa-
tional speech on a limited domain under relatively clean
acoustic conditions. The second task is read speech
from the Broadcast News (BN) corpus; it consists of
clean, read speech from a very large domain. The third
task is a subset of the Meeting data set [4], which was
recorded at informal group meetings, containing very
colloquial speech recorded through lapel microphones.

Database VM-II BN Meeting

Speaking style convers. read colloquial
Train speech data 62h 100h
LM corpus 670k 141m
Vocabulary 10k 40k
Test speech data 65min 20min 55min

Table 1: Systems used in the comparison experiment.

The acoustic and language models we used to de-
code this data were taken from a preliminary ISL sys-
tem for the final 2000 VM evaluation [11] without semi-
tied covariances and feature space adaptation in the
case of the German data and from a system trained on
Broadcast News and English Verbmobil-II (“ESST”)
acoustics and a collection of text sources2 in the case
of the “Read BN” and “Meeting” tasks. For the Ger-
man system, we use 3300 context dependent acoustic
models with 167k gaussians and 4000 models with 132k
gaussians for the English system. A summary of the
system characteristics is shown in table 1 and 2.

System/ PPT # roots # nodes # leafs

GSST 679 36651 11355
BN/Meeting 1159 103114 45095

Table 2: search tree size (# = number of)

4. EXPERIMENTS

Our results are shown in table 3. All timings were
obtained on a standard PC with a Intel PIII/600 pro-
cessor. No speed-ups such as the Bucket Box Inter-
section Algorithm[6] or phonetic fast match were used.
The slightly improved error rates for the English sys-
tem (0.8% for read BN and 0.3% for the Meeting task)

2BN, ESST, Crossfire, Newshour, WSJ.



are a result of a different handling of single phone words
which are more important for English than for German.

Database VM-II BN Meeting
Decoder 3-p 1-p 3-p 1-p 3-p 1-p

RTF 6.8 4.0 12.2 4.2 55 38
WER (%) 26.9 26.9 14.7 13.9 43.7 43.4

Table 3: Comparison experiments between the two
Janus decoders. (RTF = real time factor, 3-p = three
pass decoder, 1-p = one pass, single prefix tree decoder)

Besides the real time factors, the number of active
instances is also interesting to get a impression about
the active search space. One can see, that the aver-
age number of instances is very moderate. Even for
a very complex meeting task with unmatched acoustic
and language models, the number of instances drops
very rapidally. The small number of instances allows
us to avoid any approximations for the language model
range for the lookahead. In all experiments, we used
the complete trigram history for the lookahead tree.

Task # roots # nodes # leafs

GSST 231 (3.5) 253 (2.2) 19 (1.7)
read BN 274 (2.6) 298 (1.7) 17 (1.4)
Meeting 845 (8.6) 5037 (2.9) 219 (1.9)

Table 4: active search space (# = average number of
models (instances) per 10ms)

5. SUMMARY

In this work, we have compared two different decoding
strategies in the same environment on different tasks.
Our results show that the early integration of full lan-
guage model information is indeed helpful with respect
to overall decoding effort on tasks with relatively low
complexity. The greatest speed-up, close to a factor
of three, was achieved on the “Read BN” task with a
40k vocabulary and clean acoustics. On the “GSST”
task with a 10k vocabulary and spontaneous speech,
the one-pass decoder runs in 60% of the time of the
multi-pass decoder. On difficult tasks such as “Meet-
ing”, the one-pass search strategy still allows for sav-
ings in time and memory. However, the speed-up de-
pends strongly on matched domain conditions.
As the importance of language models increases with
their early integration in the search process, future
work will be directed towards on-line language model
and vocabulary adaptation as well as the combination
of language models and grammars for efficient decod-
ing.
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