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ABSTRACT

TVCOSR performance is consistently poor on low-profliciency

non-native speech. While gains lrom speaker adapla-

tion can often bring recognizer performance on high-

proficiency non-native speakers close to that seen for

native speakers [12], recognition for lower-proficiency

speakers remains low even after individual spealer acap-

tation [2]. 'The challenge for accent acaptation is to

maximize recognizer porformance without collecting large
amonnis ol acoustic dala for cach native-language/ target-
language pair. Iu this paper, we focus on adaptation for

lower-proficiency speakers, exploring how acoustic data

from up to 15 adaptation spealkers can be put to its most

effective uge.

1. INTRODUCTION

As speakers learn a new language, they trace unique
paths through acquisition of phonology, vocabulary, gram-
mar, pragmatics, and even social aspects of spoken com-
munication.  The variability Lhat Lhis complexity on-
genders poses a serious problem for speech recognition.
Once speakers reach a certain level of proficiency, their
pronunciation may become fossilized, with the most no-
ticeable features of their accent influenced by their na-
tive phonological system. In the early stages of learning,
however, speakers experimenl, with new sounds, which
resulis in phonclic realivations thal arc inconsisienl, and
often distant from both the target phone and any native
language phone that one might expect to influence it.
Stucly of the nature of non-native speech has sug-
gestec that perception of a phoneme iz influenced by the
phonetic contrasis that are meaninglful in the speaker’s
nabive language (T.1) |6] and Lhao production is relaied
Lo pereeplion Tor allophonic conirasts [5]. Howoever, il
has also been observed that articulation of target lan-
gnage (L) phones cannot be reliably traced to a related,
interfering phone in the speaker’s native language [1].
It has often heen an assumption in efforts to adapt to
non-native pronunciation in specch recognition thal a
speaker’s realizalion of an 1.2 phone will Tall “semewhore
between” the average native realization and realization
of an L1 phone that the spealer perceives as being sim-
ilar to 1it, While adaptation based on this assumption
has been successful for high-proficiency speech and sim-
ple tasks (e.g., [8, 11, 12], }, bath the speech degrada-
tion duc 1o high cognitive Toad and the variabilily in
arlicnlation discussed above make recognibion of Tower-
proficiency speech i LVCSR tasks a verv hard problem
In this paper, we concentrate on a specific group
of lower-proficiency speakers, quantifving characteristics

of their speech and comparing methods of adapting to
it in LVCSIR. Working with a controlled group of na-
tive speakers of Japanese, we Investigate phonological
properiies of speech, Mucency and dislluency, and read-
ing crrors in a read news task. We then discuss Lhe
effectiveness of training and of mixed-style and MLLR
adaptation to the non-native coundition, examining the
contribution of L1 and L2 data to the adaptation pro-
cess,

2. DATA

In this scction, we deseribe Lhe language backgronnd
and proflicicncy cvaluaiion of the speakers, the Lask and
recording conditions, and the recognition syvstem used
for adaptation experiments,

2.1. Target speakers

The speakers in Lhis slody were all nalive speakers of
Japanese. All had had 6-8 vears of formal study of En-
glish and had hived in an English-speaking country for
6-12 months. All reported difficulty in making them-
zelves understood, ane rated their confidence in conver-
sational speaking belween 1.5 and 2.5 on an informal
scale of 0 to 4. These speakers can be described as hav-
ing a good grasp of the formal properties of English but
himited productive ability,

In addition to informal evaluations, speaker profi-
clency in the test set was controlled with respect to
scores on the formal SPLUAK assessment [13]. All test
speakers scored between 189 and 2,17 on the read specch
porlion ol this Lest, which gives scores on a seale of 0 Lo
3 for identifiably non-native speech. Speakers assigned
to the training set ranged from 1.44 to 2.83.

There were 10 test apealers, 15 training speakers,
and 8 native speakers in this database.

2.2, Task

I'wo sets of speakers were recorded for this research. '|'he
primary group of interest, which included all test speak-
ers, was recorded speaking I'nglish. A second group of
speakers was recorded speaking their nalive language of
Japanoesc.

2.2 1. Accended L2 dala

Accented data, that is, recordings of nalive Japanese
speakers speaking FEnglish, s referred Lo as L2 dala be-
cause English is the speakers™ L2,



Speakers completed a read news task in which they
read aloud Lhree articles from a children’s nows archive.
This task was designed o mirror well-known casks such
as Wall Street Journal, which was determined during
preliminary data collection to be too difficult for our
speakers.

Of the three articles, one was common to all speakers
and the obher lwo wore unique Lo cach speaker. Article
lengbh averaged 50 senbences. The Lraining/adapialion
set represented approximately 3 hours of acoustic data.

Recording was done in a quiet room using a close-
talking headset and a DAT recorder. Speakers were
alone in the room while recording.

2.2.2, L1 data

Native-language data, that is, recordings of native Japanese

speakers speaking Japanese, 1s referred to as L1 data be-
cause Japanese 15 the spealers’ L1.

The T data Lhat was nsed for model adaplation
and training was ltaken from Lhe Globalphone dalabase
[11] and consists of recordings of native Japanese speak-
ers reading news articles from the Nikkei Shimbun in
Japanese. Although the content of this newspaper is
more cifficult than that in children’s news, the recuced
cognitive load required for reading one’s native langnage
means thal the dillicnley of Lhe T and 1.2 tasks was sim-
ilar Tor Lhe native Japancse speakers.

Speakers recorded an average of 15 minmtes of speech.
Recording was done in a quiet room using a close-talking
headset and a DAl recorder. l'or consistency with the
accented L2 data, 3 hours of this speech distribured
across |5 speakers was used Tor Lraining and adaptalion.

2.3. Recognition system

All experiments deseribed in this paper used the J1{1'k

speech recognition toolkif [1] with fully continuous context-

dependeni acoustic modals and a trigram langnage model.
Conlext-dependent. models were determined experimen-
tally to perform better than context-independent mod-
els for this speaker set and task. Vocal tract length nor-
malization and cepstral mean subtraction are applied at
the spealer level. Linear ciscriminant analvsis (LDA) is
used Lo find the mose discriminalive ol the MEFCC, delia,
and power leatures and reduce the dimensionalily of Lhe
feature vector describing each frame. WER figures al-
ways represent accuracy after speaker-dependent MLLE
adaptation on 50 utterances. Performance of this sys-
tem on Broadcast News 1°0-condition speech is 9.1%.
Because of differences in speaking style {(informal vs.
professional anchor) and langnage modeling (the broad-
casl news model was adapled Lo children’s news, bul is
still not optimal for the task), performance on local na-
tive speakers on the children’s news task is significantly
higher, at 19.2%.

3. CHARACTERIZING
LOW-PROFICIENCY ENGLISH

Learning Lo speak a new langnage s a journcy that
doesn'l always follow a straight line from T.1 we T.20 For
many speakers, reaching proficicnay is a maller of years
of trial and error. In this section, we discuss some of the

features of non-native speech of the proficiency level we
arc targeling.

3.1. Reading errors

Reading errors, which are commonly assumed not to
accur often enough Lo greally alfecl system perlormance,
wore lrequent in onr data. Nearly 3% of ithe words (hai
were read by the non-native speakers were not the words
on the page, as compared to 0.4% for native speakers.

In addition, the types of reading errors that were
macle were distributed quite differently in native and
non-native specch. Substibulbion of a morphological vari-
ant was by lar the most common reading error in non-
native speech. Singular-plural substitution represented
over G0% of these morphological errors. Non-native
reading errors were more likely to affect the syntac-
tic integrity of the sentence; for example, the sentence
“Doctors are studyving the pill’s effect on patients”™ is
meaningful whether the word effect s singular or plural,
whercas Lhe senience “American student perlorm poorly
on standardized tests” 1= made svntactically ncorrect
by the spealker’s substitution of student for students. A
more detailed breakdown of reading errors in this data
can be found in [9].

3.2. Phonological propcerties

A segment of the non-native data collected in this project
was phonetically transcribed by experienced transcribers.
Although a number of expected transformations ( e.g.,
A= i) were verified doring Ghis process, the princi-
pal obscrvation was thal the number ol realivations Chat
could not be transcribed using the union of the standard
American English and Japanese phone sets was great.,
‘I'ranscribers required an extensive set of supplemental
cliacritics, representing r-coloring, centering, and palati-
zation, among other things, to begin to capture the data.
There was also a greal deal of intra- and inler-speaker
inconsislency,  One speaker, Tor cxample, consistently
pronounced [a] as [z] — but only m the second half of
one article, For some reason, he made the decision to
try this pronunciation out, and then abandoned it when
he began the next reading,.

Thiversions rom standard American Fnglish phonol-

ogy wore also [ound in recogniver-driven analysis. Phoneme-

level recognition of the data revealed both common in-
sertions, deletions, and substitutions and high overall
levels of phoneme confusion, consistent with observa-
tions from manual analysis. In an experiment. designed
touncover lexical variants, it was found that when phone-
level insertions, deletions, and substilulions are consid-
cred, 57% of the polyphones (5-phone sequences] in Lhe
test data were not seen in the traming data, compared
to 92% for native speech.

3.3. Fluency

The low-proficiency speakers targeted in this paper read
far more slowly and haltingly than native gpeakers do.
Frequent inter-word pauses, stumbling over words, and
multiple repetitions of sequences of words have impli-
cations for both acoustic and langnage modeling. In
particular, il has been our expericnce thal no complex
cross-word modeling is necessary Tor the lower-proficiency



speakers because words are usually articulated one at a
time, with pauses in between them.

feature mean std. dev.
N NN N | NN
pause duration 9.56s | 17.14s || 3.16 | 7.33
phone duration 0.08s 0.12s || 0.01 | 5.36
pause:word ratio 1:10 1:3 || 0.05 | 0.08
words/second 3.80 2.15 |[ 0.26 | 0.29
repair rate 0.57 2.25 || 0.33 | 1.42
repeat rate 0.07 0.34 || 0.07 | 0.23
retrace rate 0.58 2.35 || 0.35 | 1.26
retrace length 2.55 2.57 || 1.04 | 2.29
filler word rate 0.01 0.16 || 0.02 | 0.32
partial word rate 0.45 1.52 || 0.20 | 1.05

Table 1. Comparing fluency-related statistics for native
(N) and non-native (NN) speakers in the reading task

Figure 1 gives statistics for fluency (and disfluencies)
for the low-proficiency non-native speakers targeted in
this paper. The non-native speech is clearly more disflu-
ent than the native speech, as measured by such diverse
features as speaking rate, ratio of silence to words, and
number of repaired and abandoned words. The only
feature that appears to be similar for native and non-
native speakers is retrace length, or the number of words
a speaker “rewinds” when correcting himself. It could be
that this span is influenced by the syntax of the text,
which is the same for both native and non-native speak-
ers; it has also been suggested that retrace length is
constant across languages [3].

4. SPEAKER PROFICIENCY AND
RECOGNIZER PERFORMANCE

In this paper, we specifically target lower-proficiency
speakers. Our premise is that these speakers may need

processing different from that applied to higher-proficiency

speech in order to raise recognition accuracy to an ac-
ceptable level. This assumption is based on the intuition
that lower-proficiency speakers are somehow harder to
understand, as well as the observation that these speak-
ers are diverse and inconsistent in their articulation. To
support our assumption, let us quantitatively examine
the correspondence between proficiency and recognizer
performance.

Figure 1 shows how word error rate (WER) varies
with speaker proficiency. We see three distinct clusters.
The cluster on the far right represents native speech;
native speakers automatically receive a SPEAK score of
4. The center cluster represents speakers who scored be-
tween the test set cutoff of 2.17 (the lowest actual score
in this group was 2.44) and the maximum non-native
score of 3. The test speakers targeted in this paper
fall into the leftmost cluster. Although there is some
variation in recognizer performance within the clusters,
speakers in the lower-proficiency group clearly are rec-
ognized with less accuracy than those in the other two.

5. ACOUSTIC MODEL ADAPTATION

In this section, we discuss offline adaptation to the non-
native condition prior to individual run-time speaker
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Fig. 1. Correspondence between speaker proficiency
and recognizer performance in terms of word error rate

(WER)

adaptation. We strive to answer two questions:

e Does L1 material provide better adaptation data
than accented 1.2 data?

e Does mixed-style adaptation perform better than
MLLR adaptation for non-native speech?

It was observed in [8] that MLLR adaptation with
L1 LVCSR data gave similar improvements in accuracy
to adaptation with accented 1.2 data when only isolated
L2 phone data was available. In this paper, we explore
a matched condition: same-domain LVCSR data is used
for both .1 and 1.2 adaptation material.

In order to use the 1.1 data described in Section 2.2.2
for adaptation of English acoustic models, the Japanese
lexicon had to be converted to the English phone set.
Data-driven and IPA-based approaches to this problem
have been studied (e.g. [11, 14, 8]); we used a combi-
nation. Pronunciation networks for each Japanese word
were created with each Japanese phone replaced by a
set of parallel transitions representing substitutions of
related English phones and phone sequences. “Related”
was defined to mean sharing all but one phonological
feature. Therefore, any phone that differed only in place
of articulation, or manner, or voicing, or vowel height,
was added to the network. A forced alignment pass
was then run on this network to find the path with the
most likely match. Context-sensitive (considering pre-
ceding and following phone) global mappings were as-
signed based on the substitutions selected most often
during alignment.

5.1. Mixed-style adaptation

In mixed-style training, adapted model parameters are
estimated separately for each of the “styles” (in this case,
L1 and L2), and then interpolated using a global in-
terpolation weight. This is, in effect, a simple form
of MAP adaptation, where an optimal weighting fac-
tor is determined experimentally rather than separately
for each Gaussian based on the a prior: distribution of
the Gaussian parameters. It has been our experience
that this method produces results that are similar to
or slightly better than conventional MAP. If it is likely
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Fig. 2. Mixed-style adaptation using L.1 and L2 adap-
tation data

L1 data | L2 data
0 speakers (baseline) 63%
3 speakers 68.1 58.1
15 speakers 73.4 52.5

Table 2. MLLR adaptation using varying amounts of
L1 and L2 adaptation data (figures represent WER)

that the adaptation data represents the test data well, it
can be heavily weighted for interpolation. As with MAP
adaptation, this method performs better as the amount
of adaptation data increases, as if individual parameters
cannot be reliably estimated from sparse sample data no
adaptation is performed. In this experiment, 15 adap-
tation speakers were used.

Figure 2 shows system performance after mixed-style
adaptation with both .1 and 1.2 data. On the horizontal
axis 1s the interpolation weight. When the interpolation
weight is 1, the adapted mean is identical to the sample
mean. When the interpolation weight is 0, the adapted
mean is identical to the prior mean (i.e., there is no
adaptation).

A clear degradation can be seen from adapting with
L1 data, while the positive contribution of the accented
1.2 data can be seen rising steadily as the interpolation
weight increases.

5.2. MLLR

In MLLR adaptation, transformation classes are defined,
and model parameters of the entire class are shifted in
the same direction. While this clustering allows MLLR
adaptation to provide a general transformation with a
small amount of adaptation data, there is a risk of shift-
ing an individual parameter away from observed sample
value, which is avoided in mixed-style adaptation.

Results of MLLR adaptation with L1 and L2 data
are shown in Table 2. As with mixed-style adaptation,
we see a degradation with the introduction of 1.1 acous-
tic material. The effect is more extreme with more adap-
tation speakers, indicating that sample means from the
L1 data are not representative of the means in the ac-
tual accented test speech. Adaptation with accented 1.2
data, on the other hand, significantly improves perfor-
mance over the baseline.

Results are given for 3 and 15 adaptation speakers.
It is clear that the effectiveness of adaptation increases
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Fig. 3. Comparison of MLLLR and MAP adaptation for
15 adaptation speakers

with the amount of adaptation speech. There are two
reasons for this: more examples of sample values allow
a more reliable estimate of the sample mean, and the
more diverse set of samples contributes to a more general
model.

5.3. Comparison of adaptation methods

Figure 3 contrasts MLLR and mixed-style adaptation
performance for 1.1 and L2 adaptation material and 15
adaptation speakers. Both show similar trends, with
mixed-style slightly outperforming MLLR.

We see clearly from all the experiments shown here
that using L1 acoustic material for adaptation to low-
proficiency non-native speech without re-evaluation of
the polyphone set results in a degradation of recognizer
performance, while adaptation with accented 1.2 data
boosts performance.

6. RETRAINING WITH ACCENTED DATA

It was shown in Section 5 that while using accented
data for adaptation improves recognition performance,
adapting with L1 data results in a performance degra-
dation. In speaker adaptation, the model inventory is
kept the same, but the expectation of what a model
sounds like is shifted towards what has been seen in the
limited set of adaptation speech. The L1 data does not
have the chance to make its maximal contribution, as
the model inventory is based on the polyphones found
in native speech; two allophones that are quite differ-
ent in L1 may be used to update the same model if the
two contexts do not trigger variation in English. By
rebuilding the system based on the contexts that are
meaningful in L1, we may be able to use the 1.1 data to
its full advantage.

In this section, we compare systems trained with 1.1
data with systems trained with accented 1.2 data. Both
full rebuilding of the system (rebuilding from scratch)
and repetition of the final step of training (additional
forward-backward iterations) with the new data are ex-
amined.



6.1. Rebuilding from scratch

In this experiment, two new systems were built, using
L1 and accented 1.2 data. In both cases, initial labels
were written using the baseline acoustic models, and a
context-dependent system was trained along the speci-
fications given in Section 2.3. Because the adaptation
data available was sparse for fully training a recognizer,
it was pooled with native English data in these experi-
ments. The large amount of native data contributes to
the robustness of the model, while the smaller amount
of .1 or accented .2 data ensures that L.1-specific phone
sequences and phone realizations are seen during clus-
tering and training. Training data consisted of 3 hours
of .1 or accented 1.2 acoustic data pooled with the orig-
inal native training data.

6.2. Additional forward-backward iterations

In this experiment, the new system was not retrained
from scratch; rather, two additional forward-backward
iterations are run on the fully trained baseline models
using the accented L2 acoustic data.! In Section 5, we
saw how recognition improves with adaptation to the
non-native condition when accented data is used. By
training with the accented data, we are essentially ex-
tending this approach, updating not only the mixture
means but also the mixture weights and covariances.
We also benefit from the second re-estimation. The ef-
fect of additional forward-backward iterations with the
L1 data was not examined in this experiment.

6.3. Comparison of training methods

Figure 4 contrasts performance of fully-rebuilt and par-
tially retrained systems. With the rebuilt systems, we
see a small improvement when training with .1 data and
a much larger improvement when training with accented
1.2 data.

The improvement from the additional training iter-
ations is even larger. This may be because in retraining
(described in Section 6.2), we are capitalizing on con-
sistency in the data in the two phases of system build-
ing with native speech and retraining with non-native
speech. When the two data sets are combined from the
outset (as described in Section 6.1), we may incorporate
a broader range of polyphones but be harmed by the
mismatch between native and non-native speech. By
simply retraining, we fix the identities of the acoustic
models with native data, and then use the non-native
data to adjust the expectation of how those models cor-
respond to phonetic realization in non-native speech.

6.4. Model interpolation

Simply running additional forward-backward iterations
with the three hours of accented data resulted in a 24%
relative improvement over the baseline error rate. In
this new model, however, the parameters were trained
on a small amount of data. This introduces a danger of

lFor this experiment, the baseline models were also
trained an additional two iterations to ensure that the com-
parison was fair. We did not observe any significant change
between the original 7-iteration training and the 9-iteration
training with the native data, however.
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Fig. 4. Comparing rebuilding from scratch with L.1 and
1.2 data and partial retraining with 1.2 data

overfitting, a problem which can addressed by smooth-
ing the models via interpolation with a more robust
model [7]. A direct parameter interpolation technique
has also been shown to be successful in creating context-
independent non-native models from source and target
language model sets [14]. In model interpolation exper-
iments, it was our goal to move the retrained distribu-
tion back towards the native distribution to the point of
maximum robustness.

In the interpolation method that we used, corre-
sponding codebook weight, mean, and covariance ma-
trix elements are linearly interpolated for each baseline
system / retrained system acoustic model pair. This re-
sults in a covariance space that covers an area between
the two original covariances, rather than the union of the
two. We are able to interpolate the individual models
in this way because there is a clear one-to-one mapping
between models; the decision of which models to inter-
polate would be much more difficult if we were work-
ing with the rebuilt system of Section 6.1 instead of
the retrained system of Section 6.2. Our method is de-
scribed in detail in [10]. Performance of the interpolated
system is 29% above that of the baseline system, a signif-
icant improvement over the retraining alone. The effect
of the interpolation weight on recognition accuracy is
shown in Figure 5; optimal performance is found when
the retrained models are weighted at .72.

7. SUMMARY

In this paper, we have examined how application of
acoustic model training and adaptation techniques af-
fects recognition accuracy on non-native speech. A sum-
mary of the individual contributions of each method is
shown in Figure 6.

Generally speaking, adaptation to the non-native
condition (and by adaptation we refer to both the speaker
adaptation techniques of MAP and MLLR and retrain-
ing techniques) using L1 data does not improve perfor-
mance, and in some cases causes a large degradation.
Accented L2 data, on the other hand, contributes posi-
tively to the acoustic model. The largest gains are seen
when using the full 3 hours of accented data to run ad-
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Fig. 6. Summary of adaptation results. Bars labeled
“MAP” refer to mixed-style adaptation, which is a sim-
plified form of MAP adaptation.

ditional forward-backward training iterations and then
interpolating the retrained model back with the more
robust baseline models. Significant gains are also seen
with MAP and MLLR adaptation, where performance
of the system improves proportionally to the amount of
accented adaptation speech.

In the best case, word error rate for the lower-proficiency

speakers is lowered from 63.1% to 45.1%, which repre-
sents a 29% relative reduction in error. This approaches,
but does not match, performance on the higher-proficiency
speakers.” With an absolute reduction in error of 18%,
we have closed half of the gap in recognizer performance
on native and low-proficiency non-native speech; how
close this brings us to the upper limit, however, remains
to be seen.

2We see the same trends when applying adaptation tech-
niques to proficient non-native speech, although the effect is
far less dramatic [10].
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