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Abstract. The maximum entropy method has recently been successfully intro
duced to a variety of natural language applications. In each of these applications, 
however, Lhe power of U1e ma.xirnurn enLropy rnelhod is achieved aL Lhe cost of 
a considerable increase in computational requirements. In this paper we present 
a technique, closely relaLed Lo Lhe classical dusLer expansion from staListical me
chanics, for reducing the computational demands necessary to calculate conditional 
maximum entropy lang1rnge models. 

1. Introduction 

In this pa.per we present a computational technique that can enable faster cal
rn lation of maximum entropy models. The starting point for our m ethod is an 
a lgoriLluu [l] for consLrucLing maximum enLropy disLribuLiorn LlrnL is an exLernion 
of the generalir-ed iterative scaling algorithm of l)arroch and K.akliff [2)!]. The 
e.xlended algoriLhm relaxes Lhe assumption of [:L1] LhaL Lhe cornLrainL funcLions 
sum to a consta nt, and results in a set of decoupled polynomial equations, one for 
ea<:h feature , that must he solved to obtain the scaling terms. bar each iteration, 
Lhe disLribuLion musl be norrnali:ted (Urnt is, Lhe part.iLion funcLion must be cal
rnlated), and the rneffkients of the polynomials must he determined; these steps 
have roughly Lhe same compuLaLional cosL 

For lang uage modeling applicaLions Lhe parLiLion funclion and coefficienl cal
culations entail summing over the target vocabulary, typically on the order of 
10,000-100 ,000 words, and determining those features that apply to each possible 
word for ca.ch context that appears in the training data. "\Vhen this calculation is 
implem ented directly by carrying out the summation while hashing to det ermine 
fealures and feaLure weighLs, iL can be exceedingly slow . "\Ve address Lhis problem 
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by usP. of a t.P.chniquP- that WP. call t.lw dusif.r u;pansion, d11P. to its rP.semblance t.o 
8erie;; expansion metho<ls in ;;LaLi;;l.ical phy8ics, that. carrie8 out. boLh l.he parl.iLion 
function and coefficient calculations efficiently. Our basic idea is to avoid hashing 
and n.n P-xplicit summation ovP-r the entirP- tn.rget. vocab11lary for ea.ch <:ontext by 
calculating the partition function ( or coefficients) for all contexts simultaneously 
as a. telescoping sum of polynomials in the feature weights. Hy choosing the data. 
8Lrucl.ure8 in l.he implement.al.ion appropriately, l.he dust.er expansion can be ea;;ily 
implement.eel for a class of language models that includes n-gram constraints in 
addition t.o st.ate constraints from a.n 11nderlying automaton, or other long-distance 
constraints. 

In this paper we prP.sent a description of the basir. ter,hniqrn, as well as its 

applicaLion Lo Lhe consl.rudion of a :;imple language model for use in a speech 
recognition system. 

2. Language Modding 

2.1. LANGl'AGE MODELS AS PRIORS FOR BAYESIAN DECODING 

Language modeling attempts to identify regularities in natural language and ca.p
t.me them in a statistical model. Lang11age models are crucial ingredients in auto
matic speech recognition [4] and statistical machine translation [5] systems, where 
thP-ir 11se is naturally viewP.d in terms of the noisy rhfl,nntl model from information 
theory. In this framework an informal.ion ;;ource emiL;; m e;;8ages X from a di;;l.ri
bution I'(X) which then enter into a. noisy channel and emerge transformed into 
observnhles V according to a conditional probabili5y distribution P(Y IX). The 

problem of decoding is to determine the message X having the largest posterior 
probabiliLy given t.he observation: 

X = a.rgmaxI'(X I Y) = a.rgmaxI'(Y IX) I'(X). 
XEH XEH 

Thus, HayP-sian decoding is carriP-d out. using a prior distribution P( X) on mes
sages, a. channel model I'(Y IX), and a decoder a.rg maxxot. for speech recogni
tion and machinP- translation, t.lw prior distribmion is callP.d a language model, and 
it. mu:;(. as:;ign a probabiliLy Lo every :;(.ring of 8ymbols that. can be hypolhesize<l by 
the decoder. The most common language models used in today's speech systems 
arP. thP- n.-gram modP.ls, const.ructP.d in t.P.rms of simplP- word frP-q11P-nciP.s . 

2.2. CO.\l)l'J'lO.\AL 11AXl.MU11 B.N'l'ltOPY LA.NC:UACB 110DELS 

In thP- 11sual appli<:ation of thP- maximum P-ntropy principlP- [(:i] , prior information, 
l.ypically in l.he form of frequencies, i8 represented as a sel of consl.rainl.s which 
collectively determine a. unique maximum entropy distribution. For example, if we 
obsP.rvP- <:ert.ain bigram word frequen<:iP-s r,1 = f{1D, 1i;_i) and we constrain a lan
guage model to agree with these observations, the maximum entropy distribution 
assigns a probability P>- ( W) to a word st.ring 1--1/ according t.o a Gibbs distribution 
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of tlw form 

P\(H') = ; exp (L >.;j fo(H')) 
,\ ij 

where the feature .fiJ(YV) counts the number of times the bigrmn w;wJ occurs in 
Lhe 1,;Lri11g 1-F, a.11d where Lhe pa.rLiLio11 funcLion Z;,. is obl.aine<l by summi11g over 
all possible ,vord strings vV. 

In contrast to this use of the joint distrihmion, rer.ent applications of the max
imum enLropy met.hod i11 language mo<leli11g [7,8] have employed wndilional mod
els. Such models employ features to represent various frequencies in the training 
text, snr.h as the higram features just mentioned, but they use this information 
to constrain a family of conditional exponential models . Factoring a word string 
\!\i = 1i.:0 w 1 • • • 1i.: ,a; into rnnditional prohahilities we can write 

'v N 

p(lF) = p( wo) II p(w; I wow1 · · · ·tt\- 1) = p( wo) II p(w; I h; ) 
·l.=1 

where h,: is the h.i8tory at ti-nu i. In t erms of rnnditional models, the rnnsnaints 
arc presented as 

L p(h) L p(w I h) f o:(h, w) = L p(h, w) f o:(h , w) 
I, h,w 

where his a hi8Lory, an<l Lhe maximum e11Lropy model subject. Lo Lhese cornlrainls 
is given by 

P\(W I h) = ~h) exp (I: Ac;f o:(h, w)) . 
./;>,( , c> 

( 1) 

The partition fonr.tion ./;>, (h) is now obtained from s11mming over the target word 
vocabulary, rnlher than over all wor<l sLri11gs. Cornl raining a family of co11diLional 
models in this manner is typirnlly muc.h more manageable rnmputationally than 
worki11g with a. single consLrai11ed joint. disLribuLion. In a.ddiLion, Lhe use of co11di
tional models is desirable for applications which process the input in a left-to-right 
fashion. 

3. Iterative Scaling 

The generalized iterative scaling algorithm of Darroch and Ratcliff [2] is one 
method for c.aknlating the maximum entropy distribution (1). This algorithm 
assumes Lha.l Lhe fea.lures f n(h , ·w) a.re 11on-11egaLive an<l 8UIII Lo a consLanl, inde
pendent of h and w: 

M(h, w) = L .fc. (h, w) = M, for all h, w . (2) 

Given these restridions, the l)a.rroch-K.a tdiff a lgorithm hegins with an initial 
model, typically t he uniform distribution obtained by setting >.a = 0. In the it
erative step, when th e c.urrent model is p ;>, ( w I h), the algorithm increm ents each 
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parameter >.." hy an amount. ~>.." dernrrnined by 

, I __ ( Lh,w p(h , ll.:) f ,,(h, ll.: ) ) ~>.." = - lug ---_---------
M L1i.,wP(h)p>-.(wlh)f"(h,ll.:) 

Let.Ling b.,3a = e~>-. , , we can expre;;8 Lhi;; updaLe a8 choo8ing D./30, Lo be Lhe unique 
solution of the equation 

(::l) 

wlwrn q[ •] denotes expectation with res1wct. to q and we use J) >-. to denote the 
di;;LribuLion h(h, u:) = p(h)p>-.(w I h). 

\Vhilc the restriction (2) on Af can always be enforced by introducing a. "slack 
variable," it can he inconvenient to do so for conditional maximum entropy lan
guage models that typically have hundreds of thousands of features. In [1] a.n 
alp;orithm was introduced that extends the Darroch-l{atcliff procedure by relaxinp; 
Lhe a88Umpt.ion t.hat. J,J(h, w) i8 a tornlanL. The updal.e8 for Lhe improved algo
rithm a.re again given by equation (3): but ,vith lvf now interpreted as a random 
variable. When (:2) holds, the alp;orithms are identical. In p;eneral, the alp;orithm 
which allows J,J Lo vary is more nat.ural and easier Lo implement. . IL abo converges 
more quickly, by effectively inc1·easinp; the step si7,e taken tmvard the maximum 
enlropy soluLion at. each it.eralion. 

4. Cluster Expansions 

4.1. THE MAYER EXPANSION FOR A CLASSICAL GAS 

If the Hamiltonian for a. classical JV-particle system is given by H = ½Li p; + 
Li< j v,_i and the system ocrnpies a volume\/ , then the classical partition function 
of Lhe ;;y::;Lem al LemperaLure T i8 given by 

Qv(\/, '/')= 
3

~ T { _ { dpdqexp(-½;1~pf-3~1;;i) 
h · J'v ! .JR , N .f v L., L..,_ 

i I <J 

where 3 = 1/ k:T and h is a constant introduced to ma.kc Q.,v dimensionless. Com
p11ting the intep;ra.l over th e momenta reduces this to 

I / ( ) I . Q,v (V, T) = >,.:1N :V I Jv dq exp -/f ~ V;j = >,.:1v :V I ZN (V, T) 
i<J 

where ,\ = J2117i 2 
/ kT. The idea of the cluster expansion is to ma.kc a. change of 

variable;; 
d,;.J = c - :3i•; ; - 1 

a nd expand Z.-v as a. sum of products of d,;1 : 

/2,V(V,T) = r_ dq Il(I + ef>u) = r. dq 
A i< j J., ( I+ L<P,) + LL <7Jij<7J ki + '. ·) 

i < j i<j k < i 
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wmputat.ion ofrhe individ11al dusters rnn be signin<:antly more efficient. than wm
puling Z;,Jh) direcl.ly. f'urt.hermore, Lhe compuLalion of Lhe duslers can be shared 
across different histories. The use of Chcescman's method [10,11] of reordering 
summations within a cluster can provide further savings. 

The second computation that is necessary is the calculation of the coefficients 
of !i,3,, in the expectation ji,.[f,,li,3;1 ] that appears in the s<:aling equation(::!). In 
a manner similar Lo LhaL described above, we expand in l.erms of i:fJ -, Lo obtain 

. [f' " ,,Ml ' j'i(h) ' (1 ' ' , ) f' ('I ) ·\ ,.,M(h tv) P>. c,L.>.Ua = L....,. Z>. h L...., + L....,. CJ, + L...., 1J-, rp.:, + · · · . c, 1, W 1...>.J.,a · . 
I, ( ) ·11; •; 1 ,')1 

Herc again, indirect computation of the coefficients through the calculation of the 
individ11al cluster terms can he significantly more efficient than direct computation. 

The primary savings that. this technique affords result.s from its avoidance of an 
explicit. summation over the entire target vocabulary for each history. In addition, 
it can make hashing for feat.me lookup unnecessary. \Vhile we do not generally 
obtain bet.Ler Lheorelical compulal.ional complexity, this simple trick can result. 
in s11hst;mtial savings in the comp11tation necessary for carrying out gener;i.li,-;ed 
it.era.Live scaling. \Ve will now give furl.her delails of Lhese cakulaLiorn for a simple 
topic-dependent bigram model developed for use in a speech recognition system. 

5. Example: A Topic-Dcpcn<lcnt Language Mo<ld 

In Lhi.~ section we describe the application of the dust.er expansion Lo Lhe lrain
ing of a topic-dependent. bigra.m model of the Switchboard corpus [12] for use in 
a spee<:h recognition system. 'This corpus wmprises approximately three million 
words of lexL, transcribed from more than IGO hours of speech collected from 
telephone conversations. An important. aspect of the Swikhhoard corp11s is t.lrnt. 
the conversations are reslricLed lo 70 different. topics . To Lake advanlage of this 
structure, we trained a maximum entropy language model whose constraints were 
of three types. In addition ro 11nigram and bigra.m consnaints, we introduced 
Lopic-dependenl unigram cornlrainls for those words having the grea t.est. mulual 
information with the topic. 

More precisely, Lhe model Lhal. we cornlrucl.ed was specified as follows. Condi
tioning on a word history h which ends in a word w' , the probability of predicting 
w is given hy 

p(w I h) = LP(t.opic = t I h) p(w I h ,t) = L p(topic = t I h) p(w I w', t). 

This model has two components: a topic prediction model p(topic = t I h) and a 
word prediction model p(·w.i It, ii;,: ) . ("J"he topir- prediction model is not disrnssed 
here.) T he word prediclion model is const.rucled as a condilional m aximum entropy 
distribution of the form 

( 
. 1 . . 

P>. 'll'j 11. u •; ) = '/ c·. ) exp (A;j +A; + Atj) . 
/,,. 1-, t 
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WP irnplPmPntPd this rnchniquP for thP t.opic-dPpPndPnt rnodPl, thP rPsulting cal
culal.ion wa8 more Lhan 200 l.ime8 fast.er Lhan Lhe dired implement.al.ion of Lhe 
iterative scaling algorithm. 

6. S111nmary 

Our use of Lhe du8Ler expans10n for l.he language model presented in SecLion G 
demonstrates that this technique can be an important tool for reducing the com
purn,t.ionrtl hurdPn of computing rnrtxirnurn Pnnopy lang1ia.gP rnodPls. 'l'hP nwthod 
also applies to higher order models such as "trigger models'' [8], where occur
rPncPs of words far hrtck in t.lw history can infh1PncP prPdictions by thP USP of 
long-di8Lance bigram parameters. As a general technique, however, t.he met.hod is 
limited in its usefulness. As in statistical mechanics, when the number of inter
ad.ing constraints is larp;P (i.e., whPn thP gas is dPnsP), thP clust.Pr Pxpansion is of 
lit.tic use in computing the exact maximum entropy solution. For such cases the 
usP of approxirn;i.tion tPchniquPs should hP invPst.igatP.d. 
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