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SUMMARY
nectiotiist large-vacabulary contnuous speech recognition sys-
fem integriating specch recogmition and banguage processing, The
specth recounition part consists of Large Phonemic Time-Delay
Neiral Networks CTRINNSD which can automatically spot all 24
Japunese phonemes Gel I8 consonants he ads, dgl ond
KL m nd N s sl T LD e e seh el DD A
Fro  Woe 4T andE & vowdls o/ Al Su e o and o
double consanant Q@ or stlencet by simply scanning amung
mnput speech without any specilic segmentation technigues. On
the other hand, the language processing part s made up of a
predicive LR parser in which the LR parser is guided by the LR
pursing tuble sutomatically generaied from contexi-lree grammur
rules, and proceeds lelt-to-right without backiracking.  Time
ahgnment between the predicted phonemes und a sequence of the
ITDNN phoneme outpuls s carned out by the DTW matching
miethod  We call this hybeid” integrated recognition system the
TIINN-LR method. We report thet large-vocabulary isolated
word and continuous apeech recognition using the TDNMN-LR
lent spesker-dependent recognition perfor.
manve, where incremental troining using o small number of
training wkens 15 found o be wery effective for adaptation of
speahing rate burthermaore, we report some new achievements as
extensions of the TRNNLR method [ mwo proposed NN
architegtures proside robust phoneme recognition performance
un variabions of speaking manner, o speaker-aduptation
technigue can be realized using o NN muapping tunction hetween
mput and  aandard  speakers and 3 new  architectures
proposed lor speakerandependent recognition provide perfor-

[his paper describes recent progress in & con-

method prosided exe

muance thut neariy matches speaker-dependent recognition perfors

TANCY
1. Introduction

In this paper. we deseribe recent progress in the
connectionist large-vocabulary continuous speech rec-
ognitton system we have developed at ATR. First, we
review our rescarch achievements : phoneme recogni-
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tion and phoneme spotting technigues using Time-
Delay Neural Networks [TIDNNs! Second, we pro-
pose a large-vocabulary and continuous speech recog-
nition method using TDNN phoneme spotting and LR
parsing technique.  Finallv, we propose some new
connectionist approaches to robust speech recognition.
speaker-independent
speaker-adapiation technigques as extensions ol the
Current system.

In Sect. 2, we review that a TDNN performs eacel-
lent phoneme recognition lor o small but dithicult task.
i.e.. bdg-phoneme recognmition, und for all consonunt
tusk.  Scaling up connectionist models 1o larger con-
nectionist svstems is difficult, because large networks
require increasing amounts of training tme and data,
and the complexity of the optimization task gquickly
reaches computationally unmanageable proportions,
We trained several small TDNNs imed ot all
phonemic subcategories (nasals. fricatives, vowel, e
and then integruted those sub-networks into an all-

phoneme  recognition  and

if

consonant network

In Sect 3. we describe phoneme spotting tech-
nigues, Phoneme spouing if reliably achieved. pro-
vides a good solution o the spoken word and or
continuous speech recognition problem. Training the
Large TDNN is performed based on a  buck-
propagation using  shifted  training
tokens'™ extracted from traiming-word speech and or
training continuous speech. We then report excellent

B

procedure’ ™

spotting rates and effectiveness of adaptive training
using continuous speech.

In Sect. 4, we propos¢ an integration of speech
processing and lunguage processing, The speech recog-
nition part consists of the Large Phonemic TDNN
which can  automatically  spotr all 24
phonemes by simply scanning among an input speech
without any specilic segmentation technigues, On the

Japanese

other hand. the language processing part is made up of

a predictive LR parser™ in which the LR parser is
guided by the LR parsing table automatically gene-
rated from contest-lree grammar rules, und proceeds
left-to-right without backtracking.
between the predicted phonemes and o sequence ol the
TRNN phoneme outputs 1s carried out by @ DTW

Time ulignment
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matching method

In Scct 5. two kinds ol recognition experiments
ic. large-vocabulary isolated word recognition and
continuous speech recognition, were performed using
the TDNN-UR method. In the large-vocubulary iso-
tated word recognition. 3.240 comman Japanese words
are used. i the continuous speech recognition, 278
test phrases in the “ATR conference registration task”
are recognized,

[n Sect. b, we propose some new  connectionist
approaches to robust speech recognition. speuaker-
adaptation and  spesker-independent recognition as
extensions of the TDNN-LR method @ two proposed
NN architectures provide robust phoneme recognition
performance on variations of speaking manner: a
speaker-adaptation technique can be realized using a
NN mapping function between input and standard
speakers o and new architectures proposed lor speaker-
independent recognition provide performance that
nearly matches speaker-dependent recognition perfor-

munce.
2. Phoneme Recognition Using TIINN
201 TDNN Archueciure

For the recognition of phonemes. o three-layer net
is constructed. Tts overall architecture and a typical set
of activities in the units are shown in Fig. | based on
ane of the phonemic subcategory tasks (BDG).

AL the level. 16 spectral
coeflicients serve as input to the network. Input speech,
sampled @t 12kHz, was hamming windowed and a
2itepoint FFT computed every 3msec.  Melscale
coeflicients were computed from the power spectrum'™’
and coeflicients adjacent in time collapsed resulting in
an overall 10 msee frame rate. The coeflicients of an
input token (in this case 15 frames of speech centered
around the hand labeled vowel onset) were then
normalized to lic between - 1.0 and + 1.0 with the
average a1 0.0, Figure | shows the resulting coeflicients
(or the speech token “BA™ as input to the network.
where positive values are shown as black squares and
negative values as grey squares. The detailed architec-
ture is deseribed in Refl (1), The TDNN achieved a
recognition rate of 98.3% averaged for three male

speahers!

liwest melscale

5

2.2 Consonunt
Design

Recognition by Modulur TDNN

Our copsonant TDNN (shown in Fig. 2} was
constructed modularly from retworks aimed at the
consonunt subcategories, e, the hdg-. ptk-. mnN-,
wihihz-. chitss and the rwy-tasks. Fach ol these nets had
heen trained hetore 1o discriminute hetween the conso-
mants within cach class.  In addition, an interclass
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Fig. | The TDNN architecture Hnput: “BA™

diserimination net that distinguishes between the con-
sonant subclasses was trained. This hopefully provides
missing feature information for interclass discrimina-
tion. Three connections were then established o each
of the 18 consenant output categories (- ho 'd g
pf o/l IR/ Ay fody s s dsh e D ] TR e
ch/{[tf . /ts, r. 'w and y Ly one w
conneet an output unit with the appropriate interclass
discrimination unit in hidden laver 2. one with the
appropriate intraclass discrimination unit from hidden
laver 2 of the corresponding subcategory net and one
with the always-activated threshold unit (not shown in
Fig. 2). The overall network architecture is illustrated
in Fig. 2 for the case of an incoming test token (c.g.
a ‘g/). The performance of the network vielded 96.0%
correct consonant recognition over the test data™
Furthermore. a fast back-propagation method later
developed at ATR made it possible to tritin the conso-
nant network from random weight values at the same
time. and vielded a betier recognition rate of 967%™

3. Phoneme Spotting Using TDNN

A large TDNN architecture for discriminating 24
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Japanese phonemes (18 consonants: /b/, /d/. /g/.
p/ /U IR Fmds Il N (L.rN, /hi,7zr.
ch [y D sl /el w/y vy /([ ]), and 5 vowels
a1 us Jel Jos, and silenee) was constructed as
shown in Fig 300mands —This TDNN is modulay
constructed by 6 intra-class subnetworks  diserimi-
nating among “hdg”, “ptk”. "mnN", “sshhz”, “chis”
and “rwy”, an intra-class subnetwork discriminating
consonant groups. a vowel network, and a
network discriminating between silence and
speech, These subnetworks are integrated into a third
hidden laver which has 24 units so that their corre-
sponding output units can be laterally inhibited.

Phoneme tokens for training the TDNN are
classified into 24 phoneme categories, based on hand
labeling, extracted Irom even-numberd words of the
5.240 common words uttered by a male speaker. The
number of training tokens per phoneme category
ranges up to 1,000, randomly selected from the extract-
¢d tokens. Tokens are duplicated when the number per
category can not reach 1.000. Training the TDNN is
performed using @ fast back-propagation learning
procedure’™.

Phoneme spotting outputs are obtained as recogni-
tion results by shifting the input layer among input
speech frame by frame. This phoneme spotting method
does not require any phoneme segmentation tech-
nigues and can get spotting results merely by scanning

HEIHARANE YY)

5, sh

among
silence

the network™
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Table 1 shows spotting results for 2,620 test words
when using up to 400 and 1000 training tokens cites
gory, respectively. [t is demonstrated that 98.0% of the
phonemes in the test words are correctly spotted tor the
latter case, vielding a false alarm rate of 23.2%.

Thus, the Large Phonemic TDNN s already
trained by as many as 18.864 training tokens extracted
from 2.620 training words. For the first experiment.
spotling experiments in continuous speech were con-
ducted using the TDNN. The initial correet phoneme
spotting rate in 278 Japanese test phruses was 81.2%
with a false alarm rate of 47,8%. as shown in Table 2.
Because of the different co-articulatory ellects of word
speech and continuous speech. incremental TDNN
training using a small number of tokens extracted from
continuous training speech seemed to be needed, The
number of tokens for incremental training is only 100
200 tokens per phoneme category (2.011/3,251 tokens
are only 11%,/17% of the original tokens extracted from
the training words). The carrect phoneme spotting
rate was significantly improved from 81.2% 10 89.0%/
§9.1% after the adaptive incremental training. More
importantly. the false alarm rate decreased from 47.8%
to 34.8%/25.8%., Figure 4 shows an example of
phoneme spotting results in the phrase touroku-wo/
The lower laver shows an input spectrogram and the
upper shows spotting outputs,  We can also expect
better phrase recognition rates in continuous speech
after the incremental training.

Table 1 TDNN phoneme spotting results on large-vocabulary.
Ean- Wof 400tokens/category 1,000 tokens/category
ermes | pnontmes | Correct Dul;umi fatee atorm | Correst iDeletjon fales alasrm
b | 231 | 228 E 268 | 225 | & 104
180 175 s | 108 171 s | 71
"z | 285 | 230 35 | 198 | 210 55 | 57
» 28 25 | 3 | 203 26 2 104
: 451 452 g | 178 | 459 2 235
% 1 1300 | 1218 | 82 | 116 | 1283 | 17 | 245
to 123 482 2 | 323 479 i 213
o 273 235 15 | 84 763 10 | 83
N 488 287 | 1 | 181 238 0 163
5 £72 5760 | 2 ) 175 572 | 1 100
gh | 387 | 385 | 2 52 386 1 B!
b | 313 | 312 1 215 | 310 3 | 158
2 315 | 310 5 170 | 307 & | 87 |
¢h 141 140 Vo 141 0 | 183
t= | 220 | 219 T | 205 | 218 2 | 235
- 7 708 | 51 | 62 730 30 &7
w g0 | 1 | 74 79 2 13
v 537 | 42 | 124 561 12 171
1770 | 108 | 177t | 1 Es
1282 g1 | 155 1302 | 200
1 1486 | 118 | 208 1542 | 72 | 200
2 grz | 7 | 2:¢ 827 | 2z | 234
o | t252 | 1337 | 15 | 67 | 1348 | & | 136 |
e e 13518 456 | 3539 | 13599 | 275 | 3238
s PEE L ge 790t ] (3.3%) 1(25.5%) 1(92.0%) | (2.0%) 1(23.2%]
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Fie. 4 An evample of phoneme spoting results - (phrase name

i touroku-wo

4. The TDNN-LR Recognition System

o extend the high performance spotting results to
large-vocabulary  continuous speech recognition, a
“hybrid” method combining a predictive LR parser'™
with a DTW alignment technique was proposed. We
applied this method 1o 5,240 common Japanese words
and phrases'™ utiered by the male speaker,

e A An example ol conest-lree grommar

4 1 LR Parsers

LR parsing 1s well known in the field of program
languages, and 1s applicable 1o u large class of context- i
free grammars. Generalized LR parsing™ is a kind of
LR parsing. and has been extended to handle arbitrary
context-free grummars. The LR parser is guided by the
LR parsing table automatically created from context-
free grammar rules, and proceeds left-to-right without
hacktracking. I'hese parsing algorithms are very
efficient for natural language processing.

An example of sentences in the LR parsing and an
LLR parsing table are shown in Figs, 5 and 6. respective-
IV The LR table consists of an ACTION table and
4 GOTO table. In Fig 6. lines show grammar symbols,
and columns show parser status. The symbols =s™ and

S show cshift! and Ureduce” actions, respectively. Fig. 6 An example of ACTION and GOTO vables
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The ficure on the right side of 757 is the next status in
4 shift”™ action. The figure on the right side of “r™ is
the number of grammar rules. The right side shows &
(O TO table where the hgure indicutes the next status
valug

A predictive LR parsing methad predicts the next
phonemes in input speech based on the currently
processed phonemes.  An HMM continuous speech
recognition system using an predictive LR parsing has
Been evaluated'™ This technigue i< also applicable to
spotting results from the TDNN and 4 word or phrase
crammar  describing a large vocabulary or phrase
database'™. respectively.  Prediction can be easily
realized by referencing an LR table such as Fig. 6, By
way of analvsis, when the predictive LR parser is in a
status, possible phonemes served to this LR parser are
the only phonemes deseribed by “shitt™ and “reduce”
on a line of the table. The predictive LR parser regards
these phonemes as predicted phonemes.

22 Integration ol the TIDNN and the Parser

The hasic structure of the recognition system
which utilizes TDNN spouing and predictive LR
parsing is shown in Fig. 7 (hereafter: TDNN-
LRy e da s Firgoan input speech is converted
to outputs vig TDNN phoneme spotting shown in the
upper part of Fig. 4. Matching between these outputs

VOl A L ARY CONTINUOLUS SPEFCH RECOGNTTION

and reference words is performed by the predictive LR
parser according to a grammar rule.  When plural
phonemes are predicted, the predictive LR parser
analyzes the phonemes in purallel.  The predicted
phoneme sequences arc c¢valuated by a DP muich
between predicted phonemes and the TDNN phoneme
spotting results. This procedure continues until input
phonemes come to an end.  However, since 1t tukes
considerable time to process all predicted phonemes. a
heam scarch.is used to take the first “ 87 candidates,
where 8" is the width of the beam (ex.: £ = 1001

The likelihood of a similarity between a predicied

Fig. 7 The TDNN:-LR speech recognition system

[uble 2 TINN phoneme spoiing vesulls on test phroses.
n 5 |

Mundoptive Adaptive trpining
Phan. =cl training {200 tokensicat.}

b R Correct iDglatinn‘:‘:iw_nulu:m Correst |Dz]=tim\|.’alnn‘.m:n
T | 16 VI R 5|

1 44 o5 a8 62 5 10
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) 0 &8 | 2 | 8 10 0 6
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w0 | 2= a7 EEE

T 78 2 | 3
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0 | 33 IR T

O | S [
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2n | 48 121 & 27
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phoneme and an input phoneme is defined as the
logurithm of the activation value of TDNN output,
where the likelihood is regarded as a posterior proba-
bility for cach output.  The length of the reference
patterns (predicted phoneme patterns) is the average
length of the training phoneme tokens extracted from
the training words of the large vocabulary, The slope
constrauint in DTW alignmentis 1,2 w 2, The detailed
matching ulgorithm 1s described in Refs, (10), (14},
(18).

5. Recognition Experiments

h

.1 Large-Vocabulary Speech Recognition

In recognition experiments of large vocabulary,
5.240 common Jupanese words were used.  Among
those words. another half of the large database which
were not used lor the network training were used as
test words. The number of test words was incremented
as 100, 300, 2,620 test words. On the other hand. the
number of reference words was also incremented as
100, 500, 2.620 and 5.240 words. where in the former
three cases, the reference words corresponded to the test
words. and in the last case, the 3,240 reference words
included the 2,620 test words as a subset.  Therefore,
note that this experiment is vocabulary-independent
recognition.

Figure & shows the recognition rates of the n-th
(1= n5) wp choices as a [unction of the vocabulary
size ol reference words from 100 to 5.240. In the case
of the whole 3.240 words, a rate of 92.6% is obtained
for the top choices. and rate of 97.6% and 99.1% are
obtained lor the second and fifth choices, respective-
l\,wl.‘.'l-lu-“.'m.
 Recognition error in 3,240 common words s
classified into the tollowing three cases: (1) insertion
of 17 or "k at the beginning ol a word (ex.: "aisu-
ru” e Ctadsuru”), (20 g short word is misrecognized

g |

b |

\“‘a ;

£ o |
. : S2o 4500 BLHI C:rl‘;.

Fig 8 Results on large-socabulary recognition
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as a long word (ex.: “ua” = “hanahada™), (3 4
double consonant is confused with o silence ae-
companied by an unvoiced stop (affricate’) (ex.: “iai”

e E TR

3.2 Continuous Speech Recognition

The Large Phonemic TDNN is already trained by
as many as 15864 truining tokens extracted from 2.620
training words, As an first altempt. continuous speech
recognition experiments were conducted using the
trained TDNN uand an LR-parser describing generul
phrase grammar rules (its phoneme-perplexity is 390,
Table 3 shows the features of the ATR “Conference
Registration™ task we used. The initial phrase recogni-
tion rate for 278 Jupanese test phrases was 33.0% tor the
top choices and 82.7% tur the top 5 choives, respective-
lyv. Because of different co-aruiculatory eflects between
word speech and continuous speech, incremental train-
ing of the TDNN using a small number of training
tokens extracted from continuous training speech
seemed 10 be needed,

The number of training tokens for incremental
training is only 100 tokens per phoneme ciategon
{2011 wkens in total are only 1% of the original
tokens extracted from the training words) . We then
increased the number up 1o 200 tokens per cutegory
(3.251 tokens in total). The phrase recognition rates
are shown in Table 4 as compuared with the rates before
the incremental training. A phrase recognition rate of
65.1% for the top choices und 88.8% for the top 3

Table 3 Features of the tusk

Number of words

Number el rules

Nutsner of ssatesin LR

Pheneme perpiexity

Entropy/ phoneme

e number of 7o
es/ phrase

Ave

Table 4 Phrase recognition rates

fis l

Rank o :

1 SR J a0 | B4.4 I &5

2 AU 0l ! Ts

3 T 6 ‘ by F

4 517 5 [ =60 |

=1 S BLI { Qg “‘\
G~ 10 ! ¢ | 3 - ‘
11~15 | 574 | =7 1 |
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choices were obtained.

craining tokens extracted from continuous speech was
confirmed through this experiment.
Typical errors are as follows:

| Substitution errors between 'n
exssocosaNka-no —saNka-mo
SNolei-no/—/syolel-mo. .

I hese errors occurred due to the fact that the number

of 'm and ‘n/ phoneme tokens for incremental train-

ing was too small (17 okens for ‘'m and 13 tokens

for sn’t compared with the original training tokens

extracted from training words (1000 for “m/ and 460

for n

-

and /m/.

Phoneme nsertion errors.
ex, o eyvuusho -+ zyuusho-o, .
happyou'— "happyou-o0’
[hese errars occurred due o difficulty of precise dura-
tion contral a1 the end of the utterances.

6. Extensions

In this section, we describe extensions in the
TDNN-LR speech recognition system @ robusiness for
variations of speaking manner, speaker-adaptation
and speaker-independent phonenie recognition.

f. 1 Neural Newtwork Architectures for Robust Speech
Recognition

Until now, Time-Delav Neural Networks
(TDNN) architecture has been applied 10 several
speaker-dependent recognition stages. such as phoneme
recognition (described in Sect, 21, Japanese phoneme
spotting (in Sect. 3). and  the TDNN-LR  large-
vocabulary conminuous speech recognition system with
integrated training for spotting Japanese phonemes (in
Sect. 41 11 we extend these recognition methods based
on TDNN 10 a continuous. speaker-independent
speech recopnition system. a novel robust recognition
strategy should be developed. This section introduces
several novel TDNN architectures for robust speaker-
independent. continuous speech recognition'#,

One novel architecture for a Frequency-shift-
invariant TDNN (FTDNN) is based on the frequency-
ume-shift-invariance as well as  the time-shift-
invariance by constructing the same weighting values
hetween the input laver and the hidden layers of the
TDNN. Speech features from the input layer of the
FTDNN gre individually extracted along the time-axis
and the mel-scaled frequency-axis by cach correspond-
g tirst hidden laver. The exwracted features are then
integrated into a single second hidden layer. The final
decision 15 made based on the activation patterns
whose property is invariant from both the time- and
frequency-shift of input phoneme tokens,

Another novel architecture 15 a Block-Windowed

Theretore, the efficiency of
adaptive incremental training using a small number of

LARGE VOU ARL LARY CONTINUOLS SPEECH RECOGRITION
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NN (BWNN), based on windowing each layer of the
NN with local time-frequency windows, This architec-
ture makes it possible for the NN 1o capture global
features from the upper lavers as well as precise local
features from the lower lavers, becuuse the local win-
dows in the upper lavers can integrate more global
features than those in the lower lavers. A five layered
BWNN is constructed for a phoneme recognition
experiment. These architectures vielded significantly
better recognition performance than the original
1' DNN (20,021 I-.

6.2 Speaker-Adaptation Using Neural Networks

Speaker-adaptation is one good approach o 4
speaker-independent recognition problem. It 1s necces-
sary to use a small amount of training data uttered by
an input speaker to adapt a speech recognition system,
A speaker-adaptation technique using neural networks
have been proposed™. It is also possible to use
segmental speech for speaker-adaptation by building a
mapping [unction from an input speaker 1o a standard
speaker. We proposed a segmental approach using
neural network identity mapping as 4 supervised learn-
ing method™. In this approach, segmental speech
including a phoneme or syllable can be mapped
between tweo speakers through a neural network and
DTW matching method™""™, This mapping network
can be used as a front end of the TDNN-LR speech
recognition system™, This technique is being applied
to other phoneme categories including all consonants
and phonemes.  Also. an unsupervised speaker-
adaptation technique using neural networks is being
investigated™.

6.3 Speaker-independent Recognition

In this section, we compare several TDNN archi-
tectures applied to speaker-dependent and  mult-
speaker’s phoneme recognition with respect 1o their
capabilities in a speaker-independen; vecognition
problem.

We verified performance of several architectures:
(1 )single TDNN, { 2)5ID (Stimulus Identification)
network, (3 )Meta-Pi network, (4 )Modular TDNN
and (5 )Modular Speaker 1D network. where the
single TDNN is an original architecture, the SID
network is constructed by both cach speaker’s module
and a speaker 1D module which selects outputs in each
speaker’s module, the Meta-Pi network is reported as
the network mast suitable for multi-speaker phoneme
recognition'®, However, it has not been demonstrated
how the Meta-Pi network is cffective for a speaker
independent phoneme recognition problem.  Further-
more, two novel modular TDNN architectures (4] &
( 5)) are proposed to improve the performance. The
modular TDNN is a network which is construcied by
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integrating cach speaker’s module (ie. a single
TODNNI trained on the first stage. and retrained on the
second stage to recognize each phoneme., regardless ol
training speakers.  The Modular Speaker 1D npetwork
comprises of o speaker 1D module in addition to the
Modular  TIDNN. thus explicidy  classifving  each
speaker 1D as 1 the Meta-Pi network.

Specker-independent phoneme  experiments for
recognizing voiced stops ‘b, d, g/ using six and twelve
training speskers showed high recognition rates of
Y209 tor the modular TDNN and 935 6%, respectively
for the Modular Speaker 1D network. These results are
significantly better than the rates of 82.0% and §3.9%,
respectively for the Meta-Pionetwork. As a result, it is
found that the Mets-Pi architecture suitable for muin-
spegker recognition s not necessarily robust for g
speaker-independent rvecognition task,  The recogni-
tion rate tor the Modular Speaker [D network nearly
matches the speaker-dependent recognition rate of
URO9 for the single TDNNFOE

7. Conclusion

We described un integration of speech recognition
und language processing.  The speech recognition part
consists of the Large Phonemic Time-Delay Neurul
Networks (TDNNs) which can automatically spot all
24 Jupunese phonemes with an excellent spotting rate
of YE.0% by simply scanning among an mnput speech
along with 1t The language processing part is made up
ol # predictive LR parser which predicts subsequent
phonemes hased on the currently processed phonemes.
The TDNN-LR hyvbrid recognition svstem provides
Jarge-vocabulary and continuous speech recognition.
Two kinds of recognition experiments ie. large-
vocabulary isolated word recognition and continuous
speech recognition were perlormed using the TDNN-
LR method  Speaker-dependent recognition rates ol
92.6% for the first ¢hoices and 97.6% for the top twoe
choices were obtained for 3240 Japanese commaon
words, and rates of 65 1% for the brst choices und 88.8%
within the titth choices were atiained for phrase recog-
nitian. In the case of continuous speech recognition.
adaptive incremental TDNN training using a small
number of continuous training tokens is found to be
very cllective tor adaptation of speaking manners.

We also proposed  several new  connectionist
approaches as extensions of the TDNN-LR speech
recognition svstem o O 1 itwo proposed NN architec-
tres (FTDNN  and  BWNN] provided  robust
phoneme recognition performance on variations of
speaking manner, |2 1a speaker-adaptation technigue
can be realized using a4 NN mapping function between
input and standard speakers and {3 ) the Modular
Speaker 1D architecture provided high phoneme recog-
mition  pertormance  that nearly  matches  speaker-
dependent recognition pertormance. These technigues

I TR ASSAL TIONS Vil | LT HLs

should be implemented in the TRDNN-LR mcthod in
the future.
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