
Multimodal Error Correction with Natural Language and Pointing Gestures

Stefan Constantin Fevziye Irem Eyiokur Dogucan Yaman Leonard Bärmann
Alex Waibel

Interactive Systems Lab, Karlsruhe Institute of Technology
Adenauerring 2, 76131 Karlsruhe, Germany

stefan.constantin@kit.edu

Abstract

Error correction is crucial in human-computer interac-
tion, as it can provide supervision for incrementally learn-
ing artificial intelligence. If a system maps entities like ob-
jects or persons with unknown class to inappropriate exist-
ing classes, or misrecognizes entities from known classes
when there is too high train-test discrepancy, error correc-
tion is a natural way for a user to improve the system. Pro-
vided an agent with visual perception, if such entity is in
the view of the system, pointing gestures can dramatically
simplify the error correction. Therefore, we propose a mod-
ularized system for multimodal error correction using nat-
ural language and pointing gestures. First, pointing line
generation and region proposal detects whether there is a
pointing gesture, and if yes, which candidate objects (i. e.
RoIs) are on the pointing line. Second, these RoIs (if any)
and the user’s utterances are fed into a VL-T5 network to
extract and link both the class name and the correspond-
ing RoI of the referred entity, or to output that there is no
error correction. In the latter case, the utterances can be
passed to a downstream component for Natural Language
Understanding. We use additional, challenging annotations
for an existing real-world pointing gesture dataset to evalu-
ate our proposed system. Furthermore, we demonstrate our
approach by integrating it on a real-world steerable laser
pointer robot, enabling interactive multimodal error cor-
rection and thus incremental learning of new objects.

1. Introduction
Generalization is a key strength of human intelligence.

Humans can understand words which they have never heard
by transferring the meaning from words with similar sound
or context. In the domain of natural language processing,
neural approaches are state-of-the-art because they have
a comparable ability to generalize from similar examples.
However, sometimes this generalization is too broad, and a
new phrase or word is assigned to a wrong meaning. In this

YesBring me the forky No, I mean this one
1 3 5

6I will bring this Is it this object?
2 4

Figure 1: We tackle the task of multimodal error correc-
tion: A user gives a command (1) involving a potentially
unknown object, which is misinterpreted by the system (2).
In our showcase, the system is a small robot with a laser
pointer (see Section 7). Because of the error, the user per-
forms a multimodal correction through language and point-
ing gesture (3). The system then asks for confirmation (4),
and if this is approved (5), the resulting information is used
to perform the action with the correct object and incremen-
tally learn the new object’s name (6).

case, a correction of the system is necessary. For example,
a system could generalize the word “forky” (which is a toy
staring in an animation movie) to the concept “fork”. But
if a user wants the “forky”, a robot should actually bring
the “forky” and not a fork. From the user’s viewpoint, a
natural and easy way to correct the system is to use natural
language to tell the system that something is not correct and
to visually point at the correct object so that the robot can
learn its appearance. An example of such scenario is shown
in Figure 1.

In this work, we tackle this problem by proposing a sys-
tem with the following three components: pointing line gen-
eration, region proposal, and multimodal error correction.
The pointing line generation is responsible for detecting the
presence of a human pointing gesture from the image/video
input, and computing the pointing line in case a gesture is

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

1976



detected. Region proposal is utilized to find the Regions of
Interest (RoIs) of candidate objects, as these are intersected
with the pointing line to deliver pointing target candidates.
If target candidates are available, they are forwarded to the
multimodal error correction component. This component
combines the information from vision and natural language
to decide whether there is a correction and if that is the
case, disambiguate the user’s correction utterance. The re-
sult of the multimodal error correction module can then be
used to trigger incremental learning of the new object, given
its referring expression (word/phrase) as well as the visual
grounding (RoI image).

We present the following contributions: First, we intro-
duce a system for multimodal error correction, combining
natural language and pointing gestures. Second, to assess
the performance of multimodal error correction, we col-
lected a test dataset of challenging natural language utter-
ances that augment the pointing video dataset published
in [10]. Third, we present extensive evaluation results of
our individual components and the overall approach. Fur-
thermore, we demonstrate the usefulness of the system by
a showcase application on a small real-world laser pointer
robot.

2. Related Work

2.1. Pointing Gesture and Line Detection

Pointing gestures are being used by researchers to im-
prove human-robot interaction. There are two main types
of approaches for recognizing pointing gestures: those that
use a stereo camera or Kinect-based input to estimate 3D
coordinates [24, 35, 34, 27, 20, 5, 16, 14] and those that use
RGB camera input and estimate pointing direction based on
2D coordinates [43, 39, 21, 33, 32]. Different algorithms
are used for pointing recognition, such as Hidden-Markov-
Models-based [35, 34], probabilistic approaches [12, 46],
and deep-learning-based methods [5, 20, 33, 32]. After rec-
ognizing a pointing gesture, various body parts such as the
hand, forearm, and face can be used to calculate the line of
sight between them. Several different approaches have been
used to track pointing gestures, such as using dense dispar-
ity maps [24, 35], skin-color classification [35], and multi-
view cameras [25]. Recently, deep-learning-based models
have become more useful for both 3D and 2D pointing
recognition. In these approaches, off-the-shelf models are
used to calculate 3D vectors, estimate human body pose,
and detect target objects. Azari et al. [5] primarily focused
on detecting face and hand areas, while Hu et al. [20] used
the estimation of human body pose to determine the point-
ing line using eye and wrist coordinates. In [33], a pipeline
was built using inputs from an RGB drone camera, where
the OpenPose model [7] was used to estimate human body
pose and a YOLO-based detector [40] was used to identify

target objects. In their subsequent work [32], the authors
expanded on this approach by utilizing a monocular simul-
taneous localization and mapping algorithm to generate an
unscaled point cloud, which allowed them to estimate the
depth coordinates of both the hand and target objects using
estimated 2D coordinates and camera calibration.

2.2. Multimodal Models

The fusion of visual and language input to one output is
researched in a lot of studies [6, 19, 2], but these systems
are tailored to one specific output task.

The VL-T5 model described in [9] offers an architec-
ture that multiple tasks like VQA, Visual Grounding, and
Grounded captioning can be handled by one model. It uses
only one Transformer model and the text input as well as
the vision input (36 RoIs) are fed into the Transformer
encoder and the output of the Transformer decoder is a
text sequence. It uses 220 million parameters. A multi-
task pre-training (multimodal language modeling, visual
question answering, image-text matching, visual grounding,
and grounded captioning) can improve the performance for
data-scarce tasks. PaLM-E [17] uses a similar approach by
using only the Transformer decoder, but with its 562 billion
parameters, it is much larger than the VL-T5 model. Fur-
ther multimodal large language models are GPT-4 [36] and
LLaVA [30].

2.3. Combining Pointing and Language

Chen et al. [8] introduced Embodied Reference Under-
standing. The idea is to benefit from a natural language re-
ferring expression in conjunction with a pointing gesture.
Besides, a dataset that contains video and text was pub-
lished. However, the authors focused on single-round ref-
erence understanding and also guided annotators to provide
unambiguous referring expressions which are the main dif-
ferences to our work and also with [10]. In [45], the au-
thors proposed the Reasoning from Your Perspective model
that uses a depth estimation map to acquire 3D coordinates
in order to convert it to an embodied 3D coordinate by as-
suming the sender’s position as the origin. Thus, the pro-
posed method is able to model the relations between the
objects, the sender and the receiver. Inspired by [8], the
authors in [28] proposed a method that uses a CNN for
embedding the visual input, BERT [15] for embedding the
language input, and a Transformer model [52] for the fu-
sion of both modalities. The main contribution of this pa-
per is to benefit from the so-called virtual touch line which
describes the line from the head pose instead of using the
elbow-wrist line. According to the experimental results, it
is found that the head pose has more robust and accurate
information about the pointing than the elbow-wrist line.
Therefore, the performance is increased compared to [8].
Finally, in [10], the authors propose an interactive, multi-

1977



modal, task-oriented robot dialog system that also benefits
from the pointing line generation to localize the referred ob-
jects. One of the main contributions of it is to provide an it-
erative approach to apply correction for enhancing the per-
formance. Moreover, the authors collected and published
an unconstrained test dataset that contains 222 videos. [10]
is the most related paper to our work. However, our work
differentiates from [10] in the different ways to be able to
recognize unknown objects: (1) we benefit from a Region
Proposal Network (RPN) to recognize the objects beyond
the small set of known objects in the MSCOCO dataset and
object detection models; (2) we are able to better disam-
biguate the objects by using a feature vector instead of the
class name for an object and thereby can utilize descriptions
like the color that are necessary for unknown objects.

2.4. Interactive Teaching of New Objects

In [18], a system can learn new objects by a user show-
ing them and using natural language, but the objects must
be shown to the system, to simply point at them is not pos-
sible. In contrast, in [53], a robot learns new objects by a
user that is pointing at the new objects. Compared to our
work, there is no interaction with natural language. In con-
trast, [51] combine pointing gestures and natural language
to learn new objects, but the process is initiated by the robot.
The process of learning new objects can be initiated by the
user in [4] by explaining to the robot an object which the
user is pointing at. However, the user cannot correct the
robot. We argue that, in real-world scenarios, the user does
often not know the internals of the robot’s knowledge. Thus,
it is necessary to correct the robot post execution instead of
teaching objects in advance. Systems that implement er-
ror correction are presented in [47, 48, 11, 50], but none of
these works explore the possibility of using pointing ges-
tures for multimodal error correction.

3. Methodology
3.1. Overview

Our goal is to perform multimodal error correction. We
thus have as input the most recent user utterances u1, u2

(where u2 is the latest one), as well as the current camera
image I (or the camera video V = (I1, ..., IN )). u2 can ei-
ther be a correction of the initial utterance u1, i. e. u2 = c,
or it can be another independent command, i. e. u2 = u′.
We define Pn = (u1, u

′) to be a pair of independent utter-
ances, and Pc = (u1, c) to be a pair involving a correction.
Each image I shows a set of objects OI = {o1, ..., oM},
and can either show a human pointing at the target object
op, or no such gesture.

The multimodal error correction system M is sup-
posed to behave as follows: In case there is no correction,
the model is supposed to detect that, i. e. M(Pn, I) =

no correction, and the utterance u′ can be passed to a down-
stream component for Natural Language Understanding,
e. g. to trigger appropriate actions. Afterwards, u1 := u2

and the system waits for the next utterance.
If there is a correction, M(Pc, I) = (op, l), where l is the

label used in u1 to refer to op. The resulting pair (op, l) can
be passed to another component for incremental learning of
the novel object. For the scope of this paper, as we focus
on multimodal error correction, we assume that a pointing
gesture is always present when there is a correction. After-
wards, u2 is dropped and u1 is kept so that the next utterance
can either correct again or be independent.

3.2. Pointing Line Generation and Region Proposal

Pointing recognition is the process of recognizing and
interpreting human gestures where an arm and index finger
is extended in a specific direction to indicate an object or
location by a subject. In order to recognize which object
is pointed at by a subject, several different steps are nec-
essary. The first step is to detect and track the hand. By
using the detected hand’s coordinates and tracking informa-
tion, the intended pointing moment can be detected. For
this, inspired by [10], we train a YOLOv5 model [40, 23].
Since recent studies have shown that using an additional
classifier for hand classification works better than training
an object detector considering the hand label [10], we train
a lightweight MobileNetV2 model [42] to learn hand classi-
fication by using the detected and cropped hand, which we
obtain with the YOLOv5 hand detection model, as an input.
According to the hand detection and classification outputs,
we consider the movement of the hand in the video in be-
tween the frames and employ a decision algorithm to decide
the start and end time of the pointing movement. For this,
the stable hand in k consecutive frames means the pointing
has started. k is a hyperparameter that we empirically set to
10.

After decision of pointing frames, next step is to deter-
mine which object or objects are considered pointing tar-
get candidates. For this, we propose to use a Region Pro-
posal Network (RPN) to detect the candidate objects in the
scene. We chose the RPN that was proposed in the Faster
R-CNN object detection method [41], which is widely used
in computer vision for object detection. The purpose of this
component is to generate a set of RoIs, which are candidate
object bounding boxes that may contain an object. An RPN
takes an image as input and produces a set of object pro-
posals as output. The RPN operates on a convolutional fea-
ture map that is produced by an initial convolutional neural
network (CNN) that processes the input image. The RPN
slides a small, fixed-size window over each location in the
feature map, and for each window location, it generates a
set of K anchor boxes of different scales and aspect ratios
centered at that location. For each anchor box, the RPN

1978



Hand detection (YOLOv5)
and Hand Side Classifier

(MobileNetV2)

Apply hand pose
estimation (OpenPose)

RPN (Faster R-CNN) Pointing Line and filtered RoIs

Multimodal
Error Correction

(VL-T5)

Pc:
(“please put this Golden
Delicious into the bowl“,
„the red-yellow one“)

Input Image:

textual output:
Golden
Delicious

RoI output:

Figure 2: Information flow for an input sample including a correction. In case there was no correction, there would be no
pointing line and therefore no RoIs are given to the multimodal error correction component, the textual output would be “no
correction” and there would be no RoI output

predicts two scores: the probability that the anchor box con-
tains an object, and the coordinates of the bounding box that
best fits the object if there is one. It generates these scores
by applying a fully connected layer to the features within
each window. Then, these predicted scores are used to rank
the anchor boxes by their likelihood of containing an ob-
ject. The top-K anchor boxes with the highest objectness
scores are selected as region proposals, and then passed on
to a subsequent network for further refinement and classifi-
cation. The result is a set R = {r1, ..., rK} of RoIs, where
each ri consists of bounding box coordinates and the fea-
tures associated with that RoI. Because of its ability to pre-
dict bounding boxes for candidate objects without limitation
to known object classes, introducing an RPN (instead of ob-
ject detection like in [10]) is an important step to go beyond
known objects in the pointing region proposal task.

After we detect the candidate objects in the scene by our
RPN (see Figure 2), using detected hand crop, we predict
the hand pose with a pre-trained OpenPose pose estimation
model [7] to localize the finger points to draw the pointing
line. The finger provides a more accurate and robust point-
ing line estimation compared to other points such as elbow
and wrists, although the hand pose estimation model may
make wrong or less accurate predictions due to the difficulty
of the pose as well as the lighting and resolution conditions.
Then, the bounding boxes from the RPN overlapping with
the estimated pointing line are selected as pointing candi-
date objects. However, due to the difference between the
viewing perspective of the person and the camera as well
as the pose, the line may not be precisely correct. In or-
der to mitigate this problem, we propose to use a tolerance
area while drawing the line from the finger. For this, we
draw lines to adjacent the main line inside a predefined an-
gle range. Afterwards, we choose the overlapping candidate

object boxes with the resulting area, see Figure 2. However,
as can be seen from Figure 2, we do not draw these tolerance
lines as long as the original line. We empirically found out
that the error caused by perceptual disorder is likely to oc-
cur more frequently for the objects that are close to the hand
rather than the objects that are far from the hand. Therefore,
when applying the tolerance area, we consider this aspect
and shorten the lines based on the angular distance from the
main line.

3.3. Multimodal Error Correction

For the multimodal error correction, we propose to fine-
tune a VL-T5 model [9] with a dataset as described in Sec-
tion 5. In the following, we describe the intended behavior
of the model, as induced by training on that dataset. Note,
however, that, since the model is a neural network, there
are in fact no hard-coded rules in the system. VL-T5 is
pre-trained in a multi-task setting, where each task is iden-
tified using a task-specific input prefix. Its pre-training is
also multimodal, which means that the network receives
both text as well as features of multiple images. In our
case, the input to the model is constituted by 1) the pre-
fix “correction visual grounding”, 2) the text of the last two
utterances u1, u2 of the user, and 3) the pointing candidate
RoIs R = {r1, ..., rK} (i. e., their bounding box coordi-
nates and their features). First, the system detects if there is
a correction. If no correction is detected, the textual output
t = “no correction”, stating that the most recent utterance is
not a correction of the previous one. In contrast, if a correc-
tion is detected, there are two outputs: first, the ID token of
the RoI rp̂ that is most probably pointed at (given the cues
from language and vision) and second, the name l of that
entity as textual output, i. e. t = l. The name should be
the one used in u1 (i. e. not the correction) that lead to the

1979



erroneous actions. When possible in the deployment sce-
nario of the system, we add another level of interactivity
to confirm the result before triggering an incremental learn-
ing component. For instance, this can be achieved by the
system showing the user the cropped image of the output
RoI on its display and asking whether this is correct. There
are robots like Pepper [37] and ARMAR-6 [3] that have dis-
plays, or the robot can point at the object with a laser pointer
(see Section 7). If the user does not confirm the result, the
wrong RoI rp̂ is removed from R and the component is re-
run again. This procedure can repeat until the correct RoI
rp is found, R is empty (in that case, the system could ask
the user to do the pointing again) or the user aborts the task
by natural language. In Section 6.2, we evaluate up to two
re-runs.

So far, the system described deals with a single image I
of a human pointing gesture. A more realistic but also more
complex scenario is handling a video V = (I1, ..., IN ) in-
stead (in this work, this only applies to the test dataset, see
Section 5). In this case, we compare four approaches for
deciding on the overall result. First, we select the middle
frame of all frames of the longest consecutive pointing se-
quence (if the number is even, we chose the lower one) and
use only the results of this frame. We call this approach
“middle frame”. The second approach also uses the mid-
dle frame, but with a reduced sequence of the first n frames
where a pointing gesture is detected. If less than n frames
are in the pointing sequence, all frames are used, i. e. we use
I⌊min(N,n)/2⌋. This approach is called “middle frame of the
max. first n frames)” and aims to simulate an online system,
which is desirable as it is unnatural to first finish the point-
ing and then get a system answer. The last two approaches
average the individual results from multiple frames. Recall
that for each frame Ii with i ∈ {1, ..., N}, the model pro-
duces a textual output ti (either “no correction” or object
name li) and, if a correction was detected, an RoI rp̂,i is
outputted. The third approach uses all frames of the longest
consecutive pointing sequence of the pointing video V . The
overall textual output is decided by simple majority vote
over all ti. For averaging the output RoIs over all frames,
the RoIs are clustered. For every RoI, it is checked if there
is already a cluster where the RoI has an IoU higher than
the threshold and if yes, it is added to this cluster. If not,
a new cluster is created. Then, the largest cluster is se-
lected, and all RoIs therein are averaged to an RoI bounding
box that is the output of the system. We call this approach
“averaged frames”. The fourth approach is similar to the
third approach, except that, as approach 2, a reduced point-
ing sequence of the first n frames where a pointing ges-
ture is detected is used to simulate an online system, i. e.
i ∈ {1, ...,min(n,N)}. This approach is called “averaged
frames of the max. first n frames”. To average RoIs makes
only sense for a static camera.

4. Implementation

For the hand detection and hand classification, we
employ the official PyTorch [38] implementation of
YOLOv5 [23] and the TorchVision [31] implementation of
MobileNetV2 [42] models, respectively. We use the offi-
cial Python implementation of OpenPose [7]. For the RoI
feature vector generation, we utilize the Detectron2 [54] re-
implementation [49] in PyTorch that uses the same model
and weights as the Caffe VG Faster R-CNN provided in
bottom-up-attention [1]. For the multimodal error correc-
tion, we use the PyTorch code provided with [9]. Instead of
using 36 RoIs everytime, we use the RoIs provided by the
pointing line generation and region proposal component.

5. Dataset

5.1. Pointing Line Generation and Region Proposal

To train our MobileNetV2 [42] hand classification model
and YOLOv5 [40, 23] hand detection model, we employ
the 100k Frames version of the 100DOH dataset [44]. In
this dataset, there are almost 100k frames and around 189k
hand box annotations with the hand side labels. Since the
dataset is a large-scale unconstrained dataset, our hand de-
tection and classification models that were trained on this
dataset are robust against challenging real-world conditions.
On the other hand, for the RPN, we employ the pre-trained
model without further fine-tuning.

5.2. Multimodal Error Correction

Our dataset for training and validating the multi-
modal error correction component is based on the EPIC-
KITCHENS-100 dataset [13] for the textual data and the
MSCOCO [29] dataset (data split from 2017) for the visual
data. An annotation is a textual description of the action in
the video, e. g. “put cup into cupboard”, that we re-purpose
as a robot command. There is also metadata like the set of
objects and their classes used in the annotations. Every im-
age of MSCOCO is annotated with bounding boxes, each
associated with a category label for the object depicted in-
side that bounding box. For our dataset, first, we create a
mapping between the objects in EPIC-KITCHENS-100 and
the category labels of MSCOCO. We were able to find 29
MSCOCO category and EPIC-KITCHENS-100 class pairs.
Subsequently, we use this mapping to create subsets of
EPIC-KITCHENS-100 and MSCOCO, removing samples
that do not include one of the mapped classes/categories.

Each sample in the dataset needs to consist of: 1) textual
input, i. e. either an utterance pair Pc involving a correction
or a pair Pn without a correction, 2) visual input, i. e. a set
R of RoIs, 3) a textual target t, which is either the object
name l or the text “no correction” and 4) in case there is a
correction, a pointing target RoI output rp.

1980



To construct the textual input data (i. e. Pc, Pn, t)
for our model, we start with the annotations of the EPIC-
KITCHENS-100 subset. Since we want to be able to train
the system to recognize unknown objects, we apply one the
following three strategies (uniformly at random) for mod-
ifying the textual description of the object: replacing the
noun with a brand name, putting a brand name before the
noun, or leaving the noun unchanged. The brand names
have no semantic connection to the object, but are a straight-
forward way to introduce rare words. The modified tex-
tual description is used as u1. To construct a correction ut-
terance c, we define 14 templates for the training dataset
(e. g. “this is a LABEL”) and with a probability of 50 % we
randomly select (equally distributed) one of four prefixes
(“no,”, “look,”, “i meant”, and “please,”). The validation
dataset is generated using three separate templates that dif-
fer from the templates of the training dataset. Some tem-
plates make use of an “attribute” placeholder that is filled
with an attribute value assigned to the bounding box of the
image (which is added in a next step). These attributes
are classified by the Detectron2 model [54] with the Caffe
VG Faster R-CNN weights provided in bottom-up-attention
[1]. There are 400 attributes such as “black” and “round”.
The object’s textual representation is used as the textual tar-
get t = l for the model. For every annotation in EPIC-
KITCHENS-100, we form multiple correction pairs Pc by
combining the generated u1 with 5 and 1 randomly selected
correction templates for the training dataset and validation
dataset, respectively. In addition, we augment the u1 with
different patterns to have more natural language variety, be-
cause all annotations start with the verb. We use different
patterns for the training and validation dataset. Further-
more, since we also need samples without error correction,
we take all these generated u1 and shuffled them to form
pairs Pn of independent u1, u

′.

After generating the textual data, we combine textual
and visual data. We use up to 10 bounding boxes of ev-
ery image of the MSCOCO dataset and each of them seeds
a separate dataset example. For each bounding box, we se-
lect some Pc from the generated utterance pairs where the
object class associated with the sample maps to the cate-
gory of the bounding box. The selected Pc is then removed
from the set of generated utterances, but if that set becomes
empty, we reset it to its initial state. Because the pointing
component might recognize any number of RoIs including
zero (i. e., the pointing gesture must be improved), we must
simulate this for the dataset to train the multimodal error
correction. With a probability of 20 %, we combine Pc with
zero RoIs and in the remaining 80 %, we randomly (equally
distributed) add 1 to 35 additional RoIs (generated by our
RPN). From there on, the reference bounding box (that
seeded the sample) is treated as rp and is added to R like
any other RoI. If we add more than one RoI, we randomly

choose its input sequence position. Thus, we now have a
complete dataset sample of Sc = (Pc, R, l, rp), where l is
defined by u1. Every time we add such sample with a cor-
rection to the dataset, we also add one without a correction
to the dataset to train the system to be able to detect if there
is a correction or not. To gain robustness against false posi-
tives of the pointing recognition, with a probability of 50 %,
we add the same RoIs to such Pn sample as for Sc. That
means, we add a sample Sn = (Pn, R, “no correction”),
where R is either the same as for the corresponding Sc, or
the empty set.

In the end, we have 203 342 samples with a correction
and the same number without a correction in our training
dataset. The validation set is comprised of 7232 pairs each.

To test our component under real-world conditions, we
use the 182 videos with pointing gestures and the 40 videos
without pointing gestures from [10]. We added the follow-
ing labels to the dataset: For every video that shows a point-
ing gesture, four humans annotated two Pc pairs as well as
the reference bounding box rp. The videos without pointing
gesture were annotated with two Pn pairs by the same four
humans.

6. Evaluation
In this section, we will first evaluate the pointing line

generation and region proposal component described in
Section 3.2. Afterwards, we present results for multimodal
error correction (introduced in Section 3.3), which builds on
the results of the previous step.

6.1. Pointing Line Generation and Region Proposal

To evaluate the pointing line generation and region pro-
posal component, we checked whether the annotated refer-
ence RoI rp is included in the set of proposed RoIs R =
{r1, ..., rK}. For this, we use the Intersection over Union
(IoU) thresholds τ ∈ {0.25, 0.5, 0.75} and consider rp to
be included in R if ∃i : IoU(ri, rp) > τ , i. e. the IoU be-
tween one of the proposed RoI and the reference is higher
than the threshold τ . For the approaches that use multiple
frames, we consider it as included if the above criterion is
fulfilled for more than 50 % of the frames. The results are
presented in Table 1. The best approach is using only the
middle frame of the max. first 30 pointing frames where a
pointing gesture is detected where 62.26 % of the reference
RoIs are included in the proposed RoIs for an IoU threshold
of τ = 0.25, 55.10 % for τ = 0.5 and 42.42 % for τ = 0.75.

6.2. Multimodal Error Correction

After giving a test sample to our system, we have the
textual output t = “no correction” or, in case a correction is
detected, t = l and an output RoI rp̂. Given the annotated
target label l and reference RoI rp, we compute the follow-
ing evaluation metrics: First, we only want to evaluate the

1981



u1 = “please cut the tomatos using
the cutlery”

u2 = “the cutlery is this one”
l̂ = “knife” ̸= l = “cutlery”
rp ∈ R ∧ rp̂ ̸= rp

u1 = “I need you to pick up that
knapsack and put it on the ta-
ble.”

u2 = “This is the knapsack that I
asked”

l̂ == l = “knapsack”
rp /∈ R ⇒ rp̂ ̸= rp

u1 = “please fry the yellow fruit
one”

u2 = “that banana!”
l̂ == l = “yellow fruit”
rp ∈ R ∧ rp̂ ̸= rp

u1 = “Robot please look-behind
that laptop to find my keys”

u2 = “behind this laptop”
l̂ == l = “laptop”
rp ∈ R ∧ rp̂ ̸= rp

Figure 3: Failure cases from the test dataset; the predicted RoI rp̂ has a yellow bounding box with the label “PRED”, the
reference RoI rp has a green bounding box with the label “GT”, the detected hands have a cyan bounding box with the label
“hand”, the detected pointing hand has a green bounding box that covers the cyan bounding box, and the other RoIs on the
pointing line have blue bounding boxes

approach IoU 0.25 IoU 0.5 IoU 0.75
middle frame 60.06 % 54.55 % 40.22 %
middle frame of the
max. first 30 frames

62.26 % 55.10 % 42.42 %

averaged frames 57.85 % 53.44 % 39.12 %
averaged frames of the
max. first 30 frames

58.40 % 53.44 % 40.22 %

Table 1: evaluation results of the pointing line generation
and region proposal component, is the reference RoI in the
set of proposed RoI, evaluated with the IoU thresholds of
0.25, 0.5, and 0.75

textual output. For that, we compare t and t̂ to compute the
textual accuracy. Second, we want to evaluate the RoI pro-
posals separately. For that, we compute the IoU(rp, rp̂),
and report the RoI accuracy as the percentage of samples
surpassing a threshold τ of 0.25, 0.5, or 0.75, respectively.
Third, we want to evaluate the overall system with the com-
plete output accuracy, where we consider a sample to be
correctly solved if it is either detected correctly as “no cor-
rection” or both t = t̂ and IoU(rp, rp̂) > τ . For the cluster-
ing algorithm of the averaged frames approaches (see Sec-
tion 3.3), we always set the IoU threshold equal to the one
used for evaluating the RoIs.

The highest textual accuracy of 81.04 % is produced by
the approach that average the max. first 30 frames where
a pointing gesture is detected. The lowest accuracy with
79.01 % is only slightly worse (middle frame of the max.
first 30 frames where a pointing gesture is detected). The
middle frame approach (79.68 %) and the averaged frame
approach (80.81 %) have accuracies in between.

The evaluation of the proposed RoIs depends on the re-
sults delivered by the pointing line generation and region
proposal component. An RoI can only be outputted if it is
included in the RoIs proposed by the pointing line genera-

tion and region proposal component. Thus, for the two mid-
dle frame approaches, the results of the pointing line gen-
eration and region proposal component are an upper bound.
In contrast, for the average frames approaches, the results
in Table 1 are only an approximation of an upper bound,
since the evaluation of the pointing/RPN results is stricter
than the criterion used to average the result of the average
frames approaches: When evaluating the pointing/RPN re-
sult, the reference RoI must have sufficient IoU with one
of the proposed RoIs in more than 50 % of the frames. In
contrast, for the average frame approaches, it depends on
the largest cluster of the output RoI over all frames, and
whether the average of this largest cluster has sufficient IoU
with the reference RoI. Since the largest cluster might be
created by less than half of the frames, this criterion is less
strict. Pointing/RPN evaluation is performed with the 50 %
criterion so that it is possible (for a perfect multimodal er-
ror correction system) to build the largest cluster which can
fulfill the IoU threshold. If the component did not find the
reference RoI on the first try, up to two further tries were
done. In Table 2, the evaluation results of the RoI accuracy
on the examples of the test dataset involving a correction
are presented and in Figure 3 failure examples of the test
dataset are depicted. A correct example of the test dataset
is depicted in Figure 2. Again, the approach that averages
the max. first 30 frames where a pointing gesture is de-
tected performs best. For up to three tries, it has the best
performance (45.33 % (τ = 0.25), 38.31 % (τ = 0.5), and
29.86 % (τ = 0.75)) and for only one try and up to two
tries, it performs comparable to the other approaches.

Our evaluation results for the complete output accuracy
on the full test set are shown in Table 3. The numbers are
better than the results for RoI accuracy on the test set re-
stricted to examples involving a correction since our com-
ponent in all cases detected the “no correction” label cor-
rectly. This is favorable, as it is better to cautiously han-

1982



IoU 0.25 IoU 0.5 IoU 0.75
approach 1 try ≤ 2 tries ≤ 3 tries 1 try ≤ 2 tries ≤ 3 tries 1 try ≤ 2 tries ≤ 3 tries
middle frame 22.87 % 34.93 % 42.54 % 19.01 % 30.99 % 37.75 % 13.50 % 23.38 % 27.32 %
middle frame of the max. first 30 frames 22.59 % 33.80 % 40.00 % 18.73 % 28.73 % 34.08 % 15.43 % 23.66 % 26.48 %
averaged frames 22.31 % 34.37 % 43.38 % 18.46 % 30.14 % 37.46 % 14.33 % 23.66 % 28.73 %
averaged frames of the max. first 30 frames 22.59 % 35.77 % 45.35 % 18.18 % 30.70 % 38.31 % 14.60 % 25.07 % 29.86 %

Table 2: RoI accuracy on the examples of the test dataset involving a correction

IoU 0.25 IoU 0.5 IoU 0.75
approach 1 try ≤ 2 tries ≤ 3 tries 1 try ≤ 2 tries ≤ 3 tries 1 try ≤ 2 tries ≤ 3 tries
middle frame 34.76 % 42.44 % 47.63 % 31.83 % 39.50 % 44.24 % 27.77 % 34.09 % 36.79 %
middle frame of the max. first 30 frames 34.31 % 41.08 % 45.37 % 31.38 % 37.70 % 41.08 % 28.67 % 33.86 % 35.21 %
averaged frames 34.99 % 42.89 % 49.21 % 32.05 % 39.73 % 44.92 % 28.89 % 34.99 % 38.60 %
averaged frames of the max. first 30 frames 34.76 % 43.12 % 49.44 % 31.38 % 39.28 % 44.47 % 28.67 % 35.44 % 38.37 %

Table 3: Complete output accuracy on the full test dataset

dle corrections, in order not to correct something which is
already fine. The error correction component should only
improve the overall system and never decrease its perfor-
mance. The best two approaches are the ones that use aver-
aged frames, and both of them have similar results. There-
fore, we can choose the averaged frames approach of the
max. first 30 frames, since this is the more realistic sce-
nario: A user wants to see results while doing the point-
ing gesture and not after finishing it. The averaged frames
of the max. first 30 frames approach has a correctness of
34.76 % for only one try and 49.44 % for up to three tries
with the IoU threshold of 0.25 and 28.67 % for only one try
and 38.37 % for up to three tries (IoU threshold of 0.75).

7. Showcase Application
To demonstrate the use of our proposed system, we de-

ployed it on a real-world steerable laser pointer robot. It
is based on an open-source 3D-printed robot platform [22]
and has two degrees of freedom (azimuth and altitude).
Furthermore, we added an integrated camera and software-
controllable laser pointer on the head. We implemented a
simple control layer, that can approximately steer the head
to given camera image coordinates and then turn the laser
pointer on and off. That way, we can point at objects in the
scene by passing the center coordinate of their detected RoI
bounding box to the controller.

We deployed our proposed multimodal error correction
system in a modified variant: instead of passing on re-
sults not including a correction to a downstream NLU com-
ponent, we directly trained the NLU component into the
same VL-T5 network. This is straightforward as we have
only one intent the robot can perform (“point at some ob-
ject”) and thus only need to extract the relevant object. Vi-
sual grounding of extracted object names is done by a pre-
trained YOLO network [40, 23] if the object’s name is a
known class. Otherwise, a simple feature clustering ap-
proach is utilized for incremental object learning based on

the results of the multimodal error correction. A sample
scenario can be seen in Figure 1.

8. Conclusions
In this work, we show that it is possible to combine nat-

ural language and pointing gestures to perform multimodal
error correction. In particular, we present a system that
identifies the name of an unknown or misclassified object as
well as the corresponding RoI in the camera image. These
two outputs can be used for incremental learning of new ob-
jects. If an example does not involve a correction, our sys-
tem also detects this in 100 % of the test cases, and the cor-
responding utterances can be passed to another component
or trained into the same network in future work. That means
our proposed method adds value to an interactive robot sys-
tem without decreasing the performance. The overall cor-
rectness results of 34.76 % on the first try and 49.44 % for
up to three tries are a good step in the direction of a solid
component. One major problem is that the pointing line
generation and region proposal only finds the reference RoI
in 58.40 % of the cases. To improve the performance of the
pointing component, different region proposal approaches
like using [26] should be tested. Furthermore, different mul-
timodal large language models, like LLaVa [30], should be
evaluated to decrease the gap between the upper bound and
the actual results. In future work, we also want to use incre-
mental output from automatic speech recognition instead of
clean utterance pairs.

Acknowledgements. The research leading to these re-
sults has received funding from the Baden-Württemberg
Ministry of Science, Research and the Arts (MWK) as part
of the state’s “digital@bw” digitization strategy in the con-
text of the Real-World Lab “Robotics AI”.

This work has been supported by the German Federal
Ministry of Education and Research (BMBF) under the
project OML (01IS18040A).

1983



References
[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien

Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and
visual question answering. In CVPR, 2018. 5, 6

[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, and Mar-
garet Mitchell et al. VQA: Visual question answering. In
2015 IEEE International Conference on Computer Vision
(ICCV), volume abs/1505.00468. IEEE, dec 2015. 2

[3] Tamim Asfour, Lukas Kaul, Mirko Wächter, Simon Otten-
haus, Pascal Weiner, Samuel Rader, Raphael Grimm, You
Zhou, Markus Grotz, Fabian Paus, Dmitriy Shingarey, and
Hans Haubert. Armar-6: A collaborative humanoid robot for
industrial environments. In IEEE/RAS International Con-
ference on Humanoid Robots (Humanoids), pages 447–454,
2018. 5

[4] Pablo Azagra, Javier Civera, and Ana C. Murillo. Incremen-
tal learning of object models from natural human–robot in-
teractions. IEEE Transactions on Automation Science and
Engineering, 17(4):1883–1900, 2020. 3

[5] Bita Azari, Angelica Lim, and Richard Vaughan. Commodi-
fying pointing in hri: simple and fast pointing gesture detec-
tion from rgb-d images. In 2019 16th Conference on Com-
puter and Robot Vision (CRV), pages 174–180. IEEE, 2019.
2

[6] Michael Bett, Ralph Gross, Hua Yu, Xiaojin Zhu, Yue Pan,
Jie Yang, and Alex Waibel. Multimodal meeting tracker. In
Proceedings of 6th International Conference on Computer-
Assisted Information Retrieval (Recherche d’Information et
ses Applications) (RIAO ’00), pages 32–45, April 2000. 2

[7] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Realtime multi-person 2d pose estimation using part affinity
fields. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7291–7299, 2017. 2,
4, 5

[8] Yixin Chen, Qing Li, Deqian Kong, Yik Lun Kei, Song-Chun
Zhu, Tao Gao, Yixin Zhu, and Siyuan Huang. YouRefIt: Em-
bodied reference understanding with language and gesture.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 1385–1395, 2021. 2

[9] Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unify-
ing vision-and-language tasks via text generation. In ICML,
2021. 2, 4, 5

[10] Stefan Constantin, Fevziye Irem Eyiokur, Dogucan Yaman,
Leonard Bärmann, and Alex Waibel. Interactive multimodal
robot dialog using pointing gesture recognition. In European
Conference on Computer Vision, pages 640–657. Springer,
2022. 2, 3, 4, 6

[11] Stefan Constantin and Alex Waibel. Error correction and ex-
traction in request dialogs. In Proceedings of the 5th Inter-
national Conference on Natural Language and Speech Pro-
cessing (ICNLSP 2022), pages 2–11, 2022. 3

[12] Akansel Cosgun, Alexander JB Trevor, and Henrik I Chris-
tensen. Did you mean this object?: Detecting ambiguity in
pointing gesture targets. In HRI’15 Towards a Framework
for Joint Action Workshop, 2015. 2

[13] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Antonino Furnari, Jian Ma, Evangelos Kazakos, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and
Michael Wray. Rescaling egocentric vision. International
Journal of Computer Vision, 130(1):33–55, 2022. 5

[14] Shome S Das. A data-set and a method for pointing direction
estimation from depth images for human-robot interaction
and vr applications. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 11485–11491.
IEEE, 2021. 2

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics (NACL), 2019. 2

[16] Naina Dhingra, Eugenio Valli, and Andreas Kunz. Recogni-
tion and localisation of pointing gestures using a rgb-d cam-
era. In International Conference on Human-Computer Inter-
action, pages 205–212. Springer, 2020. 2

[17] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey
Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong
Huang, Yevgen Chebotar, Pierre Sermanet, Daniel Duck-
worth, Sergey Levine, Vincent Vanhoucke, Karol Hausman,
Marc Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch,
and Pete Florence. Palm-e: An embodied multimodal lan-
guage model, 2023. 2

[18] Hartwig Holzapfel, Daniel Neubig, and Alex Waibel. A
dialogue approach to learning object descriptions and se-
mantic categories. Robotics and Autonomous Systems,
56(11):1004–1013, 2008. Semantic Knowledge in Robotics.
3

[19] Hartwig Holzapfel, Kai Nickel, and Rainer Stiefelhagen.
Implementation and evaluation of a constraint-based multi-
modal fusion system for speech and 3d pointing gestures. In
Proceedings of the 6th International Conference on Multi-
modal Interfaces, ICMI ’04, page 175–182, New York, NY,
USA, 2004. Association for Computing Machinery. 2

[20] Jun Hu, Zhongyu Jiang, Xionghao Ding, Taijiang Mu, and
Peter Hall. Vgpn: Voice-guided pointing robot navigation for
humans. In 2018 IEEE International Conference on Robotics
and Biomimetics (ROBIO), pages 1107–1112. IEEE, 2018. 2

[21] Shruti Jaiswal, Pratyush Mishra, and GC Nandi. Deep learn-
ing based command pointing direction estimation using a
single rgb camera. In 2018 5th IEEE Uttar Pradesh Sec-
tion International Conference on Electrical, Electronics and
Computer Engineering (UPCON), pages 1–6. IEEE, 2018. 2

[22] JJRobots. Remotely controlled laser
pointer robot. https://jjrobots.com/

remotely-controlled-laser-pointer. 8
[23] Glenn Jocher, Alex Stoken, Jirka Borovec, NanoCode012,

ChristopherSTAN, Liu Changyu, Laughing, tkianai, Adam
Hogan, lorenzomammana, yxNONG, AlexWang1900, Lau-
rentiu Diaconu, Marc, wanghaoyang0106, ml5ah, Doug,
Francisco Ingham, Frederik, Guilhen, Hatovix, Jake Poznan-
ski, Jiacong Fang, Lijun Yu , changyu98, Mingyu Wang, Na-
man Gupta, Osama Akhtar, PetrDvoracek, and Prashant Rai.

1984



ultralytics/yolov5: v3.1 - Bug Fixes and Performance Im-
provements, Oct. 2020. 3, 5, 8

[24] Nebojsa Jojic, Barry Brumitt, Brian Meyers, Steve Harris,
and Thomas Huang. Detection and estimation of pointing
gestures in dense disparity maps. In Proceedings Fourth
IEEE International Conference on Automatic Face and Ges-
ture Recognition (Cat. No. PR00580), pages 468–475. IEEE,
2000. 2

[25] Roland Kehl and Luc Van Gool. Real-time pointing ges-
ture recognition for an immersive environment. In Sixth
IEEE International Conference on Automatic Face and Ges-
ture Recognition, 2004. Proceedings., pages 577–582. IEEE,
2004. 2

[26] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and
Ross Girshick. Segment anything, 2023. 8

[27] Yuhui Lai, Chen Wang, Yanan Li, Shuzhi Sam Ge, and De-
qing Huang. 3d pointing gesture recognition for human-
robot interaction. In 2016 Chinese Control and Decision
Conference (CCDC), pages 4959–4964. IEEE, 2016. 2

[28] Yang Li, Xiaoxue Chen, Hao Zhao, Jiangtao Gong, Guyue
Zhou, Federico Rossano, and Yixin Zhu. Understanding
embodied reference with touch-line transformer. In The
Eleventh International Conference on Learning Representa-
tions, 2023. 2

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: Common objects in context.
In Computer Vision – ECCV 2014, pages 740–755, Cham,
2014. Springer International Publishing. 5

[30] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning, 2023. 2, 8

[31] TorchVision maintainers and contributors. Torchvision: Py-
torch’s computer vision library. https://github.com/
pytorch/vision, 2016. 5

[32] Anna CS Medeiros, Photchara Ratsamee, Jason Orlosky,
Yuki Uranishi, Manabu Higashida, and Haruo Takemura. 3d
pointing gestures as target selection tools: guiding monocu-
lar uavs during window selection in an outdoor environment.
ROBOMECH journal, 8:1–19, 2021. 2

[33] Anna CS Medeiros, Photchara Ratsamee, Yuki Uranishi, To-
mohiro Mashita, and Haruo Takemura. Human-drone inter-
action: Using pointing gesture to define a target object. In
Human-Computer Interaction. Multimodal and Natural In-
teraction: Thematic Area, HCI 2020, Held as Part of the
22nd International Conference, HCII 2020, Copenhagen,
Denmark, July 19–24, 2020, Proceedings, Part II 22, pages
688–705. Springer, 2020. 2

[34] Kai Nickel, Edgar Scemann, and Rainer Stiefelhagen. 3d-
tracking of head and hands for pointing gesture recognition
in a human-robot interaction scenario. In Sixth IEEE Inter-
national Conference on Automatic Face and Gesture Recog-
nition, 2004. Proceedings., pages 565–570. IEEE, 2004. 2

[35] Kai Nickel and Rainer Stiefelhagen. Pointing gesture recog-
nition based on 3d-tracking of face, hands and head orienta-
tion. In Proceedings of the 5th international conference on
Multimodal interfaces, pages 140–146, 2003. 2

[36] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774,
2023. 2

[37] Amit Kumar Pandey and Rodolphe Gelin. A mass-produced
sociable humanoid robot: Pepper: The first machine of its
kind. IEEE Robotics & Automation Magazine, PP:1–1, 07
2018. 5

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 5

[39] Maria Pateraki, Haris Baltzakis, and Panos Trahanias. Visual
estimation of pointed targets for robot guidance via fusion of
face pose and hand orientation. Computer Vision and Image
Understanding, 120:1–13, 2014. 2

[40] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 2, 3,
5, 8

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 3

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 3, 5

[43] Boris Schauerte and Gernot A Fink. Focusing computational
visual attention in multi-modal human-robot interaction. In
International conference on multimodal interfaces and the
workshop on machine learning for multimodal interaction,
pages 1–8, 2010. 2

[44] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F
Fouhey. Understanding human hands in contact at inter-
net scale. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9869–9878,
2020. 5

[45] Cheng Shi and Sibei Yang. Spatial and visual perspective-
taking via view rotation and relation reasoning for embodied
reference understanding. In European Conference on Com-
puter Vision, pages 201–218. Springer, 2022. 2

[46] Dadhichi Shukla, Ozgur Erkent, and Justus Piater. Proba-
bilistic detection of pointing directions for human-robot in-
teraction. In 2015 international conference on digital image
computing: techniques and applications (DICTA), pages 1–
8. IEEE, 2015. 2

[47] Bernhard Suhm, Brad Myers, and Alex Waibel. Model-based
and empirical evaluation of multimodal interactive error cor-
rection. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’99, page 584–591,
New York, NY, USA, 1999. Association for Computing Ma-
chinery. 3

1985



[48] Bernhard Suhm, Brad A. Myers, and Alex Waibel. Mul-
timodal error correction for speech user interfaces. ACM
Trans. Comput. Hum. Interact., 8(1):60–98, 2001. 3

[49] Hao Tan. Pytorch bottom-up attention with de-
tectron2. https://github.com/airsplay/
py-bottom-up-attention, 2019. 5

[50] Niket Tandon, Aman Madaan, Peter Clark, and Yiming
Yang. Learning to repair: Repairing model output errors af-
ter deployment using a dynamic memory of feedback. In
Findings of the Association for Computational Linguistics:
NAACL 2022, pages 339–352, Seattle, United States, July
2022. Association for Computational Linguistics. 3

[51] Sepehr Valipour, Camilo Perez, and Martin Jagersand. In-
cremental learning for robot perception through hri. In 2017
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2772–2777, 2017. 3

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems 30, pages 5998–6008. Cur-
ran Associates, Inc., 2017. 2

[53] Sagar Gubbi Venkatesh, Raviteja Upadrashta, Shishir Ko-
lathaya, and Bharadwaj Amrutur. Teaching robots novel ob-
jects by pointing at them. In 2020 29th IEEE International
Conference on Robot and Human Interactive Communica-
tion (RO-MAN), pages 1101–1106, 2020. 3

[54] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 5, 6

1986


