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ABSTRACT

In this work, we propose several deep neural network ar-
chitectures that are able to leverage data from multiple lan-
guages. Modularity is achieved by training networks for ex-
tracting high-level features and for estimating phoneme state
posteriors separately, and then combining them for decoding
in a hybrid DNN/HMM setup. This approach has been shown
to achieve superior performance for single-language systems,
and here we demonstrate that feature extractors benefit sig-
nificantly from being trained as multi-lingual networks with
shared hidden representations. We also show that existing
mono-lingual networks can be re-used in a modular fash-
ion to achieve a similar level of performance without having
to train new networks on multi-lingual data. Furthermore,
we investigate in extending these architectures to make use
of language-specific acoustic features. Evaluations are per-
formed on a low-resource conversational telephone speech
transcription task in Vietnamese, while additional data for
acoustic model training is provided in Pashto, Tagalog, Turk-
ish, and Cantonese. Improvements of up to 17.4% and 13.8%
over mono-lingual GMMs and DNNs, respectively, are ob-
tained.

Index Terms— Deep Neural Networks, Multi-Lingual
Acoustic Modeling, Large-Vocabulary Speech Recognition,
Low-Resource Acoustic Modeling

1. INTRODUCTION

In recent years, neural networks have again become inherent
parts of state-of-the-art automatic speech recognition (ASR)
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systems. After first successful applications to phoneme recog-
nition [1], [2], as well as to continuous speech recognition af-
terwards [3], [4], were demonstrated about 20 years ago, neu-
ral architectures for acoustic modeling had been widely aban-
doned in favor of Gaussian mixture models (GMMs), that
often performed well enough and offer training algorithms
which are easy to parallelize.

Today, improved training algorithms, large amounts of
available reference data as well as parallel hardware in the
form of GPUs are fueling the development of larger and
deeper network architectures that can leverage the modeling
power of their sometimes billions of connections. It could
thus be shown that training deep neural networks (DNNs)
to predict context-dependent phonetic target states results
in acoustic models that achieve remarkable improvements
over GMMs when used in hidden Markov model based ASR
decoders [5], [6].

Besides their high modeling capacity, neural networks
have other desirable properties that can be exploited in speech
recognition systems. Usually, neurons and their trainable
connections are organized in multiple layers. Each layer can
be regarded as a representation of the input data that has
been optimized towards the network training criterion. This
allows for architectures in which some of those represen-
tations (layers) are shared between tasks, while others are
allocated exclusively to individual problems. Such networks
are amendable to joint training of shared and exclusive net-
work layers and may perform better on certain tasks since
the parameters in the shared layers can be trained with more
data. Recent work showed that neural network acoustic mod-
els with shared hidden layers can indeed benefit from being
trained on multiple languages [7], [8].

It is also possible to re-use learned intermediate represen-
tations in order to solve complex tasks more easily. This was
first explored in the context of phoneme recognition, where
layers of networks trained to predict only few classes were
re-used in a larger network that was trained to discriminate
between all classes [9]. Related ideas have been and are
still used to construct hierarchical architectures, e.g. for pre-
processing of speech features [10] [11], in which networks
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combine the outputs of previously trained networks or merge
them with different features. In more recent work, feature
extraction networks trained with a bottleneck layer were em-
ployed as modules for constructing large neural networks for
acoustic modeling, which resulted in significant gains over
training standard DNNs on acoustic features directly [12].

In low-resource settings, i.e. when only a small amount
of transcribed data is available for acoustic model training, it
becomes heard to obtain good speaker-independent acoustic
model networks. Unsupervised, layer-wise pre-training helps
in preventing large networks from overfitting on the training
set, but the relative gains achieved over GMM systems be-
come smaller as less data is available [13].

In the following, we will propose several architectures
that apply the ideas motivated above to exploit the availabil-
ity of training data in multiple languages in order to create
significantly better acoustic models for a low-resource target
language.

2. MODULAR ACOUSTIC MODELING

In this section, we describe our general approach to neural
network acoustic modeling with separate networks for fea-
ture extraction and prediction of phonetic target states, which
is motivated by the success of bottleneck networks in extract-
ing low-dimensional discriminative features for GMMs [14].
Although standard feed-forward networks are capable of han-
dling rich and highly correlated input such as raw images or
mel scale filterbank coefficients, it could be shown that DNN
acoustic models do benefit from from bottleneck features as
well [12].

2.1. Feature Extraction

Our feature extraction scheme follows the general approach
described in [15], which applies deep learning techniques [16]
to bottleneck feature (BNF) extraction. In the standard BNF
setup described in [14], a neural network with small hidden
“bottleneck” layer, placed between two larger hidden layers,
is trained to predict phonetic target states. The activations of
the units in the bottleneck can then be used as input features
for Gaussian mixture models.

In order to initialize the deep bottleneck feature (DBNF)
network, a stack of auto-encoder layers is first trained on
standard speech features in a greedy, layer-wise and unsuper-
vised fashion [17]. The auto-encoder layers can be converted
into a simple feed-forward network, and the architecture is
completed by adding a small bottleneck layer, another hidden
layer and the final output layer. The resulting network is
then trained to predict HMM states, which yields the final
bottleneck features in the small hidden layer.

Bottleneck feature

t

Acoustic

Shift over

Acoustic modeling

acoustic features

extractionfeatures

Fig. 1. Combination of bottleneck feature extraction and
acoustic model network.

2.2. Neural Network Acoustic Modeling

In most contemporary work, neural network acoustic models
are employed in a hybrid approach to compute acoustic scores
for hidden Markov models [3]. Scores are class conditioned
probabilities given a vector of acoustic features x, which
can be estimated from the posterior probabilities p(q|x) ob-
tained at the neural network output layer with Bayes’ rule as
p(x|q) = p(q|x) p(x) p(q)−1. The class priors p(q) missing
for maximizing p(x|q) are commonly estimated from the
available training data. In current setups, the phonetic classes
q are context-dependent phone states determined by stan-
dard clustering algorithms from previously trained Gaussian
mixture acoustic models [5].

The connection of bottleneck feature extraction and
acoustic model network as described in [12] yields a large
DNN in which the bottleneck network is shifted in the time
domain over a large input feature window (Fig. 1). While the
application of multiple copies of the same network at neigh-
boring feature windows introduces temporal invariance [1],
the dimensionality reduction performed by the bottleneck
layer makes shifting over many neighboring frames compu-
tationally feasible.

3. MULTI-LINGUAL ARCHITECTURES

We now describe possible approaches to multi-lingual neu-
ral network training within the modular acoustic modeling
framework described above. In particular, we focus on using
data from medium-sized corpora in multiple languages to im-
prove feature extraction networks for a low-resource setting
with only 10 hours of transcribed training data.

3.1. Shared Hidden Representations

As noted previously, neural networks offer the ability to share
intermediate (hidden) representations across different tasks.
This works particularly well for speech recognition, where
different languages may have distinctive sounds but may
also share acoustic cues (or combinations thereof) which can
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be learned simultaneously on many languages. Successful
demonstrations include training feature extraction networks
in which all layers are shared (target states are obtained from a
merged phone set) [18] or with one or more language-specific
layers at the network output [19], [7], [8]. Since most mod-
ern DNN acoustic models are pre-trained in an unsupervised
fashion, it is also possible to use multiple languages during
pre-training only. While pre-training has indeed been shown
to be language-indepedent [13], current algorithms hardly
benefit from adding more unlabeled data for acoustic model
training [20].

Here, we focus on training bottleneck feature extraction
networks with shared hidden representations and language-
specific output layers. The auto-encoders used to initialize
the hidden layers prior to the bottleneck are pre-trained on
multiple languages as well.

3.2. Target Language Adaptation

Another variant of sharing representations is the adaption of
previously trained layers to a new task. For multi-lingual net-
work training, this has been successfully applied to both bot-
tleneck feature extraction [21] as well as for acoustic model-
ing [22]. In addition to being straightforward to implement
it is also possible to obtain good acoustic models in a short
amount of time as the source networks for adaptation might
already be available from past experiments.

When adapting previously trained DBNF networks in our
setting, one approach is to simply fine-tune them by perform-
ing another training run in the target language before train-
ing the DNN acoustic model. Since the bottleneck layer is
connected to the acoustic model network, it is also possi-
ble to jointly train both networks by backpropagating errors
through the bottleneck layer. In this case, the DBNF network
is adapted to the target language without an intermediate su-
pervised training step.

3.3. Mono-lingual Network Modules

In a similar manner to what has been proposed in the past
for re-using networks that detected particular phonemes [9],
feature extraction networks trained on single languages might
also be used as modules. A possible architecture with two
bottleneck network modules is depicted in Fig. 2. Both net-
works are applied to the input features, and the bottleneck
activations are concatenated and repeated over neighboring
input feature windows.

In our framework, individual bottleneck networks can be
adapted to the target language as before by backpropagating
errors obtained at the first acoustic model layer. Furthermore,
the acoustic model can be connected to the input features by
different means, e.g. by adding another layer of hidden units
that observe to the whole input feature window. Those new
units are then connected to first layer of the acoustic model
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Fig. 2. Multiple feature extraction networks can be used as
modules that are applied in parallel to the input features.

network (Fig. 3). This concept was introduced in [9] as “con-
nectionist glue” and used to obtain information from the input
data that may be relevant for the current task but is ignored by
the modules originally trained on a different task.

3.4. Extension to Language-specific Input Features

Depending on the characteristics of the target language, it
may be desirable to use additional acoustic features that cap-
ture specific elements of the speech signal. For tonal lan-
guages such as Mandarin, where tonality is used to define lex-
ical meaning, features that extract pitch information from the
acoustic signal are of interest. Here, we investigate how to in-
tegrate fundamental frequency variation (FFV) features [23]
into multi-lingual architectures. Recent work demonstrated
their suitability for automatic speech recognition, especially
when used as input features for neural networks, on a larger
version of the Vietnamese corpus used here [24].

A straightforward approach is adding FFV spectrum fil-
terbank outputs to the input features on which the DBNF
networks have been trained. Even though adding those
features was shown to not hurt performance on non-tonal
languages [24], this might require the time-consuming re-
training of all feature extractors on the modified input feature

t
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Fig. 3. Architecture with glue units connected to the whole
feature window.
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Corpus Language Abbreviation Size
babel107b-v0.7 Vietnamese VIE 10h
babel104b-v0.4bY Pashto PUS 79h
babel106-v0.2f Tagalog TGL 73h
babel105b-v0.4 Turkish TUR 72h
babel101-v0.4c Cantonese YUE 120h

Table 1. Corpora used for multi-lingual network training.

space. Alternatively, extra features can be added alongside
bottleneck features trained on the common features or can be
integrated by adding glue units as discussed previously. This
means that only the acoustic model network for the target
language has to be trained (which has to be done in any case).

4. EXPERIMENTAL SETUP

4.1. Corpora and Baseline Description

We perform experiments with various corpora released in the
course of the ongoing Babel program [25] as listed in Table 1.
All corpora contain narrow-band, conversational telephone
speech from land lines as well as mobile phones. Decoding
was done on 2 hours of Vietnamese speech, while only 10
hours of transcribed data were provided for in-domain train-
ing. An additional 344 hours of data that could be used to im-
prove acoustic models was available in Pashto (PUS), Tagalog
(TGL), Turkish (TUR) and Cantonese (YUE).

The baseline was provided by a flatstart GMM/HMM sys-
tem trained on the respective languages in Table 1 only. After
several iterations of training, context-dependent target states
for neural network training were clustered and the required
alignment of feature frames to states was generated.

We trained our networks to predict roughly 2000 context-
dependent targets from 30 log mel scale filterbank coeffi-
cients extracted from 16ms windows with a 10ms frame
shift. Features from neighboring frames were concatenated
to context windows resulting in feature vectors of 630 ele-
ments. Bottleneck networks were trained on smaller windows
with 330 elements first, and were then applied to neighboring
sub-windows of the full input.

Hidden network layers were pre-trained without supervi-
sion as denoising auto-encoders, in which a single layer is
trained to properly reconstruct its original input from a ver-
sion that has been corrupted with random noise [17]. We ap-
plied Gaussian noise to corrupt the real-valued mel scale input
features and masking noise (i.e. turning elements randomly
to zero) for subsequent layers. For supervised fine-tuning, we
selected learning rates with the “newbob” algorithm, in which
two separate thresholds control the start of learning rate decay
and the total duration of training by monitoring the frame-
level classification accuracy on a held-out validation set.

The feature extraction networks contained 4 auto-encoder
layers with 1024 units each, i.e. 7 layers in total (with bottle-

neck, additional hidden layer and output layer). 42 units were
used in the bottleneck layer, while the layer afterwards con-
tained 1024 units, too. Acoustic models were not pre-trained
and consisted of 3 larger hidden layers containing 2048 units
each as well as the final output layer predicting the target
states.

A 3-gram language model was build from the reference
transcriptions of the Vietnamese corpus. The actual decoding
was done with the Janus speech recognition toolkit [26], while
networks were trained on GPUs with Theano [27].

5. RESULTS

Table 2 lists the performance in word error rate (WER) of the
baseline systems. The GMM system is a context-dependent
system using the same states as the hybrid setups and was
trained from the same alignment described in the previous
section. A standard DNN acoustic model does not provide
much improvement in this low-resource condition (about 4%
relative). The modular combination with deep bottleneck fea-
tures, denoted as DBNF-DNN in the following, performs bet-
ter with 72.2% WER. Jointly training the architecture im-
proves this result to 70.8% WER.

System GMM DNN DBNF-DNN
separate jointly

WER (%) 77.7 74.5 72.2 70.8

Table 2. Baseline systems trained on 10h of Vietnamese
speech.

Results for applying multi-lingual training with shared
hidden layers to the feature extraction networks are listed in
Table 3. Different methods of using the target data are com-
pared: no inclusion (none), i.e. training the acoustic model
on DBNF networks that have not been exposed to any Viet-
namese data yet; including the VIE data in the multi-lingual
training (incl); adapting a DBNF network trained without
VIE by training on VIE only (adapt); and jointly training
both acoustic model and feature extraction networks not ex-
posed to VIE yet (jointly).

DBNF Languages VIE Integration (% WER)
none incl adapt jointly

PUS 68.4 67.5 67.6 66.2
TGL 69.9 68.4 67.7 67.5
TUR 70.6 68.8 68.0 67.9
YUE 69.2 68.4 67.7 68.1
PUS+TGL 67.6 66.9 66.2 65.3
PUS+TGL+TUR 66.8 66.6 65.9 64.8
PUS+TGL+TUR+YUE 65.4 65.2 65.7 64.2

Table 3. Results for feature extraction networks with shared
hidden layers trained on multiple languages.
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DBNF Modules VIE Integration (% WER)
none adapt jointly glue

PUS 68.4 67.6 66.2 67.8
PUS,TGL 67.4 66.8 66.3 67.3
PUS,TGL,TUR 67.4 66.2 65.9 67.1
PUS,TGL,TUR,YUE 66.5 66.5 65.5 66.6

Table 4. Results for architectures with mono-lingual bottle-
neck networks.

It can be seen that feature extractors trained on com-
pletely different languages increase the recognition perfor-
mance of the DBNF-DNN setup compared to the baseline
performance of 72.2% WER. Here, Pashto provides the best
single-language features with 68.4% WER, which is even
slightly better than DBNFs from Cantonese, another tonal
language (69.2% WER). Performance increases steadily as
more languages (and thus a larger amount of data) are pro-
vided for DBNF training. When integrating the small Viet-
namese dataset, best results are obtained by jointly training
the acoustic model and the DBNF network. The network
trained on all 4 extra languages achieved in 64.2% WER
this way, an improvement over the baseline systems of 9.3%
(jointly trained DBNF-DNN) and 17.4% (GMMs). Adapting
a previously trained DBNF network on Vietnamese mostly
results in slightly fewer recognition errors compared to in-
cluding the target language in the multi-lingual training stage.

In a separate experiment, we investigated whether jointly
fine-tuning both networks is generally helpful, i.e. even if the
feature extraction network has been adapted already. For an
adapted Pashto DBNF network, this resulted in 66.6% WER,
which is an improvement over 67.6% obtained without joint
training but slightly worse that performing joint training with-
out adapting the DBNF network first (66.2%).

The results of experiments in which mono-lingual net-
works were used as feature extraction modules are shown
in Table 4. The architecture benefits from the combination
of multiple modules, even though using those modules on
their own does not increase recognition accuracy (see single-
language results in Table 3). Word error rates obtained with
this approach are slightly higher than the results for perform-
ing multi-lingual training with shared layers. Adapting the
DBNF networks on Vietnamese before using them as mod-
ules helps, but as for DBNF networks with shared layers, joint
training yields the largest improvements. Adding glue units
(we settled with 128 units) that are directly connected to the
input only results in small improvements and does not match
the performance achieved by adapting the DBNF networks.

In Table 5, the results for different methods of integrating
features capturing tonal information can be compared. The
7-dimensional FFV filterbank outputs were added at the fea-
ture level as additional input data for the DBNF network or
provided alongside the bottleneck activations, either directly
or via a layer of 128 glue units. Gains are obtained with both

System Base Integration Tonal
WER Level WER

DNN 74.5 Feature 71.9
DBNF-DNN 72.2 Feature 69.0

Bottleneck 70.3
Glue 70.7

ML-DBNF-DNN 65.2 Feature 64.4
VIE included Bottleneck 64.7
PUS+TGL+TUR+YUE Glue 64.7
ML-DBNF-DNN 65.3 Bottleneck 64.9
unadapted Glue 64.9
PUS+TGL+TUR+YUE

Table 5. Results of integrating tonal features.

bottleneck and glue integration, although training the DBNF
network directly in the augmented feature space works best.

6. DISCUSSION & CONCLUSION

The results presented in this work show that DNN acoustic
models benefit significantly from bottleneck features trained
on different languages for which a larger amount of data
might be available. For adapting the feature extractor net-
works to the target language, joint training of an unadapted
DBNF network and a DNN acoustic model performed best.
Including the target language during multi-lingual training
resulted in slightly worse features compared to adapting a
DBNF network as more data from other languages was added.
It stands to reason whether this observation will persist when
larger amounts of target language data are available.

It could be shown that adding mono-lingual feature ex-
traction networks as modules improves recognition perfor-
mance as well. This implies that several pre-existing networks
can be re-used for building acoustic models in a new language
– the more, the better. However, sharing representations re-
sulted in better accuracy at the expense of additional time re-
quired to train a new DBNF network on multiple languages at
once.

We could confirm gains as reported in [24] by including
tonal features in our architecture. While training new DBNF
networks on the augmented features worked best, integrating
the tonal features at the bottleneck level or via glue units im-
proved the resulting acoustic model as well.

Future work will consist of investigating whether the pro-
posed architectures are able to benefit not only from multi-
ple languages but also from both wide-band and narrow-band
audio, which was shown to be helpful for training standard
DNN acoustic models [28]. The authors are looking forward
to explore how multi-lingual data can be leveraged to improve
acoustic model network training as well and to further en-
hance the architectures suggested.
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[14] F. Grézl, M. Karafiát, S. Kontár, and J. Cernocky, “Probabilis-
tic and bottle-neck features for LVCSR of meetings,” in Acous-
tics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE
International Conference on. IEEE, 2007, vol. 4, pp. IV–757.

[15] J Gehring, Y Miao, F Metze, and A Waibel, “Extracting deep
bottleneck features using stacked auto-encoders,” in Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE Interna-
tional Conference on. IEEE, 2013.

[16] Y Bengio, P Lamblin, D Popovici, and H Larochelle, “Greedy
layer-wise training of deep networks,” Advances in neural in-
formation processing systems, vol. 19, pp. 153, 2007.

[17] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.A. Man-
zagol, “Stacked denoising autoencoders: Learning useful rep-
resentations in a deep network with a local denoising criterion,”
The Journal of Machine Learning Research, vol. 11, pp. 3371–
3408, 2010.

[18] N.T. Vu, W. Breiter, F. Metze, and T. Schultz, “An investigation
on initialization schemes for multilayer perceptron training us-
ing multilingual data and their effect on ASR performance,” in
Proc. Interspeech, 2012.

[19] S. Scanzio, P. Laface, L. Fissore, R. Gemello, and F. Mana,
“On the use of a multilingual neural network front-end.,” in
Proc. Interspeech, 2008, pp. 2711–2714.

[20] D. Yu, L. Deng, and G. Dahl, “Roles of pre-training and fine-
tuning in context-dependent dbn-hmms for real-world speech
recognition,” in Proc. NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2010.

[21] K. Kilgour, T. Seytzer, Q.B. Nguyen, and A. Waibel, “Warped
minimum variance distortionless response based bottle neck
features for LVCSR,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2013 IEEE International Conference on, 2013.

[22] A. Ghoshal, P. Swietojanski, and S. Renals, “Multilingual
training of deep-neural netowrks,” in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Confer-
ence on, 2013.

[23] K Laskowski, M Heldner, and J Edlund, “The fundamental fre-
quency variation spectrum,” Proceedings of FONETIK 2008,
pp. 29–32, 2008.

[24] F. Metze, Z.A. Sheik, A. Waibel, J. Gehring, K. Kilgour, Q.B.
Nguyen, and V.H. Nguyen, “Models of tone for tonal and
non-tonal languages,” in Automatic Speech Recognition and
Understanding (ASRU), 2011 IEEE Workshop on. IEEE, 2013,
submitted for review.

[25] “IARPA, Office for Incisive Analysis, Babel Program,”
http://www.iarpa.gov/Programs/ia/Babel/
babel.html, Retrieved 2013-06-29.

[26] M. Finke, P. Geutner, H. Hild, T. Kemp, K. Ries, and M. West-
phal, “The Karlsruhe-Verbmobil speech recognition engine,”
in Acoustics, Speech, and Signal Processing, 1997. ICASSP-
97., 1997 IEEE International Conference on. IEEE, 1997,
vol. 1, pp. 83–86.

[27] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio,
“Theano: a CPU and GPU Math Expression Compiler,” in
Proceedings of the Python for Scientific Computing Confer-
ence (SciPy), June 2010, Oral Presentation.

[28] Jinyu Li, Dong Yu, Jui-Ting Huang, and Yifan Gong, “Im-
proving wideband speech recognition using mixed-bandwidth
training data in CD-DNN-HMM,” in Spoken Language Tech-
nology Workshop (SLT), 2012 IEEE. IEEE, 2012, pp. 131–136.

349


