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Abstract
We propose a dialog system utility component
that gets the two last utterances of a user and
can detect whether the last utterance is an error
correction of the second last utterance. If yes,
it corrects the second last utterance according
to the error correction in the last utterance. In
addition, the proposed component outputs the
extracted pairs of reparandum and repair entity.
This component offers two advantages, learn-
ing the concept of corrections to avoid collect-
ing corrections for every new domain and ex-
tracting reparandum and repair pairs, which of-
fers the possibility to learn out of it.

For the error correction one sequence label-
ing and two sequence to sequence approaches
are presented. For the error correction detec-
tion these three error correction approaches
can also be used and in addition, we present
a sequence classification approach. One error
correction detection and one error correction
approach can be combined to a pipeline or the
error correction approaches can be trained and
used end-to-end to avoid two components. We
modified the EPIC-KITCHENS-100 dataset to
evaluate the approaches for correcting entity
phrases in request dialogs. For error correc-
tion detection and correction, we got an accu-
racy of 97.54 % on synthetic validation data
and an accuracy of 69.27 % on human-created
real-world test data.

1 Introduction

Errors and ambiguities are difficult to avoid in a
dialog. Corrections allow to recover from errors
and to disambiguate ambiguities. For example, a
household robot gets the request “Put the cleaned
spoons into the cutlery drawer”, but the robot does
not know which one of the drawers is the cutlery
drawer. It can choose one of the drawers and puts
the spoons there. If its choice is wrong, the user
must correct the robot, e. g. “No, into the drawer
right of the sink”. Alternatively, the robot can ask
which one of the drawers is the cutlery drawer. The

clarification response of the user, e. g. “It’s the
drawer right of the sink”, is also a correction be-
cause the response disambiguates the ambiguity.
Another type of correction occurs when the user
changes their mind, e. g. “I changed my mind, the
forks”, or when the system misunderstands the user
request (e. g. because of automatic speech recogni-
tion or natural language understanding errors).

All these correction types can be processed in
the same manner and therefore we propose a com-
ponent that gets a request and a correction and
outputs a corrected request. To get this corrected
request, the phrases in the correction phrase re-
place their corresponding phrases in the request. In
this work, we restrict on entity phrases like “drawer
right of the sink”. To replace other phrases like verb
phrases is out of scope for this work. The request
“Put the cleaned spoons into the cutlery drawer”
with its correction “No, into the drawer right of the
sink” is converted to “Put the cleaned spoons into
the drawer right of the sink”. Such a component
has two advantages compared to handling the cor-
rections in the actual dialog component. First, it
reduces the amount of required training data for the
actual dialog component because corrections will
not need to be learned if there is an open-domain
correction component. Second, this kind of correc-
tion component can be extended so that it outputs
the extracted pairs of reparandum and repair entity.
In our example there is one pair: “cutlery drawer”
and “drawer right of the sink”. These entity pairs
can be used, for example, for learning in a life-long
learning component of a dialog system to reduce
the need for correction in future dialogs, e. g. the
robot can learn which one of the drawers is the
cutlery drawer.

2 Related Work

Studies have been conducted in the area of interac-
tive repair dialog. In (Suhm et al., 1996) a multi-
modal approach is used. The user can highlight
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wrong phrases and respeak or spell the correct
phrase, or choose from alternatives in the n-best list
of the automatic speech recognition component, or
use handwriting to write the correct phrase. These
error strategies are improved in (Suhm and Waibel,
1997) by considering the context. In (Suhm et al.,
1999, 2001) the previous approaches are evaluated
in more detail in a dictation system with real users.
Different human strategies for error correction are
presented in (Gieselmann, 2006).

Sagawa et al. (2004) propose an error handling
component based on correction grammars. These
correction grammars have the advantage that they
can be used domain-independently. However, they
need a grammar based dialog system. An error
correction detection module and strategies to han-
dle the detected errors are proposed by Griol and
Molina (2016). The corrected request must be han-
dled by the Spoken Language Understanding com-
ponent. That means, for every domain the Spo-
ken Language Understanding component must be
adapted to the possible corrections. Kraljevski and
Hirschfeld (2017) propose a domain-independent
correction detection by checking the speech for
hyperarticulation. Other features than hyperarticu-
lation are not used.

In (Béchet and Favre, 2013), a system is pre-
sented that detects errors in automatic speech recog-
nition transcripts and asks the user for a correction.

There are also studies that research automatic
error correction without user interaction. In (Xie
et al., 2016) a character-based approach to correct
language errors is used. They used a character-
based approach to avoid out-of-vocabulary words
because of orthographic errors. In (Weng et al.,
2020), the authors used a multi-task setup to correct
the automatic speech recognition outputs and do
the natural language understanding.

The task of request correction presented in the
introduction is related to the task of disfluency re-
moval. In disfluency removal, there are the reparan-
dum (which entity should be replaced), the inter-
ruption point (where the correction begins), the
interregnum (which phrase is the signal phrase for
the correction), and the repair phrase (the correct
entity) (Shriberg, 1994).

In Figure 1, a disfluent utterance annotated with
this terminology is depicted.

spoon into the drawer︸ ︷︷ ︸
reparandum

︸︷︷︸
interruption pt.

uh︸︷︷︸
interregnum

sink︸︷︷︸
repair

Figure 1: disfluent utterance annotated with repair ter-
minology

A lot of work has been conducted for disfluency
removal (Cho et al., 2014; Dong et al., 2019; Wang
et al., 2016; Jamshid Lou et al., 2018). In all these
works, it is assumed that it is enough to delete
tokens of the disfluent utterance to get a fluent
utterance. A disfluent utterance with the copy and
delete labels is depicted in Figure 2.

spoons into the drawer uh sink
C C C D D C

Figure 2: disfluent utterance labeled with copy and
delete labels

However, in the task of corrections, long-
distance replacements can occur. That means, that
between the reparandum and the repair are words
that are important and must not be deleted. Such a
long-distance replacement is depicted in Figure 3.

spoon︸ ︷︷ ︸
reparandum

into the drawer ︸︷︷︸
interruption pt.

no︸︷︷︸
interregnum

forks︸︷︷︸
repair

Figure 3: request and correction phrase annotated with
repair terminology

3 Dataset

Our dataset is based on the annotations in natu-
ral language of the EPIC-KITCHENS-100 dataset
(Damen et al., 2020, 2022). The EPIC-KITCHENS-
100 dataset comprises 100 hours of recordings of
actions in a kitchen environment. An example an-
notation of such an action is “put pizza slice into
container” and the corresponding verb is “put-into”
and the corresponding entities are “slice:pizza” and
“container”. Annotations in this dataset have one
verb and zero to six entities. The verb, the cor-
responding verb class, the entities and the corre-
sponding entity classes are explicitly saved to ev-
ery annotation. The order of the entities and the
corresponding entity classes is the same as in the
annotation. If the verb has a preposition, the verb
is saved including its preposition. The words of the
entities are represented in a hierarchy. The most
general word of the hierarchy is left and the words



are more specialized the further to the right of the
hierarchy. The words of each hierarchy are sep-
arated by a colon. There are 67 218 annotations
in the training and 9669 annotations in the valida-
tion dataset of the EPIC-KITCHENS-100 dataset.
There is no test dataset. Some annotations occur
multiple times, because different recordings of the
100 hours recordings have the same annotation. By
considering only the unique annotations, 15 968 an-
notations are in the training and 3835 annotations
are in the validation dataset.

For our dataset, we used only the annotations
that have one or two entities. We excluded the
annotations with no entities because we need at
least an entity that can be corrected. Annotations
including more than two entities amount only to
less than 1.15 % of all annotations and therefore
we decided to exclude them because of dataset
balancing reasons.

The verb classes of the EPIC-KITCHENS-100
datasets are imbalanced. To get a better balance in
the validation dataset, we removed annotations of
verb classes that occur very often from the valida-
tion dataset. We wanted a more balanced dataset
to evaluate whether the model gets along with very
different verb classes. We calculated the number
of desired remaining annotations of a verb class,
called r, by dividing the number of annotations,
called a, by 100, but we determined a minimal num-
ber of remaining annotations of verb classes: 2 for
one entity annotations (r = max(2, a/100)) and
4 for two entity annotations (r = max(4, a/100)).
In some cases, there are less than the desired re-
maining annotations of a verb class in the EPIC-
KITCHENS-100 dataset. We then used the pos-
sible number. We chose the values for minimal
examples to get a nearly balanced dataset: 142 an-
notations with one entity and 122 annotations with
two entities. To get the annotations of a verb class,
we chose the verbs occurring in a verb class equally
distributed. In total, we have 264 annotations in the
reduced validation dataset. The number of unique
annotations in respect to the verb class before and
after the reduction are depicted in Figure 4.

In the EPIC-KITCHENS-100 dataset, the train-
ing and validation datasets are similar: all 78 verb
classes of the validation dataset occur in the train-
ing dataset and 346 of the 372 first level word of the
entity hierarchies of the validation dataset occur in
the training dataset. Because of this, we decided to
reduce the training dataset to have more difference
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Figure 4: unique annotations in respect to the verb class
before and after the reduction of the EPIC-KITCHENS-
100 validation dataset

between them. We removed the verb classes of the
49 less frequent occurring verb classes (in total 98
verb classes are in the training dataset) from the
training dataset and removed all entities from the
training dataset when its first part was also in the
validation dataset. That means, if bowl:washing:up
was in the validation dataset, an annotation with
bowl:salad in the training dataset was removed. Af-
ter the reduction 4822 annotations were left in the
training dataset.

To use these annotations for training and evalu-
ating the error correction detection and correction
component, we had to add corrections to the anno-
tations. For the training and validation dataset, we
generated the corrections synthetically. There are
three options for the entitiy replacement: the first
entity should be replaced, the second entity should
be replaced, or both entities should be replaced. We
drew uniformly distributed which of these three op-
tions should be applied. If both entities should be
corrected, we drew uniformly distributed in which
order they should be corrected. For the training
and validation dataset, we had 8 and 6, respectively,
templates to introduce the correction phrase, fol-
lowed by the corrected entities. An entity could be



replaced by an entity that occurs in an annotation
of the same verb class in the same position. An
example for one corrected entity is “Be so kind
and pick the oregano” for the request and “it’s the
chilli” for the correction and an example for two
corrected entities is “Could you put the tin in the
Cupboard?” for the request and “no the olives in
the Fridge” for the correction.

For the test dataset, we had nine human data
collectors who could freely write the corrections,
they only knew what entities should be replaced
with what other entities (but were allowed to use
synonyms for the other entities) and whether the
correction should be a correction to a wrong action
of the robot, a clarification, or a correction because
the user changed their mind (equally distributed).

We added 19 and 14 templates before the narra-
tion to increase the variety of the natural language
of the training and validation dataset, respectively.
In the EPIC-KITCHENS-100 dataset, the articles
of the entities are missing, therefore we added a
“the” before the entities. For the test dataset, we
used the narrations of our validation dataset and let
the same nine annotators that created the correc-
tions for our test dataset paraphrase them.

The test dataset is more challenging than the
validation dataset because it differs even more from
the training dataset. The nine data collectors were
told to use a large variety of natural language.

We used the 4822 annotations of the reduced
training dataset to generate with the different data
augmentations 52 357 request and correction pairs
for the error correction training dataset. The error
correction validation dataset has 264 request and
correction pairs and the error correction test dataset
has 960 request and correction pairs.

To train and evaluate the error correction detec-
tion, we need examples where the last utterance is
no correction. To achieve this, the second last and
the last utterance are made of all the requests of
the error correction data. The requests were shuf-
fled for the last utterance. This approach doubled
the number of examples to the correction exam-
ples, that means, we have 104 714 pairs in the error
correction detection and error correction training
dataset, 528 pairs in the error correction detection
and error correction validation dataset, and 1920
pairs in the error correction detection and error
correction test dataset.

The target for the error correction datasets is the
corrected request and the reparandum repair pairs

and the target for the error correction detection
and error correction dataset depends whether the
source has a request and correction pair or a request
and request pair. In the first case, there is an error
correction and the target is the same as in the error
correction datasets, in the second case, the target
is to copy both requests. There is a further dataset,
the error correction detection dataset. The sources
are the same as in the error correction detection and
error correction dataset but the target is the binary
value whether there is a correction or not.

We created the described datasets in different
forms for the different approaches. For the se-
quence labeling approach, we labeled the source
tokens with different labels, see Figure 5 and Sec-
tion 4 for an explanation of the labels.

For the sequence to sequence approach with gen-
erative token generation, we created source and
target pairs, see Figure 6. For the sequence to
sequence approach with generation by copying
source tokens, we added the order of copy oper-
ations. Additionally, the separator tokens that are
needed in the target will be inserted to the source,
see Figure 7.

would C
it C
be C
possible C
to C
wash C
the C
table R1
? C
| D
no D
the D
wok S1
instead D
of D
the D
table D
. D

Figure 5: sequence labeling data example

source file: Would it be possible to wash the table
? | no the Wok instead of the table .
target file: Would it be possible to wash the Wok ?
| table -> Wok

Figure 6: sequence to sequence with fixed vocabulary
data example



source file: Would it be possible to wash the table
? | no the Wok instead of the table . - ->
target file: Would it be possible to wash the Wok ?
| table -> Wok
copy target file (considering the T5 prefix and the
T5 tokenization): 3 4 5 6 7 8 9 16 17 11 12 13 10
26 27 16 17 28

Figure 7: sequence to sequence with copy source token
approach data example

4 Models

For the error correction and extraction, we devel-
oped three different approaches. The first approach
is a sequence labeling approach, the second ap-
proach is a sequence to sequence approach where
the output tokens are sampled from a fixed vocab-
ulary, and the third approach is a sequence to se-
quence approach where output tokens are copied
from the source tokens.

For the sequence labeling approach, every word
is labeled with one of the following labels: C
(copy), D (delete), R1 (entity 1 potentially to be
replaced), R2 (entity 2 potentially to be replaced),
S1 (entity to replace entity 1), or S2 (entity to re-
place entity 2). For the correction target, the S1 and
S2 labeled entities are used to replace the R1 and
R2 labeled entities, respectively. For the extraction
target, the output is the pairs R1 and S1 as well as
R2 and S2 if there is a replacement available for
the first or second entity, respectively. In Figure 8,
an example request and correction pair is labeled
and both targets are given.

For the sequence labeling, we propose fine-
tuning the cased BERT large model (24 Trans-
former encoder blocks, hidden size of 1024, 16
self-attention heads, and 340 million parameters)
(Devlin et al., 2019).

For the sequence to sequence approach where
the output tokens are sampled from a fixed vocab-
ulary, we propose fine-tuning a T5 large model
(Raffel et al., 2020). The T5 model is a pre-trained
Transformer network (Vaswani et al., 2017) and the
T5 large model has the following properties: 24
Transformer encoder blocks, 24 Transformer de-
coder blocks, hidden size of 1024 (in- and output)
and 4096 (inner-layer), 16 self-attention heads, 737
million parameters.

The probability distribution over the fixed vocab-
ulary V can be calculated in the following way:

Pgenerate(V ) = softmax(decT ·Wgenerate)

where dec is the output of the Transformer decoder
and Wgenerate ∈ Rhidden size decoder×vocabulary size is a
learnable matrix.

We call this T5 model T5 generate.
In the corrected request there are only tokens

of the input sequence. To utilize this property, we
developed a pointer network model (Vinyals et al.,
2015) with the T5 large model that calculates which
input token has the highest probability to be copied
to the output sequence. This is our third approach.
The probability distribution over the input sequence
tokens V ′ can be calculated in the following way:

Pcopy(V
′) = softmax(decT · encT )

where dec is the output of the Transformer decoder
and enc ∈ Rsource input length×embedding size.

To utilize the knowledge of the pre-trained
model, we feed the source input token with the
highest probability into the encoder instead of the
position of the source input token. That means, that
in the generation stage the copy mechanism is only
used, otherwise it is like a normal T5 model. To
be able to output the separators, we add this to the
source, so that they can also be copied. We call this
modificated T5 model T5 copy.

To decide whether an utterance is a correction
for the previous request command, the described
three approaches can also be used. If all output
labels of the sequence labeling approach are C, no
error correction is detected, otherwise there is an
error correction. The sequence to sequence ap-
proaches detect an error correction if the source
and the target without the separators are not equal,
otherwise there is no error correction. In the T5
copy approach, the source for the comparison is the
original source and not the source with the inserted
separators.

In addition to these three approaches, a sequence
classification can also be used for the error correc-
tion detection. For the sequence classification, we
propose to fine-tune the cased BERT large model
(24 Transformer encoder blocks, hidden size of
1024, 16 self-attention heads, and 340 million pa-
rameters) (Devlin et al., 2019).

5 Implementation

We used the HuggingFace (Wolf et al., 2020) Py-
torch (Paszke et al., 2019) BERT and T5 models
for our implementations of the models described in
Section 4 and published our implementations and



request || correction put the milk into the shelf no the soja milk into the left shelf
labels C R1 R1 R2 R2 R2 D S1 S1 S1 S2 S2 S2 S2
corrected request put the soja milk into the left shelf
pairs of reparandum
and repair entity

milk→ soja milk - into the shelf→ into the left shelf

Figure 8: error correction example

our models 1.

6 Evaluation

In this section, we will first evaluate the different
error correction detection component approaches
described in Section 4. After that, the error correc-
tion component approaches described in Section 4
are evaluated. Third, we will compare whether it
is better to separate the error correction detection
and error correction in separate components and
use a pipeline approach or whether an end-to-end
approach is better. For all evaluations, we used the
datasets described in Section 3.

We fine-tuned the sequence classification and
labeling approaches one epoch with the following
hyperparameters: AdamW optimizer (Loshchilov
and Hutter, 2019) with learning rate of 2 · 10−5,
batch size of 32 and maximum input length of 128.

The T5 generate and T5 copy models were fine-
tuned one epoch with the following hyperparame-
ters: Adam optimizer (Kingma and Ba, 2015) with
learning rate of 2.5 · 10−4, batch size of 24 and
a maximum input length of 12; in the embedding
layer, the first two encoder blocks were frozen.

The results of the error correction detection com-
ponents are depicted in Table 1. Accuracy means
how many examples were classified correctly, pre-
cision is how many of the positive classified ex-
amples are really positive, recall how many of the
positive examples are found by the component and
the F1-score is the harmonic mean of the preci-
sion and recall. We calculated the precision, recall
and F1-score for the case that detecting corrections
were the positive examples and for the case that de-
tecting no corrections were the positive examples
to get better insights in the quality of the differently
trained models. The sequence classification ap-
proach was trained with the error correction detec-
tion dataset and the other approaches were trained
with the error correction detection and error cor-

1https://github.com/msc42/
seq2seq-transformer https://github.com/
msc42/seq-labeling-and-classification

rection dataset. The best approach is the sequence
labeling approach (if all words have the copy label
C, it is no error correction, otherwise it is an error
correction). It has an accuracy of 100 % for the
validation and 88.49 % for the test dataset. The
recall for detecting no corrections is 99.90 % and
the precision 81.34 % (F1-score 89.67 %) in the test
dataset. That means, if there is no correction, the
component detects it in most of the cases and make
no unnecessary correction. This is a good prop-
erty, because it is better not detecting a correction
than correcting something which is already correct.
The error correction detection and error correction
component should improve the overall system and
not make it worse. Nevertheless, the results for
detecting corrections with a recall of 77.08 % and
a precision of 99.87 % (F1-score 87.01 %) in the
test dataset are good. In some cases where the
component fails, it is really difficult to detect the
correction like in “Kindly turn off the heat on the
oven | Please turn off the water tap on the oven”.
The classification approach has similar results to
the sequence labeling approach: 100 % accuracy
for the validation dataset and 87.86 % for the test
dataset. This approach also prefers detecting no
corrections over corrections. The T5 generate ap-
proach is worse. It has an accuracy of 98.67 % on
the validation dataset and an accuracy of 84.01 %
on the test dataset. The worst results are from the
T5 copy approach (71.78 % and 77.45 % validation
and test dataset accuracy, respectively).

The results of the error correction components
are depicted in Table 2. We evaluated the error
correction with the metric accuracy. The correc-
tion is correct if the predicted correction and the
reference correction are the same. The extraction
of the reparandum and repair pairs is correct if the
predicted pairs are equal to the reference pairs. The
order and entities that map to themselves are ig-
nored. Both are correct if the correction as well as
the extraction are correct. For this evaluation the
error correction datasets are used. On the valida-
tion dataset, the sequence labeling approach that

https://github.com/msc42/seq2seq-transformer
https://github.com/msc42/seq2seq-transformer
https://github.com/msc42/seq-labeling-and-classification
https://github.com/msc42/seq-labeling-and-classification


detecting corrections detecting no corrections
dataset model accuracy precision recall F1-score precision recall F1-score
valid. classification 100 % 100 % 100 % 100 % 100 % 100 % 100 %
valid. seq. labeling 100 % 100 % 100 % 100 % 100 % 100 % 100 %
valid. T5 generate 98.67 % 98.13 % 99.24 % 98.68 % 99.23 % 98.11 % 98.67 %
valid. T5 copy 71.78 % 63.92 % 100 % 77.99 % 100 % 43.56 % 60.69 %
test classification 87.86 % 99.86 % 75.83 % 86.20 % 80.52 % 99.90 % 89.17 %
test seq. labeling 88.49 % 99.87 % 77.08 % 87.01 % 81.34 % 99.90 % 89.67 %
test T5 generate 84.01 % 96.58 % 70.52 % 81.52 % 76.78 % 97.50 % 85.91 %
test T5 copy 77.45 % 73.63 % 85.52 % 79.13 % 82.73 % 69.38 % 75.47 %

Table 1: evaluation results of the error correction detection, all models except the classification were trained on
the error correction detection and error correction dataset and the classification was trained on the error correction
detection dataset

validation dataset test dataset
model correction extraction both correction extraction both
seq. labeling 96.21 % 94.70 % 94.70 % 40.10 % 48.75 % 39.06 %
E2E seq. labeling 96.59 % 95.08 % 95.08 % 39.27 % 43.54 % 38.65 %
T5 generate 92.80 % 95.83 % 91.29 % 73.65 % 77.81 % 71.98 %
E2E T5 generate 96.21 % 95.08 % 94.70 % 37.40 % 38.75 % 36.25 %
T5 copy 50.38 % 87.12 % 50.00 % 50.52 % 62.19 % 47.92 %
E2E T5 copy 70.83 % 92.42 % 68.94 % 27.50 % 35.00 % 25.31 %

Table 2: evaluation results of the error correction (metric accuracy), the end-to-end (E2E) models were trained on
the error correction detection and error correction dataset and the other models were trained on the error correction
dataset

model(s) validation dataset test dataset
correction extraction both correction extraction both

detection and seq. labeling 96.21 % 94.70 % 94.70 % 34.27 % 36.88 % 33.54 %
detection and E2E seq. labeling 96.59 % 95.08 % 95.08 % 39.27 % 43.54 % 38.65 %
E2E seq. labeling 98.30 % 97.54 % 97.54 % 69.58 % 71.77 % 69.27 %
classification and T5 generate 92.80 % 95.83 % 91.29 % 56.98 % 60.21 % 56.04 %
classification and E2E T5 generate 96.21 % 95.08 % 94.70 % 36.67 % 38.23 % 35.73 %
E2E T5 generate 97.54 % 97.16 % 96.40 % 68.07 % 68.49 % 66.88 %
classification and T5 copy 50.38 % 87.12 % 50.00 % 36.98 % 46.88 % 35.21 %
classification and E2E T5 copy 70.83 % 92.42 % 68.94 % 26.67 % 34.38 % 24.79 %
E2E T5 copy 69.70 % 78.03 % 56.25 % 55.00 % 58.91 % 47.40 %

Table 3: evaluation results of the error correction detection and error correction (metric accuracy), the end-to-end
(E2E) models were trained on the error correction detection and error correction dataset and the other models were
trained on the error correction dataset, “and” means that the error correction detection was done by the best error
correction detection model (sequence labeling) and the error correction detection by the model mentioned after the
“and” if a correction was detected



was trained on the error correction detection and
error correction datasets has the best overall accu-
racy (95.08 %). The accuracy for the correction is
96.59 % and for the extraction 95.08 %. On the test
dataset, the T5 generate approach that is trained on
the error correction dataset has the best accuracy
(71.98 %). In general, all approaches trained on
the error correction detection and error correction
dataset have a higher accuracy on the validation
dataset and all approaches trained on the error cor-
rection dataset have a higher accuracy on the test
dataset. The T5 copy extraction could be optimized
by bookkeeping the order of copy operations, stop-
ping after finishing the correction and use the book-
keeping to reconstruct the reparandum and repair
pairs. We relinquished this optimization because
the correction results were much worse and we did
not see any sense in further optimizations that will
only lead to minimal improvements.

The results of the error correction detection and
error correction components are depicted in Ta-
ble 3. We used the same metric accuracy as in the
error correction evaluation. For the error correc-
tion detection in the pipeline approach, we used the
best error correction detection model evaluated in
this section. It is the sequence labeling approach
where no correction is in the example if all labels
are C. After the error correction detection, the er-
ror correction will occur. We evaluated all three
approaches described in Section 4 in their version
trained on the error correction detection and error
correction dataset and their version trained on the
error correction dataset. In the end-to-end setting, a
component executes the error correction detection
and the error correction in one run. The results are
that the end-to-end approaches are better than the
pipeline approaches except for the end-to-end T5
copy approach for the validation dataset because
of its bad error correction detection results on the
validation dataset. The best approach is the end-to-
end sequence labeling approach with an accuracy
of 97.54 % on the validation and 69.27 % accuracy
on the test dataset. This approach also has the
best results in the error correction detection and
error correction of the end-to-end approaches and
therefore it is clear that it is the best approach for
the combined error correction detection and error
correction. However, the end-to-end T5 genera-
tor approach is not much worse with 96.40 % and
66.88 % validation and test accuracy, respectively.

The evaluation results show that the test dataset

is more challenging than the validation dataset. The
nine data collectors were able to introduce even
more variety of natural language than the validation
dataset has.

7 Conclusions and Further Work

The proposed error correction detection and error
correction component shows high potential. For
the validation dataset, we got very good results:
in 97.54 % of the cases, we could detect whether
there is a correction or not and if there is a cor-
rection, it outputs a correct corrected request and
could extract correctly the reparandum and repair
pairs. The results for the human-generated real-
world data with 69.27 % shows that the proposed
component is learning the concept of corrections
and can be developed to be used as an upstream
component to avoid the need for collecting data for
request corrections for every new domain. In addi-
tion, the extraction of the pairs of reparandum and
repair entity can be used for learning in a life-long
learning component of a dialog system to reduce
the need for correction in future dialogs.

In future work, the training dataset could be
extended to a bigger variety of natural language
which will enable the model to learn the concept
of corrections better and to get better results on
human-generated real-world data. The mentioned
life-long learning component could also be part
of future work and the classification of correction
types could improve the performance of such a life-
long learning component. To improve the accuracy,
architectures that have a better NER performance
than our used BERT model, like the architecture
proposed by (Baevski et al., 2019), could be used.
A further future research goal is to be able to cor-
rect all phrases and not only entity phrases.
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