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Abstract 

We describe and experimentally evalu­
ate a system, Fea.sPar, that learns pars­
ing spontaneous speech. To train and 
run FeasPa.r (Feature Structure Parser), 
only limited handmodeled knowledge is 
required. 
The Fea.sPar architecture consists of neu­
ral networks and a search. The networks 
spilt the incoming sentence into chunks, 
which are labeled with feature values and 
chunk relations. Then, the search finds 
the most probable and consistent feature 
structure. 
FeasPar is trained, tested and evaluated 
with the Spontaneous Scheduling Task, 
and compared with a handmodeled LR­
parser. The handmodeling effort for Fea­
sPar is 2 weeks. The handmodeling ef­
fort for the LR-parser was 4 months. 
FeasPar performed better than the LR­
parser in all six comparisons that are 
made. 

1 Introduction 

When building a speech parsing component for 
small domains, an important goal is to get good 
performance. If low hand labor is involved, then 
it's even better. 

Unification based formalisms, e.g.(Gazdar et 
al., 1985; Kaplan and Bresnan, 1982; Pollard and 
Sag, 1987), have been very successful for analyz­
ing written language, because they have provided 
parses with rich and detailed linguistic informa­
tion. However, these approaches have two major 
drawbacks: first, they require hand-designed sym• 
bolic knowledge like lexica and grammar rules, 
and second, this knowledge is too rigid, causing 
problems with ungrammaticality and other devi­
ations from linguistic rules. These deviations are 
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manageable and low in number, when analyzing 
written language, but not for spoken language. 
The latter also contains spontaneous effects and 
speech recognition errors. (On the other hand, the 
good thing is that spoken language tend to contain 
less complex structures than written language.) 
Several methods have been suggested compensate 
for these speech related problems: e.g. score and 
penalties, probabilistic rules, and skipping words 
(Dowding et al., 1993; Seneff, 1992; La.vie and 
Tomita., 1993; Issar and Ward, 1993). 

A small community have experimented with ei­
ther purely statistical approaches(Brown et al., 
1990; Schutze, 1993) or connectionist based ap­
proaches (Berg, 1991; Miikkulainen and Dyer, 
1991; Jain, 1991; Wermter and Weber, 1994). 
The main problem when using statistical ap­
proaches for spoken language processing, is the 
large amounts of data required to train these mod­
els. All connectionist approaches to our knowl­
edge, have suffered from one or more of the fol­
lowing problems: One, parses contains none or too 
few linguistic attributes to be used in translation 
or understanding, and/or it is not shown how to 
use their parse formalism in a total NLP system. 
Two, no clear and quantitative statement about 
overall performance is made. Three, the approach 
has not been evaluated with real world data, but 
with highly regular sentences. Four, millions of 
training sentences are required. 

In this paper, we present a parser that produces 
complex feature structures, as known from e.g. 
GPSG(Gazdar et al., 1985). This parser requires 
only minor hand labeling, and learns the parsing 
task itself. It generalizes well, and is robust to­
wards spontaneous effects and speech recognition 
errors. 

The parser is trained and evaluated with the 
Spontaneous Scheduling Task, which is a nego­
tiation situation, in which two subjects have to 
decide on time and place for a meeting. The sub­
jects' calendars have conflicts, so that a. few sug-



gestions have to go back and forth before finding 
a time slot suitable for both. The data sets are 
real-world data, containing spontaneous speech ef­
fects. The training set consists of 560 sentences, 
the development test set of 65 sentences, and 
the unseen evaluation set of 120 sentences. For 
clarity, the example sentences in this paper are 
among the simpler in the training set. The parser 
is trained with transcribed data only, but eval­
uated with transcribed and speech data (includ­
ing speech recognition errors). The parSer pro­
duces feature structures, holding semantic infor­
mation. Feature structures are used as interlingua 
in the JANUS speech-to-speech translation sys­
tern(Woszczyna et al., 1994). Within our research 
team, the design of the interlingua ILT was deter­
mined by the needs of unification based parser and 
generator writers. Consequently, the ILT design 
was not tuned towards connectionist systems. On 
the contrary, our parser must learn the form of the 
output provided by a unification based parser. 

This paper is organized as follows: First, a short 
tutorial on feature structures, and how to build 
them. Second, we describe the parser architec­
ture and how it works. Third, we describe the 
lexicon. Fourth, we describe the parser's neural 
aspects. Fifth, a search algorithm is motiV'dted. 
Then results and conclusion follow. 

2 Feature Structures 

Feature structures(Gazdar et al., 1985; Pollard 
and Sag, 1987) are used as output formalism for 
FeasPar. Their core syntactic properties and ter­
minology are: 

l. A feature structure is a set of none, one or 
several feature pairs. 

2. A feature pair, e.g. (frame •clarify) , con­
sists of a feature, e.g. frame or topic, and a 
feature value. 

3. A feature value is either: 

(a) an atomic value, e.g. •clarify 
(b) a complex value 

4. A complex value is a. feature stroctur-e. 

3 The Chunk'n'Label Principle 

In contrast to the standard feature structure defi­
nition of Section 2, a.n alternative view-point is to 
look at a feature structure as a tree1 , where sets 

1This assumes that structure sharing is not possiw 
ble, see Section 3.1.2. 

~~speecn-act •con11rmJ 
(sentence-type •state) 
(frame •clarify) 
(topic ((frame •simple-time) 

(day-of- week monday))) 
(adverb perhaps) 
(clarified ((frame •simple-time) 

(day- of- week monday) 
(day 27)) )) 

Figure l: Feature structure with the meaning "by 
monday i assume you mean monday the twenty sev· 
enth" 

of featur-e pairs with atomic values make up the 
branches, and the branches are connected with 
relations. Atomic feature pairs belonging to the 
same branches, have the same relation to all other 
branches. Further, when comparing the sentence 
with its feature structure, it appears that there 
is a correspondence between fragments of the fea­
ture structure, and specific chunks of the sentence. 
In the example feature structure of Figure 1, the 
following observations about feature pairs and re­
lations apply: 

• feature pairs: 

feature pairs: corresponds to: 
(day 27) "the twenty seventh11 

~lframe •s1mple-t1meJ 
''monday the 

(day- of-week monday) 
twenty seventh" 

(day 27)) 

• relations: the complex value of the feature 
topic corresponds to the chunk "by mon• 
day", and the complex value of the feature 
clarified corresponds to "you mean monday 
the twenty seventh". 

Manually aligning the sentence with fragments 
of the feature structure, gives a structure as shown 
in Figure 2. A few comments apply to this figure: 

• The sentence is hierarchically split into 
chunks. 

• Feature pairs are listed with their correspond­
ing chunk. 

• Relations a.re shown in square brackets, and 
express how a chunk relates to its parent 
chunk. Relations may contain more than one 
element. This allows several nesting levels. 

Once having obtained the information in Fig­
ure 2, producing a feature structure is straight 
forward, using the algorithm of Figure 3. Sum­
ming up, we can define this procedure as the 
ch,mk'n'label principle of parsing: 



lLJl(speecn-act •conx1nnJ 
(sentence- type •state) 
(frame •clarify)) 

( [J 
([topic]((frame •simple-time)) 

( (] by) 
monday)) 
i)) 

( 0 ( (day-of~veelt monda.y)) 
([J (CJ 
( O ( (adverb perhaps)) 

( [] 
( (clarified] 

( [] ( [] 
([] ([] 

aasu.me))) 

you)) 
mean)) 

( O ((frame •simple-time)) 
((J((day- of-veok monday)) 
( CJ 

monday) 
the) 

( CJ ((day 27)) ([re~o] tventy seventh))))) 

Figure 2: Chunk parse: Sentence aligned with its feature structure (see text for explanation) . 

l. Split the incoming sentence into hierarchical 
chunks. 

2. Label each chuck with feature pairs and fea­
ture relations. 

3. Convert this into a feature structure, using 
the algorithm of Figure 3. 

, ,N ,N convert u 
VAR 

S: l!flt; 
C: chunk; 

BEGIN 
S :• empty set; 
assign(S,top_level_chunk); 
return(S); 

END; 
PROCEDURE assign(VAR. S: set; 

C: chunk); 
BEGIN 

P :• chunk_relation(C); 
FOR each relation el~ment PE in P 

BEGIN 
S 1 :• empty set; 
include (PE,S') in S; 
s : :; s' i 

END; 
FOR each feature pair FP in C 

include FP in S: 
FOR each chunk C' in C 

assign(S,C); 
ENO· 

Figure 3: Algorithm for converting a parse to a 
feature structure 

3.1 Theoretical Limitations 

The chunk'n'label principle has a. few theoretical 
limHations compared with the feature structure 
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formalisms commonly used in unification-baqed 
parsing, e.g. (Gazdar et al., 1985). 

3 .1.1 Depth 

With the chunk'n 'label principle, the feature 
structure has a maximum nesting depth. One 
could expect the maximal nesting depth to cause 
limitations. However, these limitations a.re only 
theoretical, because very deep nesting is hardly 
needed in practice for spoken language. Due to 
the ability to model relations of more than length 
1, no nesting depth problems occurred while mod­
eling over 600 sentences from the English Sponta­
neous Scheduling Task (ESST). 

3.1.2 Structure Sharing 

Many unification formalisms allow feature val­
ues to be shared. The chunk'n'label principle does 
not incorporate any mechanism for this. However, 
all work with ESST and ILT empirically showed 
that there is no need for structure sharing. This 
observation suggests that for semantic a.nalys\s, 
structure sharing is statistically insignificant, even 
if its existence is theoretically present. 

4 Baseline Parser 

The chunk'n'label principle is the basis for the 
design and implementation of the FcasPar parser. 
FeasPar uses neural networks to learn to produce 
chunk parses. It has two modes: learn mode 
and run mode. In learn mode, manually mod~ 
eled chunk parses are split into several separate 
training sets; one per neural network. Then, the 
networks are trained independently of each other, 
allowing £or parallel training on several CPU's. In 
run mode, the input sentence is processed through 
all networks, giving a chunk parse, which is passed 



( ((speech-act •state-constraint) 
(sentence--type •state)) 
(((frame •booked)) 

(((frame = *i)) 
( 

(( 
i)) 
have)) 

(((frame = *meeting)) 
(((specifier indefinite)) a) 
( meeting)) 

(((frame *simple-time) 
( .. /frame *interval) 
( .. /incl-excl inclusive)) 
( till) 
({(hour :=12)) ([regc] twelve))))) 

Figure 4: Chunked and labeled sentence (labels 
shown in boldface) 

(Q ( ( s pe@ch-1t.et • state-constr!li nt) 
(sentence-type •state)) 
( □ ((frame *booked)) 

([ who)( ( frl\me =•I)) 
(0 

(□(□ 
i)) 
htwo,)) 

([what]( (frame o •meeting)) 
(O((speclfler indefinite)) a) 
(0 meeting)) 

( [wh,m/endj((frame 0 simple• Ume) 
( .. / frame •interval) 
( .. /incl•e1<cl inclusive)) 
(0 tlll) 
( □((hour =12)) ((regc] twelve))))) 

Figure 5: Chunk parse (chunk relations shown in 
boldface) 

on to the converting algorithm shown in Figure 3. 

In the following, the three main modules re­
quired to produce a chunk parse are described: 

The Chunker splits an input sentence into 
chunks. It consists of three neural networks. The 
first network finds numbers. They are classified as 
being ordinal or cardinal numbers, and are pre9 

sented as words to the following networks. The 
next network groups words together to phrases. 
The third network groups phrases together into 
clauses. In total, there are four levels of chunks: 
word/numbers, phrases, clauses and sentence. 

The Linguistic Feature Labeler attaches features 
and atomic feature values (if applicable) to these 
chunks. For each feature, there is a network, 
which finds one or 2:ero atomic values. Since there 
are many features, each chunk may get no, one or 
several pairs of features and atomic values. Since 
a feature normally only occurs at a certain chunk 
level, the network is ta.ilol'ed to decide on a par­
ticular feature at a particular chunk level. This 
specialization is there to prevent the learning task 

((speech-act •state- constraint) 
(sentence-type •state) 
(frame •booked) 
(who ((frllllle •i))) 
(what ((trame •~eting) 

(specifier indefinite))) 
(when ((incl-excl inclus~ve) 

(frame •interval) 
(end ((frame •simple-ti~e) 

(hour 12)))))) 

Figure 6: Feature structure parse 

from becoming too complex. A special atomic fea­
ture value is called lexical feature value. It is in­
dicated by'= ' and means that the neural network 
only detects the occurrence of a value, whereas the 
value itself is found by a lexicon lookup. The lex­
ical feature values are a true hybrid mechanism,. 
where symbolic knowledge is included when the 
neural network signals so. Furthermore, features 
may be marked as up-features (e.g ... /incl-excl 
in Figure 4 and 5). An up-feature is propagated 
up to its parent branch when building the feature 
structure (see Figure 6). 

The Chunk Relation Finder determines how a 
chunk relates to its parent chunk. It has one net­
work per chunk level and chunk relation element. 

The following example illustrates in detail how 
the three parts work. For clarity, this example 
assumes that all networks perform perfectly. The 
parser gets the English sentence: 

"i have a meeting till twelve'' 
The Chunker segments the sentence before pass­

ing it to the Linguistic Feature Labeler, which 
adds semantic labels (see Figure 4). The Chunk 
Relation Finder then adds relations, where appro­
priate, and we get the chunk parse a.s shown in 
Figure 5. Finally, processing it by the algorithm 
in Figure 3, gives the final parse, the feature struc­
ture, as :shown in Figllre 6. 

4.1 Lexicon 

FeasPar uses a full word form lexicon. The lexicon 
consists of three parts: one, a syntactic and se­
mantic microfeature vector per word, second, lex­
ical feature values, and three1 statistical microfea­

tures. 
Syntactic and semantic microfeatures are repre­

sented for each word as a vector of binary values. 
These vectors are used as input to the neural net­
works. As the neural networks learn their tasks 
based on the microfeatures, and not based on dis­
tinct words, adding new words using the same mi­
crofeatures is easy and does not degrade general-



iz;ation performance. The number and selection of 
microfeatures are domain dependent and must be 
made manually. For ESST, the lexicon contains 
domain independent syntactic and domain depen­
dent semantic microfeatures. To manually model 
a 600 word ESST vocabulary requires 3 full days. 

Lexical feature values are stored in look-up 
tables, which arc accessed when the Linguistic 
Feature Labeler indicate~ a lexical feature value. 
These tables are generated aut.omalically from the 
training data, and can easily be extended by hand 
for more generality and new words. An auto­
matic ambiguity checker warns if similar words or 
phrases map to ambiguous lexical feature values. 

Statistical microfeatures are represented for 
each word as a vector of continuous values Vstat• 

These microfeatures, each of them representing a 
feature pair, are extracted automatically. For ev­
ery feature value at a certain chunk level, if there 
exists a word such that, given this word in the 
training data, the feature value occurs in more 
than 50 % of the cases. One continuous microfea­
ture value V,tot for a word w is set automatically 
to the percentage of feature value occurrence given 
that word w. 

4.2 Neural Architecture and Training 

All neural networks have one hidden layer, and are 
conventional feed-forward networks. The learn­
ing is done with standard back-propagation, c:om­
bined with the constructive learning algorithm 
PCL(Jain, 1991), where learning starts using a 
small context, which is increased later in the learn­
ing process. This causes local dependencies to be 
learned first. 

Generali1,ation performance is increased by 
sparse connectivity. This connection principle is 
based on the microfeatures in the lexicon that are 
relevant to a particular network. The Chunker 
networks are only connected to the syntactic mi­
crofeatures, because chunking is a syntactic task. 
With ESST, the Linguistic Feature Labeler and 
Chunk Relation Finder networks are connected 
only to the semantic microfeatures, and to rel­
evant statistical microfeatures. All connectivity 
setup is automatic. Further techniques for im­
proving performance are described in (Bt10, 1996). 
For the neural networks, the average test set per­
formance is 95.4 % 

5 Search 

The complete parse depends on many neural net­
works. Most networks have a certain error rate; 
only a few networks are perfect. When building 
complete feature structures, these network errors 

multiply up, resulting in not only that many fea­
ture structures are erroneous, but also inconsis­
tent and making no sense. 

To compensate for this, we wrote a search al­
gorithm. It's based on two information sources: 
First, scores that originates from the network out­
put activations; second, a formal feature struc­
ture specification, stating what mixture of feature 
pairs are consistent. This specification wa.-; al­
ready available as an interlingua specification doc­
ument. 

Using these two information sources, the search 
finds the feature structure with the highest score, 
under t.he constraint of being consistent. T he 
search is described in more detail in (Bu0 and 
Waibel, 1996; Bu0, 1996). 

6 Results 

FeasPar GLR* Parser 
PMl - T 71.8 % 51.6 % 
PMl - S 52.3 % 30.3 % 
PM2E - T 74 % 63 % 
PM2E- S 49 % 28 % 
PM3G -T 49 % 42 % 
PM2G - S 36 % 17% 

Figure 7: Results 

FeasPar is compared with a handmodeled LR­
parser. The handmodeling effort for FeasPar is 2 
weeks. The handmodeling effort for the LR-parser 
was 4 months. 

The evaluation environment is the JANUS 
speech translation system for the Spontaneous 
Scheduling Task. The system have one parser and 
one generator per language. All parsers and gen­
erators are written using CMU's GLR/GLR* sys­
terp(Lavie and Tomita, 1993). They all share the 
same interlingua; ILT, which is a special case of 
LFG or feature structures. 

All Performance measures are nm with tran­
scribed (T) sentences and with speech (S) sen­
tences containing speech recognition errors. Per­
formance mea.i,ure l is the feature accuracy, where 
all features of a. parser-made feature structure are 
compared with feature of the correct handmodeled 
feature structure. Performance measure 2 is the 
end-to-end translation ratio for acceptable non­
trivial sentences achieved when LR-genera.tors are 
used as back-ends of the parsers. Perfonnance 
measure 2 uses an English LR-generator (hand­
modeled for 2 years), providing results for English­
to-English translation, whereas performance mea­
sure 3 uses a German LR-generator (ha.ndmodeled 



for 6 months), hence providing results for English­
to-German translatlons. Results for an unseen 

' independent evaluation set are shown in Figure 7. 
As we see, FeasPar is better than the LR-parser 

in all six comparison performauce measures made. 

7 Conclusion 

We described and experimentally evaluated a sys­
tem, FeasP ar, that learns parsing spontaneous 
speech. To train and run FeasPar (Feature Struc­
ture Parser), only limited handmodeled knowl­
edge is required (chunk parses and a lexicon). 

FeasPar is based on a principle of chunks, their 
features and relations. The FeasPar architecture 
consists of two major parts: A neural network col­
lection and a search. The neural networks first 
spilt the incoming sentence into chunks. T hen 
each chunk is labeled with feature values and 
chunk relations. Finally, the search uses a formal 
feature structure specification as constraint, and 
outputs the most probable and consiistent feature 
structure. 

FeasPar was trained, tested and evaluated with 
the Spontaneous Scheduling Task, and compared 
with a handmodeled LR-parser. FeasPar per­
formed better than the LR-parser in all six com­
parison performance measures that were made. 
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