
ACID/HNN: A Framework for HierarchicalConnectionist Acoustic ModelingJ�urgen FritschInteractive Systems LabsUniversity of Karlsruhe76128 Karlsruhe, Germany Carnegie Mellon UniversityPittsburgh, PA 15213, USAAbstract - We propose the ACID/HNN framework for context-depen-dent large vocabulary conversational speech recognition (LVCSR) usingconnectionist acoustic models. Our approach advocates the principlesof modularity and hierarchy for the estimation of thousands of context-dependent posterior HMM state probabilities. We argue that a hierar-chical organization of the acoustic model is crucial in obtaining compet-itive performance with connectionist estimators. We introduce ACID,an Agglomerative Clustering scheme based on Information Divergenceand use it to induce soft decision trees for hierarchical classi�cation. AHierarchy of Neural Networks (HNN) is then applied to the estimationof conditional posterior probabilities. We discuss the bene�ts of hierar-chically structured acoustic models for speaker adaptation and scoringspeed-up. Finally, we present experiments on the Switchboard conver-sational telephone speech corpus, currently a major focus of research inthe LVCSR community.1 IntroductionStatistical speech recognition based on hidden Markovmodels (HMM) cur-rently is the dominating paradigm in the research community, even thoughlots of limitations of this technique are repeatedly being discussed. Con-nectionist acoustic models [1] have proven to be able to overcome some ofthe drawbacks of HMMs. In particular, connectionist acoustic models wereshown to outperform traditional mixtures of Gaussians based acoustic modelson small, controlled tasks using context-independent HMMs.However, wide-spread use of connectionist acoustic models is hindered byat least two issues: (1) Training of connectionist acoustic models is muchslower, leading to training times of several days, if not weeks, and (2) poorscalability of connectionist acoustic models to larger systems. Re�nement oftraditional mixtures of Gaussians based acoustic modeling using phonetic de-cision trees for polyphonic context modeling recently led to systems consistingof thousands of HMM states. Signi�cant gains in recognition accuracy havebeen observed in such systems. Nevertheless, research in context-dependent



connectionist acoustic models has long concentrated on comparably small sys-tems since it was not clear how to reliably estimate posterior probabilities forthousands of states. Application of a single arti�cial neural network as incontext-independent modeling leads to an unfeasibly large number of outputnodes. Factoring posteriors based on context, monophone or HMM state iden-tity was shown to be capable of breaking down the global estimation probleminto subproblems of small enough size to allow the application of multiplearti�cial neural networks [4, 5, 6]. Comparable gains in performance wereachieved with context-dependent connectionist acoustic models based on thistechnique. However, factoring posteriors in terms of monophone and contextidentity seems to be limited to medium size systems. In large systems, nonuniform distribution of the number of context classes again leads to unfeasi-bly large numbers of output nodes for some of the context networks.This paper presents a principled hierarchical approach to factoring posteriorsfor connectionist acoustic modeling. Our approach exhibits full scalability,avoids stability problems due to non-uniform prior distributions and is eas-ily integrated into existing LVCSR systems. Starting from an inital set ofdecision tree clustered context-dependent subphonetic units, it uses an ag-glomerative clustering algorithm across monophones to automatically designa tree structured decomposition of posterior probabilities which is instanti-ated with thousands of small neural network estimators.2 Hierarchical Connectionist ModelingConnectionist acoustic modeling in the context of HMM based speechrecognition is characterized by discriminative training of observation proba-bility estimates [1]. Instead of using an independent set of parametric distri-butions to model HMM emission probabilities for HMM states, connectionistacoustic models make use of arti�cial neural networks to jointly estimateposterior state probabilities. In this paper, we focus on locally discriminantconnectionist acoustic models, mainly because of ease of integration into anexisting LVCSR system, in our case Janus-3 [3]. However, our approach israther general and could in principle be applied to estimate global posteriors.2.1 Hierarchical Decomposition of PosteriorsUsing Bayes rule, HMM emission probabilities can be expressed in termsof posterior state probabilities [1]. This is attractive, because it leads tomaximum a-posteriori (MAP) instead of standard maximum likelihood (ML)training. According to this setting, scaled likelihoods can be computed fromposterior state probabilities by dividing by priors, which are estimated by rela-tive frequencies. The potentially large number of states in context-dependentHMM modeling requires to factor the posterior probability in order to be ableto apply estimators such as arti�cial neural networks.



Let S be a set of HMM states 1 sk. For the moment, consider we have amethod at our disposition which gives us a reasonable partition of such aset S into M disjoint and non-empty subsets Si. A particular state sk willnow be a member of S and exactly one of the subsets Si. Therefore, we canrewrite the posterior probability of state sk as a joint probability of state andappropriate subset Si and factor it according top(skjx) = p(sk; Sijx) with sk 2 Si= p(Sijx) p(skjSi;x)Thus, the global task of discriminating between all the states in S has beenconverted into (1) discriminating between subsets Si and (2) independentlydiscriminating between the states sk contained within each of the subsetsSi. Recursively repeating this process yields a hierarchical tree-organizedstructure (Fig. 1).
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Figure 1: Hierarchical Decomposition of PosteriorsIt can be interpreted as a probability mass distribution device [8]. At the rootnode, an initial probability mass of 1 is fed into the architecture. At eachnode, the incoming probability mass is multiplied by the conditional posteriorprobabilities and fed into the children nodes. Eventually, the probability massis distributed among all the leaves (states) rendering their posterior proba-bilities. In contrast, typical hierarchical classi�ers such as classi�cation trees[2] operate as hard switching devices, allowing only a single path from rootnode to one of the leaves, depending on the outcome of categorical questionsin internal nodes.Since perfect estimation of (conditional) posterior probabilities can not beachieved in practice, the proposed hierarchical decomposition critically de-pends on the method used to design the tree structure. One could argue, that1Throughout the paper, the term 'HMM states' refers to a set of tied HMM states,typically clustered by means of phonetic decision trees



such a method is superuous since we already have available a tree structurein form of the phonetic decision trees used to cluster context-dependent HMMstates. However, we prefer not to adopt phonetic decision trees for severalreasons: (1) In most cases, separate decision trees are used to independentlycluster context classes for each monophone, and (2) phonetic decision trees of-ten are highly unbalanced. Therefore, we propose to apply an unconstrainedclustering algorithm that allows to form tree structured hierarchies acrossphone identities. Furthermore, our algorithm implicitly pursues uniform priordistributions in each node and therefore avoids unbalanced splits which couldlead to poorly approximated conditional posteriors.3 The ACID/HNN FrameworkWhen dealing with a rather large number of classes, several thousandsin our case, evaluation of all possible con�gurations for a hierarchical de-composition of the posterior class probabilities becomes intractable. Also,common heuristic top-down approaches based on examination of the classconfusion matrix of pre-trained monolithic classi�ers are problematic. Wetherefore propose to apply an agglomerative (bottom-up) clustering schemeusing the symetric information divergence as a measure of acoustic dissimilar-ity of subphonetic units. Based on this rather inexpensive distance measure,subphonetic units can be clustered e�ciently yielding a suitable hierarchicaldecomposition of posteriors.3.1 Information DivergenceConsider the case of two acoustic classes, si and sj which are to be dis-criminated. Let p(xjsi) and p(xjsj) be the class conditional likelihoods for siand sj , respectively. The average symetric discriminating information [9], orsymetric information divergence between si and sj can then be de�ned asd(si; sj) = Zx(p(xjsi)� p(xjsj)) log p(xjsi)p(xjsj) dxNow, suppose we model the class-conditional likelihoods using single full co-variance multivariate Gaussians with mean vectors �i and covariance matrices�i. The symetric information divergence between two normally distributedclasses si and sj isd(si; sj) = 12 trf(�i ��j)(��1j ���1i )g+ 12 trf(��1i +��1j )(�i � �j)(�i � �j)tgTo reduce the computational load of a clustering algorithm that utilizes thisdistance measure, one can restrict the Gaussian covariances to diagonal ma-



trices, resulting in the following distance measured(si; sj) = 12 nXk=1 (�2jk � �2ik) + (�2ik + �2jk)(�ik � �jk)2�2ik�2jkwhere �2ik and �ik denote the k-th coe�cient of the variance and mean vectorsof class si, respectively.3.2 ACID ClusteringMaking the simplifying assumption of linearity of information divergence,we can de�ne the following distance measure between clusters of GaussiansSk and Sl D(Sk; Sl) = Xsi2Sk p(sijSk) Xsj2Sl p(sj jSl)d(si; sj)This distance measure is used in the ACID clustering algorithm:1. Initialize algorithm with n clusters Si, each containing(1) a parametric model of the class-conditional likelihood and(2) a count Ci, indicating the frequency of class si in the train-ing set.2. Compute within cluster priors p(sijSk) for each cluster Sk, usingthe counts Ci3. Compute the symetric divergence measure D(Sk; Sl) betweenall pairs of clusters Sk and Sl.4. Find the pair of clusters with minimum divergence, S�k and S�l5. Create a new cluster S = S�kSS�l containing all Gaussians ofS�k and S�l plus their respective class counts. The resultingparametric model is a mixture of Gaussians where the mixturecoe�cients are the class priors6. Delete clusters S�k and S�l7. While there are at least 2 clusters remaining, continue with 2.Note that this algorithm clusters HMM states without knowledge of theirphonetic identity solemnly based on acoustic dissimilarity. Fig. 2 illustratesACID clustering on a very small subset of initial clusters. The ordinate ofthe dendrogram plot shows the information divergence at which the mergeroccured. Names encode monophone, state (begin,middle,end) and context id(numeric).3.3 Hierarchies of Neural Networks (HNN)Each node in an ACID-clustered tree structure represents conditionalposteriors when interpreted as a hierarchical decomposition. Estimators suchas polynomial regressors, radial basis functions or feed-forward networks canpotentially be trained to estimate such posteriors.
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Figure 2: Partial Dendrogram of ACID ClusteringWe are currently experimenting with 2-layer MLPs, trained in the frameworkof a generalized EM algorithm using error backpropagation. Therefore, weterm the complete connectionist acoustic model a Hierarchy of Neural Net-works (HNN). Challenging aspects of such an architecture are model com-plexity and adaptation of learning rates during training. While the networkin the root node is trained on all of the training data, networks deeper downthe tree receive less training data than their predecessors. We found that itis advantageous to reduce the number of networks in an HNN by applying agreedy bottom-up node merging algorithm as a second step of ACID cluster-ing. Using this strategy, we typically increase the average arity of the HNNtree from 2 to about 8.4 Exploiting HNN StructureThe hierarchical structure of ACID/HNN based acoustic models containsinformation about similarity of acoustic units on a coarse to �ne grain scalethat is missing in conventional at organizations of acoustic models. Thisinformation can for example be exploited in speed-up and adaptation algo-rithms where it leads to elegant solutions.4.1 Speed vs. AccuracyIn contrast to conventional mixtures of Gaussians based acoustic models,the ACID/HNN framework does not require additional structures to reducethe complexity of model evaluation. The tree structure itself can be exploitedto control the speed-accuracy trade-o�. The evaluation of posterior stateprobabilities follows a path from root node to a speci�c leaf in the HNN,multiplying all estimates of conditional posteriors along the way. Subtreescan be pruned by closing paths whenever the partial probability falls belowa suitable threshold. This way the evaluation of a signi�cant amount of



networks at the bottom of the HNN can be avoided, possibly at the cost ofincreased error rate.4.2 Speaker AdaptationIn order to achieve robust adaptation to speci�c speakers on limited data,conventional acoustic models usually require additional structure in form ofregression trees to assign a small set of adaptation transformations to param-eters of HMMs as in the MLLR [7] framework. Such information is readilyavailable in the HNN structure and robust speaker adaptation can be ac-complished by simply adapting those networks in the HNN tree that receiveenough adaptation data. Individual networks can be adapted by updatingweights of either all or some of the layers using error backpropagation onViterbi state alignments. This scheme automatically adjusts to the amountof available adaptation data. In case of very little data, only a few networksin the vincinity of the root node will get updated. The more data becomesavailable, the more networks receive enough samples, until eventually all ofthe networks in the HNN become subject to an update.5 ExperimentsIn our initial experiments with the ACID/HNN framework, we were construct-ing and training hierarchies for 6000 and 24000 HMM states on the Switch-board LVCSR corpus. Approximately 160 hours or 57.6M speech frames wereavailable for training the architecture. Training targets (state alignment la-bels) were generated using the Janus-3 1997 Switchboard recognizer [3]. Crossvalidation using 400 utterances was used to monitor performance and to de-cide when to stop training. Using individually adapted learning rates duringtraining, 1-4 passes through the training data usually su�ce to reach a max-imum in log-likelihood on the Switchboard corpus.We integrated the proposed hierarchical connectionist acoustic models intothe Janus-3 recognizer such that we could bene�t from a dictionary, phoneticdecision trees and language models optimized for Switchboard. Competitiveperformance was achieved with acoustic models based on the ACID/HNNframework, outperforming our earlier approaches to context-dependent con-nectionist acoustic modeling. The following table gives results for di�erentconnectionist acoustic models on the 1996 Switchboard evaluation set:acoustic model # HMM states # networks # params word errorCI HME/HMM 166 59 220k 58.6 %CD HME/HMM 10000 224 1.2M 37.3 %CD ACID/HNN 6000 962 1.6M 35.7 %CD ACID/HNN 24000 4046 2.8M 33.3 %The �rst two rows give results obtained with our earlier approach to connec-tionist acoustic modeling [5]. CI/CD denote context-independent/-dependentsystems, respectively. Signi�cant improvements were achieved with the ACID/
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