SPEEDING UP THE SCORE COMPUTATION OF HMM SPEECH REGOGNIZERS
WITH THE BUCKET VORONOI INTERSECTION ALGORITHM

J. Fritsch, I. Rogina, T. Sloboda, A. Waibel
{fritsch,rogina,sloboda,waibel} @ira.uka.de

Interactive Systems Laboratories
University of Karlsruhe — Germany
Carnegie Mellon University — USA

ABSTRACT

With increasing sizes of speech databases,
speech recognizers with huge parameter spaces
have become trainable. However, the time
and memory requirements for high accuracy re-
altime speaker-independent continuous speech
recognition will probably not be met by the
available hardware for a reasonable price for the
next few years. This paper describes the appli-
cation of the Bucket Voronoi Intersection algo-
rithm to the JANUS-2 speech recognizer, which
reduces the time for the computation of HMM
emission probabilities with large Gaussian mix-
tures by 50% to 80%.

1. INTRODUCTION

Although the computation of Gaussians is only
a part (for very large vocabularies, even a small
part) of the overall run time, speeding it up
does reduce the reaction time of the recognizer,
and especially the time for training significantly.
When computing the log probability of a Gaus-
sian mixture, many speech recognizer do not use
all Gaussians but only the top n. We have found
that in our system using only the one Gaussian
with the highest probability is almost as good
as using the sum of more Gaussians. We have
also found that using the Euclidean distance in-
stead of the Mahalanobis distance for finding
that most probable Gaussian does not decrease
recognition accuracy too much. This reduces
the computation of an HMM emission probabil-
ity to a two part process: First, find the cen-
troid that has the smallest Fuclidean distance
to the current speech sample, and second, com-
pute the value of the Gaussian (multiplied with
its mixture weight) for that centroid. So instead
of computing n Gaussians, where n is the size of
the mixture, we only have to compute one Gaus-
sian plus we have to run an algorithm for finding

the closest centroid. For this we use the Bucket
Voronoi Intersection (BVI) algorithm [1]. It
was introduced for high speed vector quantiza-
tion of low-dimensional vectors. However, we
have found that it is still good enough for 16-
dimensional speech vectors. In this paper we
describe experiments in which we have inves-
tigated the effect of the BVI-algorithm on the
run-time behavior and the recognition accuracy
of the JANUS-2 speech recognizer [2, 3].

2. THE BUCKET VORONOI
INTERSECTION ALGORITHM

For a detailed discourse on the Bucket Voronoi
Intersection (BVI) algorithm see [1].

All points in the feature space having the
same nearest-neighbor codebook vector define
a Voronoi region. The set of all Voronoi re-
gions constitutes a disjoint partitioning of the
feature space. The aim of the algorithm is to
approximate this partitioning with a top-down
tree search.

The principle behind it is a binary tree. Each
node of the tree represents a hyperplane in the
feature space. When classifying a sample vec-
tor, the tree is descended from the root down
to a leaf. At every node, a decision is made
to descend into the left or the right successor
node, depending on the sample vector being on
the left or on the right side of the current hy-
perplane. So every step down the tree reduces
the size of the search space.

When the tree descending algorithm has fi-
nally reached a leaf node, there will be only a
few codebook vectors left whose Voronoi region
is intersecting with the remaining search space,
which is called a bucket. The set of all buckets
constitutes a disjoint partitioning of the feature
space. Depending on how deep we descend the
tree, we get different buckets and a different par-
titioning of the feature space. In higher levels

of the tree we get larger buckets, which contain
more Voronoi regions.

Fig.1 illustrates the Bucket Voronoi Intersec-
tion algorithm in the case of a 2-dimensional
feature space. The space is partitioned into dis-
joint regions by a search tree of depth d = 2
and the Voronoi partitioning of the codevectors.
The intersection of the two partitions define the
BVI lists that have to be stored at the leafs of
the search tree.

O
@)
O O
B
®
O 57 c
O O
S7]
A
L[] [[]
Codebook

Fig. 1: Bucket Voronoi Intersection search

Given the tree with its 3 separating hyper-
planes A, B and C, 2 scalar comparisons are
sufficient to determine the bucket in which a
test vector z is located. A linear search among
the codevectors whose Voronoi regions intersect
with the located bucket will give the correct
nearest neighbor. Considering a test vector lo-
cated in the striped bucket, the search complex-
ity reduces from 13 (full search) to the 6 cross
marked codevectors. (see Fig.1).

Although the bucket sizes decrease monoton-
ically with increasing tree depth, there is no
guarantee to reach the optimal case of having
only one codebook vector per bucket. For that

reason, there is a tradeoff between speed up and
memory requirements of the tree. The time
for traversing the tree is not the critical fac-
tor. Let d be the depth of the tree, b the aver-
age bucket size and n the codebook size, then
we will have to compute d hyperplane compar-
isons, plus b Gaussians instead of n Gaussians.
Since the BVI-algorithm only uses hyperplanes
of the form z; = ¢, deciding on which side of
the hyperplane a vector y is located takes only
one simple floating point comparison y; < ¢t. A
full binary tree of depth d has 27 leafs (buckets),
so the memory requirements for storing the tree
grow exponentially. Since we are usually using
feature spaces that are at least 16-dimensional,
the limit for the depth of the trees will be deter-
mined rather by the amount of available mem-
ory, than by the run-time requirements.

3. COMPUTING THE BVI-TREE

Since it is extremely expensive to compute the
real boundaries of a high dimensional Voronoi
region, we approximate the Voronoi region with
a cuboid whose edges are parallel to the co-
ordiates. These approximate regions generally
overlap each other. The boundaries of the
cuboids are determined by encoding a suffi-
ciently large set of training vectors. (see Fig.
2).

o o o o
o o
T [}
o o |igo® :
S A
o o
@ ® _
1 *c 9l o
oo ®
°
N\ °
o o

Fig. 2: approximated Voronoi regions

A cuboid-approximated Voronoi region is de-
fined entirely on one side of a hyperplane if
all the training vectors that fall into the region
are on the same side of the hyperplane. With
this approach we get a very simple decision rule

based on scalar comparisons, but we introduce
a possible classification error (Fig. 2).

The error rate can be reduced by increasing the
number of training vectors. The more vectors
we use for training the more it is likely that
the approximate cuboid of a Voronoi region will
contain the entire region.

©) ©) ©) ©)
©) ©)
@) @)
@) @)
©)

,,,,,,,,,,, separating hyperplane
o class centroid e training vector

Fig. 3: classification error in approximated Voronoi regions

Fig. 4 shows the average classification error
rate, depending on the number of training vec-
tors and the depth of the BVI-trees.

In our experiments, we have found that a low
classification error rate for the nearest neighbor
is not important for a good speech recognition
accuracy (see Fig. 5)

The objective of a good BVI-tree is to have as
few Voronoi regions in every bucket as possible.
The average size of a bucket decreases with the
depth of the tree, while the memory require-
ments and error rate grow exponentially, lim-
iting the tree size. We have conducted exper-
iments with trees up to a depth of 12. Fig 6
shows the average bucket size depending on the
depth of the BVI-tree.

16 T T T T T T T
depth=6 ——
14 + depth=8 —=— |
depth=10 ——

12 1 depth=12 —— |

10

error rate [%)]

0 50 100 150 200 250 300 350 400
training vectors x 1000

Fig. 4: average classification error rate

75 T T T T T T T

70 & S — 4
s 65 |
>
(5]
I
3 60 25k training vectors 9
S 50k training vectors —=—
- 100k training vectors ——
<] 55 L 200K training vectors ——
s h

without BVI search -----
50 -
45
4 5 6 7 8 9 10 11 12

tree depth

Fig. 5: recognition accuracy using BVI-search
4. RUNTIME BEHAVIOR

The speedup in the HMM-emission probabil-
ity computation can be approximated by the
average mixture size divided by the average
bucket size. Of course, the relative speedup
for the entire system is smaller. Fig. 7 shows
the speedup of the score computation mecha-
nism for training and testing sessions with the
JANUS-2 speech recognizer. We were using
equally sized codebooks containing 50 vectors
with 16 coefficients.

50 T T T T
25k training vectors ——
45 50k training vectors —=— -
100k training vectors ——
40 200k training vectors —~— 4
8 35 -
2
° 30 -
4
o
3 25
[}
2 20
@
& 15
10 +
5 L
0
(o] 2 4 6 8 10 12
tree depth
Fig. 6: average bucket size depending on tree depth
4 T T T T T T T
25k training vectors ——
50k training vectors —=—
3.5 ¢ 100k training vectors ——
200k training vectors ——
Qo
=]
=
[}
[}
o
w

1

8
tree depth

Fig. 7: speedup of BVI-score computation

5. RECOGNITION ACCURACY

We have found that the recognition accuracy
of the speech recognizer does not suffer from
the possible classification errors of the BVI-
algorithm if the training vector set used for
determining the Voronoi projections is large
enough (> 100000 vectors). Fig. 5 shows
the word accuracy on the German Spontaneous
Scheduling Task (GSST) [3, 2] for different
amounts of training data for the BVI-algorithm.

6. LARGER CODEBOOKS

Experiments by [1] with different sized code-
books showed, that the BVI algorithm’s per-
formance improves with increasing codebook
size and/or decreasing dimensionality. Until
now, we were almost exclusively working with
codebooks of size N = 50, consisting of 16-
dimensional melscale vectors. To improve the
speedup, we have generated new codebooks
of size N = 1024 (same dimension) for the
JANUS-2 speech recognizer and tested the BVI
algorithm again. Fig. 8 shows the average
bucket size of the new BVI trees, depending on
the tree depth.

1024

100k training vectors” —— |

average bucket size
a
a
N

0 ! e
7 8 9 10 1 12

Fig. 8: average bucket size for search trees generated from

large codebooks

Compared with the results for smaller code-
books (see Fig. 6), the new BVI search trees for
the large codebooks offer a tremendously higher
speedup. This suggests, that one should use
codebooks as large as reasonable for the specific
application, to obtain the highest speedup from
the BVI algorithm.

7. CONCLUSIONS

We presented first results of our ongoing re-
search on speeding up the computation of

HMM emission probabilities with the BVI-
algorithm. Although the algorithm was devel-
oped for rather low dimensional data compres-
sion applications, we succesfully integrated this
fast vector quantization method into a HMM
speech recognizer.

ACKNOWLEDGMENTS

This research was partly funded by grant 413-
4001-01IV101S3 from the German Ministry of
Science and Technologie (BMBF) as a part of
the VERBMOBIL project. The views and con-
clusions contained in this document are those of
the authors.

REFERENCES

[1] Ramasubramanian, V.; Paliwal, K. K.
Fast Kdimensional Tree Algorithms for
Nearest Neighbor Search with Application
to Vector Quantization Encoding, TEEE
Transactions on Signal Processing, Vol. 40,
No. 3, March 1992.

[2] M. Woszczyna, N. Aoki-Waibel, F.D. Bug,
N. Coccaro, K. Horiguchi, T. Kemp, A.
Lavie, A. McNair, T. Polzin, I. Rogina,
C.P.Rose, T. Schultz, B. Suhm, M. Tomita,
A. Waibel: JANUS 93: Towards Sponta-
neous Speech Translation, Proceedings of
the ICASSP 1994, Adelaide, volume 1, pp
345-348.

[3] M.Woszczyna, N.Coccaro, A Eisele,
A.Lavie, A.McNair, T.Polzin,
[.Rogina, C.P.Rose, T.Sloboda, M.Tomita,
J. Tsutsumi, N.Aoki-Waibel, A.Waibel,
W.Ward: Recent Advances in Janus, a
Speech to Speech Translation System, Pro-
ceedings of the EUROSPEECH, Berlin,
1993.

[4] Bentley, J. L.: Multidimensional binary
search trees used for associative searching.,
Commun. Ass. Comput. Mach., vol 18, no.
9, pp. 509-517, Sept. 1975.

[5] Cheng D. Y., Gersho A., Ramamurthi B.
and Shoham Y.: Fast search algorithms for
vector quantization and pattern matching,
Proceedings of the IEEE ICASSP 1984, vol
1. Mar. 1984, pp. 9.11.1-9.11.4.

