
SPEEDING UP THE SCORE COMPUTATION OF HMM SPEECH REGOGNIZERSWITH THE BUCKET VORONOI INTERSECTION ALGORITHMJ. Fritsch, I. Rogina, T. Sloboda, A. Waibelffritsch,rogina,sloboda,waibelg@ira.uka.deInteractive Systems LaboratoriesUniversity of Karlsruhe | GermanyCarnegie Mellon University | USAABSTRACTWith increasing sizes of speech databases,speech recognizers with huge parameter spaceshave become trainable. However, the timeand memory requirements for high accuracy re-altime speaker-independent continuous speechrecognition will probably not be met by theavailable hardware for a reasonable price for thenext few years. This paper describes the appli-cation of the Bucket Voronoi Intersection algo-rithm to the JANUS-2 speech recognizer, whichreduces the time for the computation of HMMemission probabilities with large Gaussian mix-tures by 50% to 80%.1. INTRODUCTIONAlthough the computation of Gaussians is onlya part (for very large vocabularies, even a smallpart) of the overall run time, speeding it updoes reduce the reaction time of the recognizer,and especially the time for training signi�cantly.When computing the log probability of a Gaus-sian mixture, many speech recognizer do not useall Gaussians but only the top n. We have foundthat in our system using only the one Gaussianwith the highest probability is almost as goodas using the sum of more Gaussians. We havealso found that using the Euclidean distance in-stead of the Mahalanobis distance for �ndingthat most probable Gaussian does not decreaserecognition accuracy too much. This reducesthe computation of an HMM emission probabil-ity to a two part process: First, �nd the cen-troid that has the smallest Euclidean distanceto the current speech sample, and second, com-pute the value of the Gaussian (multiplied withits mixture weight) for that centroid. So insteadof computing n Gaussians, where n is the size ofthe mixture, we only have to compute one Gaus-sian plus we have to run an algorithm for �nding

the closest centroid. For this we use the BucketVoronoi Intersection (BVI) algorithm [1]. Itwas introduced for high speed vector quantiza-tion of low-dimensional vectors. However, wehave found that it is still good enough for 16-dimensional speech vectors. In this paper wedescribe experiments in which we have inves-tigated the e�ect of the BVI-algorithm on therun-time behavior and the recognition accuracyof the JANUS-2 speech recognizer [2, 3].2. THE BUCKET VORONOIINTERSECTION ALGORITHMFor a detailed discourse on the Bucket VoronoiIntersection (BVI) algorithm see [1].All points in the feature space having thesame nearest-neighbor codebook vector de�nea Voronoi region. The set of all Voronoi re-gions constitutes a disjoint partitioning of thefeature space. The aim of the algorithm is toapproximate this partitioning with a top-downtree search.The principle behind it is a binary tree. Eachnode of the tree represents a hyperplane in thefeature space. When classifying a sample vec-tor, the tree is descended from the root downto a leaf. At every node, a decision is madeto descend into the left or the right successornode, depending on the sample vector being onthe left or on the right side of the current hy-perplane. So every step down the tree reducesthe size of the search space.When the tree descending algorithm has �-nally reached a leaf node, there will be only afew codebook vectors left whose Voronoi regionis intersecting with the remaining search space,which is called a bucket. The set of all bucketsconstitutes a disjoint partitioning of the featurespace. Depending on how deep we descend thetree, we get di�erent buckets and a di�erent par-titioning of the feature space. In higher levels

of the tree we get larger buckets, which containmore Voronoi regions.Fig.1 illustrates the Bucket Voronoi Intersec-tion algorithm in the case of a 2-dimensionalfeature space. The space is partitioned into dis-joint regions by a search tree of depth d = 2and the Voronoi partitioning of the codevectors.The intersection of the two partitions de�ne theBVI lists that have to be stored at the leafs ofthe search tree.
A

B C

buckets

Codebook

BVI tree

A

C

B

Fig. 1: Bucket Voronoi Intersection searchGiven the tree with its 3 separating hyper-planes A, B and C, 2 scalar comparisons aresu�cient to determine the bucket in which atest vector x is located. A linear search amongthe codevectors whose Voronoi regions intersectwith the located bucket will give the correctnearest neighbor. Considering a test vector lo-cated in the striped bucket, the search complex-ity reduces from 13 (full search) to the 6 crossmarked codevectors. (see Fig.1).Although the bucket sizes decrease monoton-ically with increasing tree depth, there is noguarantee to reach the optimal case of havingonly one codebook vector per bucket. For that

reason, there is a tradeo� between speed up andmemory requirements of the tree. The timefor traversing the tree is not the critical fac-tor. Let d be the depth of the tree, b the aver-age bucket size and n the codebook size, thenwe will have to compute d hyperplane compar-isons, plus b Gaussians instead of n Gaussians.Since the BVI-algorithm only uses hyperplanesof the form xi = t, deciding on which side ofthe hyperplane a vector y is located takes onlyone simple
oating point comparison yi < t. Afull binary tree of depth d has 2d leafs (buckets),so the memory requirements for storing the treegrow exponentially. Since we are usually usingfeature spaces that are at least 16-dimensional,the limit for the depth of the trees will be deter-mined rather by the amount of available mem-ory, than by the run-time requirements.3. COMPUTING THE BVI-TREESince it is extremely expensive to compute thereal boundaries of a high dimensional Voronoiregion, we approximate the Voronoi region witha cuboid whose edges are parallel to the co-ordiates. These approximate regions generallyoverlap each other. The boundaries of thecuboids are determined by encoding a su�-ciently large set of training vectors. (see Fig.2).
Fig. 2: approximated Voronoi regionsA cuboid-approximated Voronoi region is de-�ned entirely on one side of a hyperplane ifall the training vectors that fall into the regionare on the same side of the hyperplane. Withthis approach we get a very simple decision rule

based on scalar comparisons, but we introducea possible classi�cation error (Fig. 2).The error rate can be reduced by increasing thenumber of training vectors. The more vectorswe use for training the more it is likely thatthe approximate cuboid of a Voronoi region willcontain the entire region.
separating hyperplane

training vectorclass centroid

error

Fig. 3: classi�cation error in approximated Voronoi regionsFig. 4 shows the average classi�cation errorrate, depending on the number of training vec-tors and the depth of the BVI-trees.In our experiments, we have found that a lowclassi�cation error rate for the nearest neighboris not important for a good speech recognitionaccuracy (see Fig. 5)The objective of a good BVI-tree is to have asfew Voronoi regions in every bucket as possible.The average size of a bucket decreases with thedepth of the tree, while the memory require-ments and error rate grow exponentially, lim-iting the tree size. We have conducted exper-iments with trees up to a depth of 12. Fig 6shows the average bucket size depending on thedepth of the BVI-tree.
0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400

er
ro

r r
at

e
[%

]

training vectors x 1000

depth=6
depth=8

depth=10
depth=12

Fig. 4: average classi�cation error rate
45

50

55

60

65

70

75

4 5 6 7 8 9 10 11 12

w
or

d
ac

cu
ra

cy
 [%

]

tree depth

25k training vectors
50k training vectors

100k training vectors
200k training vectors

without BVI searchFig. 5: recognition accuracy using BVI-search4. RUNTIME BEHAVIORThe speedup in the HMM-emission probabil-ity computation can be approximated by theaverage mixture size divided by the averagebucket size. Of course, the relative speedupfor the entire system is smaller. Fig. 7 showsthe speedup of the score computation mecha-nism for training and testing sessions with theJANUS-2 speech recognizer. We were usingequally sized codebooks containing 50 vectorswith 16 coe�cients.
0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12

av
er

ag
e

bu
ck

et
 s

iz
e

tree depth

25k training vectors
50k training vectors

100k training vectors
200k training vectors

Fig. 6: average bucket size depending on tree depth
1

1.5

2

2.5

3

3.5

4

4 5 6 7 8 9 10 11 12

sp
ee

d
up

tree depth

25k training vectors
50k training vectors

100k training vectors
200k training vectors

Fig. 7: speedup of BVI-score computation

5. RECOGNITION ACCURACYWe have found that the recognition accuracyof the speech recognizer does not su�er fromthe possible classi�cation errors of the BVI-algorithm if the training vector set used fordetermining the Voronoi projections is largeenough (> 100000 vectors). Fig. 5 showsthe word accuracy on the German SpontaneousScheduling Task (GSST) [3, 2] for di�erentamounts of training data for the BVI-algorithm.6. LARGER CODEBOOKSExperiments by [1] with di�erent sized code-books showed, that the BVI algorithm's per-formance improves with increasing codebooksize and/or decreasing dimensionality. Untilnow, we were almost exclusively working withcodebooks of size N = 50, consisting of 16-dimensional melscale vectors. To improve thespeedup, we have generated new codebooksof size N = 1024 (same dimension) for theJANUS-2 speech recognizer and tested the BVIalgorithm again. Fig. 8 shows the averagebucket size of the new BVI trees, depending onthe tree depth.
0

64

128

192

256

320

384

448

512

576

640

704

768

832

896

960

1024

0 1 2 3 4 5 6 7 8 9 10 11 12

av
er

ag
e

bu
ck

et
 s

iz
e

tree depth

"100k training vectors"

Fig. 8: average bucket size for search trees generated fromlarge codebooksCompared with the results for smaller code-books (see Fig. 6), the new BVI search trees forthe large codebooks o�er a tremendously higherspeedup. This suggests, that one should usecodebooks as large as reasonable for the speci�capplication, to obtain the highest speedup fromthe BVI algorithm.7. CONCLUSIONSWe presented �rst results of our ongoing re-search on speeding up the computation of

HMM emission probabilities with the BVI-algorithm. Although the algorithm was devel-oped for rather low dimensional data compres-sion applications, we succesfully integrated thisfast vector quantization method into a HMMspeech recognizer.ACKNOWLEDGMENTSThis research was partly funded by grant 413-4001-01IV101S3 from the German Ministry ofScience and Technologie (BMBF) as a part ofthe VERBMOBIL project. The views and con-clusions contained in this document are those ofthe authors. REFERENCES[1] Ramasubramanian, V.; Paliwal, K. K.:Fast Kdimensional Tree Algorithms forNearest Neighbor Search with Applicationto Vector Quantization Encoding, IEEETransactions on Signal Processing, Vol. 40,No. 3, March 1992.[2] M. Woszczyna, N. Aoki-Waibel, F.D. Bu�,N. Coccaro, K. Horiguchi, T. Kemp, A.Lavie, A. McNair, T. Polzin, I. Rogina,C.P. Rose, T. Schultz, B. Suhm, M. Tomita,A. Waibel: JANUS 93: Towards Sponta-neous Speech Translation, Proceedings ofthe ICASSP 1994, Adelaide, volume 1, pp345-348.[3] M.Woszczyna, N.Coccaro, A.Eisele,A.Lavie, A.McNair, T.Polzin,I.Rogina, C.P.Rose, T.Sloboda, M.Tomita,J.Tsutsumi, N.Aoki-Waibel, A.Waibel,W.Ward: Recent Advances in Janus, aSpeech to Speech Translation System, Pro-ceedings of the EUROSPEECH, Berlin,1993.[4] Bentley, J. L.: Multidimensional binarysearch trees used for associative searching.,Commun. Ass. Comput. Mach., vol 18, no.9, pp. 509-517, Sept. 1975.[5] Cheng D. Y., Gersho A., Ramamurthi B.and Shoham Y.: Fast search algorithms forvector quantization and pattern matching,Proceedings of the IEEE ICASSP 1984, vol1. Mar. 1984, pp. 9.11.1-9.11.4.

