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ABSTRACT

Today, most of the state-of-the-art speech recogniz-

ers are based on Hidden Markov modeling. Using

semi-continuous or continuous density Hidden Markov

Models, the computation of emission probabilities re-

quires the evaluation of mixture Gaussian probability

density functions. Since it is very expensive to evalu-

ate all the Gaussians of the mixture density codebook,

many recognizers only compute the M most signi�cant

Gaussians (M = 1; : : : ; 8). This paper presents an alter-

native approach to approximate mixture Gaussians with

diagonal covariance matrices, based on a binary feature

space partitioning tree. The proposed algorithm is ex-

perimentally evaluated in the context of large vocabu-

lary, speaker independent, spontaneous speech recogni-

tion using the JANUS-2 speech recognizer. In the case

of mixtures with 50 Gaussians, we achieve a speedup of

2-5 in the computation of HMM emission probabilities,

without a�ecting the accuracy of the system.

1. INTRODUCTION

To approximate the log probability of a Gaussian mix-

ture density using only the top-M Gaussians, one has to

keep a sorted list of the M most signi�cant Gaussians

during the VQ operation. This approach requires the

partial computation of squared Mahalanobis distances

for all the densities in the codebook. To reduce the com-

putational load, some speech recognizers use Euclidean

instead of Mahalanobis distances or restrict the compu-

tation of the emission probability to the one Gaussian

with the highest value (M = 1). In [1] we presented an

application of the BVI algorithm [2] that allows for fast

nearest-neighbor search when seeking the top-1 Gaus-

sian. However, we found that restricting the probability

computation to the evaluation of the Gaussian with the

highest value will not be appropriate for most tasks and

will result in a lower recognition accuracy. To avoid a

performance degradation, one is forced to either evalu-

ate all the Gaussians in the mixture or, at least, search

for the Gaussians, that give a signi�cant contribution to

the mixture probability. Evaluation of all the Gaussians

is mostly omitted, since it slows down the score compu-

tation considerably, while most of the Gaussians do not

contribute signi�cantly anyway.

In this paper, we present an extension of the BVI algo-

rithm, the Bucket Box Intersection (BBI) algorithm, that

allows for the fast approximative evaluation of a mixture

Gaussian density, ensuring an approximation error less

than a given threshold T . Instead of scanning all the

Gaussians in the codebook to �nd the set of the M most

signi�cant Gaussians in the mixture, the BBI algorithm

uses a pre-computed binary decision tree to dynamically

determine this set. The algorithm is found to be superior

in time complexity to both the top-1 and top-all algo-

rithms with a word accuracy that is still higher than that

achieved by restricting the mixture to the top-1 Gaus-

sian.

2. GAUSSIAN BOXING

Consider the log of a single multivariate Gaussian pdf
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The region in K-dimensional space, where this func-

tion gives higher logprobs than a given absolute thresh-

old T is a hyperellipsoid with axes parallel to the coor-

dinate axes. Given a threshold T , we can compute a box

with boundary hyperplanes orthogonal to the coordinate

axes that completely includes the Gaussian hyperellip-

soid. We call this box the Gaussian box associated with

T (see Fig. 1).

Gaussian

Gaussian box

x1

2x

Fig. 1: Gaussian boxing
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T must not be chosen greater than the maximum value

of the Gaussian, otherwise the argument of the square

root gets negative.

3. THE BUCKET BOX INTERSECTION

ALGORITHM

Consider the multivariate Gaussian mixture p(xj!) with

diagonal covariances for class !
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= 1. By re-

stricting the evaluation of a Gaussian to the region of

a Gaussian box with threshold T , we introduce an ap-

proximation error smaller than T . Using Gaussian boxes

with threshold T for all Gaussians in the mixture and re-

stricting the evaluation of the mixture to the Gaussians

with boxes that contain the current argument vector x,

we also introduce an overall error of less than T , since

the mixture weights add up to one.

To �nd the Gaussian boxes containing a vector x we use

a K-dimensional space partitioning tree (K-d tree) de-

veloped by Bentley [3].

A K-d tree is a generalization of the simple one-

dimensional binary tree. At every nonterminal node, the

current region is divided into two half-spaces by means

of a hyperplane orthogonal to one of the K coordinate

axes. Any vector x can now be located with respect to

the dividing hyperplane by a single scalar comparison.

Given a K-d tree of depth d and a K-dimensional vector

x, a sequence of d scalar comparisons leads to the leaf

(called bucket) containing the vector x. Such a K-d tree

partitions the K-dimensional space into 2

d

disjoint rect-

angular regions (buckets) and allows fast identi�cation

of the bucket containing a given vector.

Having localized a given vector x in one of the K-d tree's

buckets, we can restrict the Gaussian mixture computa-

tion to the evaluation of the Gaussians whose boxes are

intersecting with the current bucket. Depending on the

position and the form of the Gaussians, the threshold T

and the tree depth d, the bucket-box-intersection (BBI)

list associated with each bucket will contain fewer Gaus-

sians to evaluate than the complete mixture, reducing

the computational load considerably. Fig. 2 illustrates

the K-d tree partitioning and the BBI lists in the 2-

dimensional space.

A

1

2

3

A

B C

2
1 2 1

3
2
34

4

B

C

Fig. 2: Bucket Box Intersection (BBI)

4. OPTIMIZING THE SEARCH TREE

We are interested in a K-d search tree that minimizes

the expected number of bucket-box intersections given

the Gaussian boxes for an error threshold T . This min-

imization process corresponds to a global optimization

problem involving all the parameters in all nonterminal

nodes of the tree which is extremely complex and unfeasi-

ble in practice. Therefore, it becomes necessary to locally

optimize the parameters of the nonterminal nodes inde-

pendently, starting at the root node. For this purpose,

we propose a modi�cation of the Generalized Optimiza-

tion Criterion (GOC). See [2] for a detailed description

of this criterion. The non-terminal nodes in the tree are

processed top-down, starting at the root node. The fol-

lowing steps are taken to compute a locally optimized

division hyperplane within a speci�c node of the tree:

1) Determine the Gaussian boxes that are intersect-

ing with the hyperrectangular region corresponding

to the current node. This region is implicitly rep-

resented by the set of division hyperplanes of the

nodes above the current node, up to the root node.

2) For all coordinate axes x

i

: label the boundaries of the

projected Gaussian boxes with L(ower) and U(pper)



and sort them along the axis. Hypothesize a division

hyperplane x

i

= h that has an equal number of left

sided L labels and right sided R labels. By doing

so, we focus on building up a balanced binary tree,

that has an equal number of bucket box intersections

in its leaf nodes. Next, compute the number C

i

of intersecting Gaussian boxes that are split by the

hyperplane.

3) Choose the hyperplane with minimum number of

splits C

i

as the current nodes division hyperplane.

Finally, having reached the terminal nodes (leafs), a BBI

list has to be created for every leaf, containing refer-

ences to the intersecting Gaussians. By increasing the

error threshold T , search trees with a lower number of

expected bucket-box intersections may be created, since

the Gaussian boxes will be smaller. This will reduce

the computational load of evaluating the Gaussian mix-

ture at the cost of higher approximation error rates that

directly lead to a degradation of the recognizers word

accuracy. There is a tradeo� between fast and accurate

score computation that has to be considered in adjust-

ing the two parameters of the BBI algorithm, namely the

threshold T used in Gaussian boxing and the depth of

the search tree.

To reduce the average approximation error, we also used

the following error-correcting postprocessing or tuning

step after the optimization of the search tree was �n-

ished. A large number of representative training exam-

ples (feature vectors), taken from the recognizers training

database, is used to verify the accuracy of the approxi-

mated scores, as computed by the BBI search tree. The

training vectors are classi�ed into one of the tree leafs,

using the �rst part of the BBI algorithm (top-down tree

search). Each of the leafs is then processed indepen-

dently as follows, using the set of training vectors that

were classi�ed to the speci�c leaf:

For every Gaussian in the codebook, we compute an av-

erage contribution to the mixture by computing the cor-

rect (top-all) scores of the leaf's training vectors. After

sorting the Gaussians by decreasing average contribu-

tions we can verify, if there is a particular Gaussian with

high average contribution that is missing in the leaf's

bucket box intersection list. If so, we can replace a low

contributional Gaussian by the missing one, which will

decrease the average approximation error while leaving

the speed up unchanged.

5. EXPERIMENTS

We have conducted experiments with the JANUS-

2 speech recognizer [4] on the German Spontaneous

Scheduling Task , using the proposed algorithm for the

approximation of mixture Gaussian emission probabili-

ties. In our experiments, we were using a continuous-

density HMM system with 3300 mixtures and more than

1300 equally sized codebooks, containing 50 vectors with

16 LDA-transformed melscale coe�cients. In computing

the multi-dimensional Gaussian boxes, we obtained bet-

ter results by using a relative threshold R, instead of the

proposed absolute threshold T (see Fig. 3).
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Fig. 3: Absolute vs. Relative Gaussian boxing
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Relative thresholds are motivated by the observation

that the maxima of the Gaussians in our codebooks di�er

by more than 7 orders of magnitude. Using an absolute

threshold to determine the boxes, we put emphasis on

the absolute approximation error, resulting in inaccurate

modelling of the low-probability regions of the mixture.

By using relative thresholds, we do not have to compute

a BBI search tree for all the mixture density distribu-

tions, but only for each of the 1300 codebooks, because,

in contrast to absolute Gaussian boxes, relative boxes

are independent of the mixture coe�cient. The time for

the computation of the search trees and their storage re-

quirements can be neglected, compared to the running

time and storage requirements of the whole system (see

Fig. 4).

depth R time (min) storage (MBytes)

8 0.3 42 9.3

8 0.5 27 6.1

8 0.7 15 3.8

6 0.3 11 2.6

6 0.5 7 1.8

6 0.7 4 1.2

4 0.3 3 0.6

4 0.5 2 0.4

4 0.7 1 0.3

Fig. 4: K-d trees computation time and storage requirements

Fig 5. shows the speedup of systems that use the pro-

posed algorithm with di�erent relative thresholds R and

di�erent tree depths. The speedup is computed by divid-

ing the time required for the evaluation of all the Gaus-



sians in the mixture by the average time required for the

evaluation of the Gaussians in the leafs of the search tree.
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Fig. 6: Word Accuracy on German Spontaneous Scheduling

Task

Fig 6. shows the word accuracy for several test runs

with di�erent relative thresholds R and di�erent tree

depths. The dotted line shows the accuracy of the top-all

system that is evaluating all the Gaussians in the mix-

ture. Up to a threshold of R = 0:5, the word accuracy

is barely a�ected by the use of the proposed algorithm,

sometimes being even higher than that of the top-all sys-

tem.

6. CONCLUSIONS

In this paper, we have addressed the issue of fast approx-

imative evaluation of mixture Gaussian pdf's with diag-

onal covariance matrices using the BBI algorithm. The

proposed algorithm is studied in the context of speaker-

independent, spontaneous speech recognition using semi-

continuous or continuous density HMM's with mixture

Gaussian density codebooks of size N = 50. It outper-

forms the top-M approaches to the fast approximation

of mixture Gaussians, o�ering even higher speedups than

reported here when using larger mixtures.
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ture Gaussian probability density functions. Since it is very

expensive to evaluate all the Gaussians of the mixture den-
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