
Adaptively Growing HierarchicalMixtures of ExpertsJ�urgen Fritsch, Michael Finke, Alex Waibelffritsch+,�nkem,waibelg@cs.cmu.eduInteractive Systems LaboratoriesCarnegie Mellon UniversityPittsburgh, PA 15213AbstractWe propose a novel approach to automatically growing and pruningHierarchical Mixtures of Experts. The constructive algorithm pro-posed here enables large hierarchies consisting of several hundredexperts to be trained e�ectively. We show that HME's trained byour automatic growing procedure yield better generalization per-formance than traditional static and balanced hierarchies. Eval-uation of the algorithm is performed (1) on vowel classi�cationand (2) within a hybrid version of the JANUS [9] speech recog-nition system using a subset of the Switchboard large-vocabularyspeaker-independent continuous speech recognition database.INTRODUCTIONThe Hierarchical Mixtures of Experts (HME) architecture [2,3,4] has proven use-ful for classi�cation and regression tasks in small to medium sized applicationswith convergence times several orders of magnitude lower than comparable neu-ral networks such as the multi-layer perceptron. The HME is best understood as aprobabilistic decision tree, making use of soft splits of the input feature space at theinternal nodes, to divide a given task into smaller, overlapping tasks that are solvedby expert networks at the terminals of the tree. Training of the hierarchy is basedon a generative model using the Expectation Maximisation (EM) [1,3] algorithm asa powerful and e�cient tool for estimating the network parameters.In [3], the architecture of the HME is considered pre-determined and remains �xedduring training. This requires choice of structural parameters such as tree depthand branching factor in advance. As with other classi�cation and regression tech-niques, it may be advantageous to have some sort of data-driven model-selectionmechanism to (1) overcome false initialisations (2) speed-up training time and (3)adapt model size to task complexity for optimal generalization performance. In[11], a constructive algorithm for the HME is presented and evaluated on two smallclassi�cation tasks: the two spirals and the 8-bit parity problems. However, this



algorithm requires the evaluation of the increase in the overall log-likelihood for allpotential splits (all terminal nodes) in an existing tree for each generation. Thismethod is computationally too expensive when applied to the large HME's neces-sary in tasks with several million training vectors, as in speech recognition, wherewe can not a�ord to train all potential splits to eventually determine the single bestsplit and discard all others. We have developed an alternative approach to growingHME trees which allows the fast training of even large HME's, when combined witha path pruning technique. Our algorithm monitors the performance of the hierar-chy in terms of scaled log-likelihoods, assigning penalties to the expert networks,to determine the expert that performs worst in its local partition. This expert willthen be expanded into a new subtree consisting of a new gating network and severalnew expert networks.HIERARCHICAL MIXTURES OF EXPERTSWe restrict the presentation of the HME to the case of classi�cation, although it wasoriginally introduced in the context of regression. The architecture is a tree withgating networks at the non-terminal nodes and expert networks at the leaves. Thegating networks receive the input vectors and divide the input space into a nestedset of regions, that correspond to the leaves of the tree. The expert networks alsoreceive the input vectors and produce estimates of the a-posteriori class probabilitieswhich are then blended by the gating network outputs. All networks in the treeare linear, with a softmax non-linearity as their activation function. Such networksare known in statistics as multinomial logit models, a special case of GeneralizedLinear Models (GLIM) [5] in which the probabilistic component is the multinomialdensity. This allows for a probabilistic interpretation of the hierarchy in terms ofa generative likelihood-based model. For each input vector x, the outputs of thegating networks are interpreted as the input-dependent multinomial probabilitiesfor the decisions about which child nodes are responsible for the generation of theactual target vector y. After a sequence of these decisions, a particular expertnetwork is chosen as the current classi�er and computes multinomial probabilitiesfor the output classes. The overall output of the hierarchy isP (yjx;�) = NXi=1 gi(x;vi) NXj=1 gjji(x;vij)P (yjx; �ij)where the gi and gjji are the outputs of the gating networks.The HME is trained using the EM algorithm [1] (see [3] for the application of EMto the HME architecture). The E-step requires the computation of posterior nodeprobabilities as expected values for the unknown decision indicators:hi = giPj gjjiPij(y)Pi giPj gjjiPij(y) hjji = gjjiPij(y)Pj gjjiPij(y)The M-step then leads to the following independent maximum-likelihood equations�ij = argmax�ij Xt h(t)ij logPij(y(t))vi = argmaxvi Xt Xk h(t)k log g(t)kvij = argmaxvij Xt Xk h(t)k Xl h(t)ljk log g(t)ljk



where the �ij are the parameters of the expert networks and the vi and vij arethe parameters of the gating networks. In the case of a multinomial logit model,Pij(y) = yc, where yc is the output of the node associated with the correct class. Theabove maximum likelihood equations might be solved by gradient ascent, weightedleast squares or Newton methods. In our implementation, we use a variant of Jordan& Jacobs' [3] least squares approach.GROWING MIXTURESIn order to grow an HME, we have to de�ne an evaluation criterion to score theexperts performance on the training data. This in turn will allow us to selectand split the worst expert into a new subtree, providing additional parameterswhich can help to overcome the errors made by this expert. Viewing the HMEas a probabilistic model of the observed data, we partition the input dependentlikelihood using expert selection probabilities provided by the gating networksl(�;X ) = Xt logP (y(t)jx(t);�) =Xt Xk gk logP (y(t)jx(t);�)= Xk Xt log[P (y(t)jx(t);�)]gk =Xk lk(�;X )where the gk are the products of the gating probabilities along the path from theroot node to the k-th expert. gk is the probability that expert k is responsiblefor generating the observed data (note, that the gk sum up to one). The expert-dependent scaled likelihoods lk(�;X ) can be used as a measure for the performanceof an expert within its region of responsibility. We use this measure as the basis ofour tree growing algorithm:1. Initialize and train a simple HME consisting of only one gate and several experts.2. Compute the expert-dependent scaled likelihoods lk(�;X ) for each expert in oneadditional pass through the training data.3. Find the expert k with minimum lk and expand the tree, replacing the expert bya new gate with random weights and new experts that copy the weights from theold expert with additional small random perturbations.4. Train the architecture to a local minimum of the classi�cation error using a cross-validation set.5. Continue with step (2) until desired tree size is reached.The number of tree growing phases may either be pre-determined, or based ondi�erence in the likelihoods before and after splitting a node. In contrast to thegrowing algorithm in [11], our algorithm does not hypothesize all possible nodesplits, but determines the expansion node(s) directly, which is much faster, espe-cially when dealing with large hierarchies. Furthermore, we implemented a pathpruning technique similar to the one proposed in [11], which speeds up trainingand testing times signi�cantly. During the recursive depth-�rst traversal of the tree(needed for forward evaluation, posterior probability computation and accumula-tion of node statistics) a path is pruned temporarily if the current node's probabilityof activation falls below a certain threshold. Additionally, we also prune subtreespermanently, if the sum of a node's activation probabilities over the whole trainingset falls below a certain threshold. This technique is consistent with the growingalgorithm and also helps preventing instabilities and singularities in the parameterupdates, since nodes that accumulate too little training information will not beconsidered for a parameter update because such nodes are automatically pruned bythe algorithm.



Figure 1: Histogram trees for a standard and a grown HMEVOWEL CLASSIFICATIONIn initial experiments, we investigated the usefulness of the proposed tree growingalgorithm on Peterson and Barney's [6] vowel classi�cation data that uses formantfrequencies as features. We chose this data set since it is small, non-arti�cial andlow-dimensional, which allows for visualization and understanding of the way thegrowing HME tree performs classi�cation tasks.
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1.0 The vowel data set contains1520 samples consisting of theformants F0, F1, F2 and F3and a class label, indicatingone of 10 di�erent vowels.Experiments were carried outon the 4-dimensional featurespace, however, in this papergraphical representations arerestricted to the F1-F2 plane.The �gure to the left showsthe data set represented inthis plane (The formant fre-quencies are normalized tothe range [0,1]).In the following experiments, we use binary branching HME's exclusively, but ingeneral the growing algorithm poses no restrictions on the tree branching factor.We compare a standard, balanced HME of depth 3 with an HME that grows froma two expert tree to a tree with the same number of experts (eight) as the standardHME. The size of the standard HME was chosen based on a number of experimentswith di�erent sized HME's to �nd an optimal one. Fig. 1 shows the topologyof the standard and the fully grown HME together with histograms of the gatingprobability distributions at the internal nodes.Fig. 2 shows results on 4-dimensional feature vectors in terms of correct classi�-cation rate and log-likelihood. The growing HME achieved a slightly better (1.6%absolute) classi�cation rate than the �xed HME. Note also, that the growing HMEoutperforms the �xed HME even before it reaches its full size. The growing HMEwas expanded every 4 iterations, which explains the bumpiness of the curves.Fig. 3 shows the impact of path pruning during training on the �nal classi�cationrate of the grown HME's. The pruning factor ranges from no pruning to full pruning(e.g. only the most likely path survives).Fig. 4 shows how the gating networks partition the feature space. It contains plots
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compared to the unpruned HMEFigure 3: Impact of path pruning during training of growing HME'sof the activation regions of all 8 experts of the standard HME in the 2-dimensionalrange [�0:1; 1:1]2. Activation probabilities (product of gating probabilities fromroot to expert) are colored in shades of gray from black to white. Fig. 5 shows thesame kind of plot for all 8 experts of the grown HME. The plots in the upper rightcorner illustrate the class boundaries obtained by each HME.

Figure 4: Expert activations for standard HMEFig. 4 reveals a weakness of standard HME's: Gating networks at high levels in thetree can pinch o� whole branches, rendering all the experts in the subtree useless.In our case, half of the experts of the standard HME do not contribute to the �naldecision at all (black boxes). The growing HME's are able to overcome this e�ect.All the experts of the grown HME (Fig. 5) have non-zero activation patterns andthe overlap between experts is much higher in the growing case, which indicates ahigher degree of cooperation among experts. This can also be seen in the histogramtrees in Fig. 3, where gating networks in lower levels of the grown tree tend to



Figure 5: Expert activations for grown HMEaverage the experts outputs. The splits formed by the gating networks also haveimplications on the way class boundaries are formed by the HME. There are strongdependencies visible between the class boundaries and some of the experts activationregions.EXPERIMENTS ON SWITCHBOARDWe recently started experiments using standard and growing HME's as estima-tors of posterior phone probabilities in a hybrid version of the JANUS [9] speechrecognizer. Following the work in [12], we use di�erent HME's for each state ofa phonetic HMM. The posteriors for 52 phonemes computed by the HME's areconverted into scaled likelihoods by dividing by prior probabilities to account forthe likelihood based training and decoding of HMM's. During training, targets forthe HME's are generated by forced-alignment using a baseline mixture of GaussianHMM system. We evaluate the system on the Switchboard spontaneous telephonespeech corpus. Our best current mixture of Gaussians based context-dependentHMM system achieves a word accuracy of 61.4% on this task, which is among thebest current systems [7]. We started by using phonetic context-independent (CI)HME's for 3-state HMM's. We restricted the training set to all dialogues involv-ing speakers from one dialect region (New York City), since the whole training setcontains over 140 hours of speech. Our aim here was, to reduce training time (thesubset contains only about 5% of the data) to be able to compare di�erent HMEarchitectures.Context ] HME branching ] experts Word Acc.CI 3 4 64 33.8%CI growing 3 4 64 35.1%CD/CI 3x52 8/4 8/64 42.1%CD/CI growing 3x52 2/4 8/64 45.3%Figure 6: Preliminary results on Switchboard telephone dataTo improve performance, we then build context-dependent (CD) models consistingof a separate HME for each biphone context and state. The CD HME's output issmoothed with the CI models based on prior context probabilities. Current workfocuses on improving context modeling (e.g. larger contexts and decision tree basedclustering).Fig. 6 summarizes the results so far, showing consistently that growing HME'soutperform equally sized standard HME's. The results are not directly comparable



with our best Gaussian mixture system, since we restricted context modeling tobiphones and used only a small subset of the Switchboard database for training.CONCLUSIONSIn this paper, we presented a method for adaptively growing Hierarchical Mixturesof Experts. We showed, that the algorithm allows the HME to use the resources(experts) more e�ciently than a standard pre-determined HME architecture. Thetree growing algorithm leads to better classi�cation performance compared to stan-dard HME's with equal numbers of parameters. Using growing instead of �xedHME's as continuous density estimators in a hybrid speech recognition system alsoimproves performance.References[1] Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977) Maximum likelihood from incom-plete data via the EM algorithm. J.R. Statist. Soc. B 39 , 1-38.[2] Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991) Adaptive mixturesof local experts. In Neural Computation 3, pp. 79-87, MIT press.[3] Jordan, M.I. & Jacobs R.A. (1994) Hierarchical Mixtures of Experts and the EMAlgorithm. In Neural Computation 6, pp. 181-214. MIT press.[4] Jordan, M.I. & Jacobs, R.A. (1992) Hierarchies of adaptive experts. In Advances inNeural Information Processing Systems 4, J. Moody, S. Hanson, and R. Lippmann, eds.,pp. 985-993. Morgan Kaufmann, San Mateo, CA.[5] McCullagh, P. & Nelder, J.A. (1983) Generalized Linear Models. Chapman and Hall,London.[6] Peterson, G. E. & Barney, H. L. (1952) Control measurements used in a study of thevowels. Journal of the Acoustical Society of America 24, 175-184.[7] Proceedings of LVCSR Hub 5 workshop, Apr. 29 - May 1 (1996) MITAGS, LinthicumHeights, Maryland.[8] Syrdal, A. K. & Gopal, H. S. (1986) A perceptual model of vowel recognition based onthe auditory representation of American English vowels. Journal of the Acoustical Societyof America, 79 (4):1086-1100.[9] Zeppenfeld T., Finke M., Ries K., Westphal M. & Waibel A. (1997) Recognition ofConversational Telephone Speech using the Janus Speech Engine. Proceedings of ICASSP97, Muenchen, Germany[10] Waterhouse, S.R., Robinson, A.J. (1994) Classi�cation using Hierarchical Mixtures ofExperts. In Proc. 1994 IEEE Workshop on Neural Networks for Signal Processing IV, pp.177-186.[11] Waterhouse, S.R., Robinson, A.J. (1995) Constructive Algorithms for HierarchicalMixtures of Experts. In Advances in Neural Information Processing Systems 8.[12] Zhao, Y., Schwartz, R., Sroka, J. & Makhoul, J. (1995) Hierarchical Mixtures of Ex-perts Methodology Applied to Continuous Speech Recognition. In ICASSP 1995, volume5, pp. 3443-6, May 1995.


