
Hierarchies of Neural Networks forConnectionist Speech RecognitionJ�urgen Fritsch, Alex WaibelInteractive Systems LaboratoriesUniversity of Karlsruhe76128 Karlsruhe, Germany Carnegie Mellon UniversityPittsburgh, PA 15213, USAAbstract. We present a principled framework for context-dependenthierarchical connectionist HMM speech recognition. Based on a divide-and-conquer strategy, our approach uses an Agglomerative Clusteringalgorithm based on Information Divergence (ACID) to automatically de-sign a soft classi�er tree for an arbitrary large number of HMM states.Nodes in the classi�er tree are instantiated with small estimators of lo-cal conditional posterior probabilities, in our case feed-forward neuralnetworks. Our framework represents an e�ective decomposition of stateposteriors with advantages over traditional acoustic models. We evalu-ate the e�ectiveness of our Hierarchies of Neural Networks (HNN) on theSwitchboard large vocabulary conversational speech recogntion (LVCSR)corpus.1. IntroductionIn hybrid NN/HMM connectionist speech recognition, parametric mixture den-sities that are typically applied to model observation probabilities in hiddenMarkov models (HMM) are replaced by connectionist estimators of posteriorprobabilities. Experiments with such systems (e. g. [1]) indicated an advantageof hybrid models in terms of discriminative power, required number of parame-ters and decoding speed. However, despite the success of such models in a widerange of speech recognition tasks, current state-of-the-art systems for large vo-cabulary conversational speech recognition (LVCSR) almost entirely rely onthe conventional paradigm for acoustic modeling. What are the reasons forthis preference towards traditional acoustic models?First, training of connectionist acoustic models usually is computationallymore expensive. Second, context modeling in continuous density HMMs hasevolved signi�cantly since the advent of hybrid NN/HMM models. The appli-cation of decision trees to the clustering of polyphones recently led to systemsconsisting of thousands of HMM states. Since modeling of observation prob-abilities using mixture densities is independent for each state, an increase inthe number of states imposes no conceptual problem. In contrast, connection-ist acoustic models jointly estimate posterior state probabilities and are muchharder to scale to larger systems. Often, context-modeling is avoided at all.Nevertheless, signi�cant improvements in recognition accuracy can be gainedthrough context modeling in both traditional and connectionist acoustic mod-



eling [3, 5, 7]. However, the number of HMM states and therefore the level ofcontext-dependence has been limited to medium size systems.This paper presents the ACID/HNN [4] framework, a highly modular andscalable approach to connectionist acoustic modeling. Viewing the estima-tion of posterior state probabilities as a hierarchical process, an automaticallyclustered tree structured ensemble of neural networks is applied to estimatestate posteriors. Although similar in spirit, earlier approaches [5, 6, 9] lack aprincipled treatment of decomposition. We present experiments on the Switch-board LVCSR corpus, demonstrating that state-of-the-art performance can beachieved with our framework.2. Hierarchical Acoustic ModelingConnectionist acoustic modeling for hybrid NN/HMM systems is characterizedby the estimation of posterior state probabilities using one or several neuralnetworks. Integration of this model into the HMM framework is justi�ed bythe application of Bayes rulep(xjsi) = p(sijx)P (si) p(x)to get estimates of the state observation likelihood p(xjsi) given an acousticfeature vector x. Usually, the term p(x) is neglected because it is constant forall states and does not in
uence the outcome of a Viterbi decoder. Therefore,scaled observation likelihoods can be computed from state posteriors by di-viding by state priors P (si). For context-independent systems, the number ofHMM states is small enough to apply a single neural network to jointly estimatethe posterior state probabilities. However, introducing context-dependence in-creases the number of states signi�cantly and training a single neural networkbecomes prohibitive. A decomposition can be gained by factoring the posteriorstate probabilities [3, 5, 7]. Typically, posterior state probabilities are factoredaccording to monophone identity. Here, we present a more principled approachwhere factoring is guided by an agglomerative clustering process.Let S denote the set of all (decision tree clustered) HMM states sk. Considera partition of S into M disjoint and non-empty subsets Si. A particular statesk will now be a member of S and exactly one of the subsets Si. Therefore, wecan rewrite the posterior probability of state sk as a joint probability of stateand appropriate subset Si and factor it according top(skjx) = p(sk; Sijx) with sk 2 Si= p(Sijx) p(skjSi;x)Thus, the global task of discriminating between all the states in S has beenconverted into (1) discriminating between subsets Si and (2) independentlydiscriminating between the states sk contained within each of the subsets Si.Recursively repeating this process yields a hierarchical tree-organized structure(see Fig. 1). The e�ectiveness of any such hierarchical decomposition of poste-riors crucially depends on the tree design method [8] since local estimators ofconditional posterior probabilities can only be trained to approximate the truedistributions.
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Figure 1: Conditional Factoring of Posteriors3. The ACID/HNN FrameworkWhen dealing with a rather large number of classes, several thousands in ourcase, evaluation of all possible con�gurations for a hierarchical decompositionof the posterior class probabilities becomes intractable. Also, common heuris-tic top-down approaches based on examination of the class confusion matrixof pre-trained monolithic classi�ers are problematic. We therefore apply anagglomerative (bottom-up) clustering scheme using the symmetric informationdivergence d(si; sj) = Zx(p(xjsi)� p(xjsj)) log p(xjsi)p(xjsj) dxas a measure of acoustic dissimilarity of subphonetic units. Based on thisrather inexpensive distance measure, even large amounts of subphonetic unitscan be clustered e�ciently. We typically model the class-conditional likelihoodsusing single diagonal covariance multivariate Gaussians with mean vectors �iand variance vectors �2i . In this case, the symmetric information divergencebetween two states si and sj amounts tod(si; sj) = 12 nXk=1 (�2jk � �2ik) + (�2ik + �2jk)(�ik � �jk)2�2ik�2jkMaking the simplifying assumption of linearity of information divergence,we can de�ne the following distance measure between clusters of states Sk andSl D(Sk; Sl) = Xsi2Sk p(sijSk) Xsj2Sl p(sj jSl)d(si; sj)The ACID algorithm uses the above distance measure in a standard bottom-up agglomerative clustering method. Note that this algorithm clusters HMM



states without knowledge of their phonetic identity solemnly based on acousticdissimilarity. Fig. 2 illustrates ACID clustering on a very small subset ofinitial clusters. The ordinate of the dendrogram plot shows the informationdivergence at which the merger occured. Names encode monophone, state(begin,middle,end) and context id (numeric).
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Figure 2: Partial Dendrogram of ACID ClusteringEach node in an ACID-clustered tree structure represents conditional pos-teriors when interpreted as a hierarchical decomposition. Estimators such aspolynomial regressors, radial basis functions or feed-forward networks can po-tentially be trained to estimate such posteriors. We are currently experimentingwith 2-layer MLPs, trained in the framework of a generalized EM algorithmusing error backpropagation. Therefore, we term the complete connectionistacoustic model a Hierarchy of Neural Networks (HNN), see Fig. 3.Challenging aspects of such an architecture are model complexity and adap-tation of learning rates during training. While the network in the root node istrained on all of the training data, networks deeper down the tree receive lesstraining data than their predecessors. We found that it is advantageous to re-duce the number of networks in an HNN by applying a greedy bottom-up nodemerging algorithm as a second step of ACID clustering. Using this strategy,we typically increase the average arity of the HNN tree from 2 to about 8.4. ExperimentsExperiments with the ACID/HNN approach were carried out on the Switch-board LVCSR corpus. We chose Switchboard, because it consists of very noisyspontaneous speech in telephone quality requiring excessive modeling of coar-ticulation to achieve state-of-the-art performance. Switchboard also is a compa-rably hard speech recognition task. Current best systems based on traditionalHMM approaches achieve word error rates in the vicinity of 30-40% while typ-ically running 150-300 times slower than real time.
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Figure 3: ACID clustered Hierarchy of Neural NetworksThe following table summarizes results for various hybrid NN/HMM modelsfocusing on the ACID/HNN framework. The models were trained on 170 hoursof Switchboard training data corresponding to roughly 60 million patterns.Recognition experiments were performed with the Janus-RTk [2] Switchboardrecognizer on the 1997 development test set, consisting of 40 unseen speakers.The �rst two rows give earlier results that we obtained with hybrid HME/HMMmodels [5]. CI denotes context-independent, CD context-dependent modeling.Apart from word error rates, the table gives number of HMM states, e�ectivenumber of evaluated networks per frame, number of parameters and real timefactors for each system.acoustic model # states # NNs # params xRT word errorCI HME/HMM 166 59 220k 80 58.6 %CD HME/HMM 10000 224 1.2M 130 37.3 %CD ACID/HNN 6000 962 1.6M 120 35.7 %CD ACID/HNN 24000 4046 2.8M 145 33.3 %adapted ACID/HNN 24000 4046 2.8M 130 31.8 %pruned ACID/HNN 24000 �500 2.8M 26 33.6 %Obviously, context-dependent modeling improves performance vastly. Wetrained two ACID/HNN acoustic models with 6k and 24k tied states, respec-tively, to demonstrate the scalability of the proposed approach. Furthermore,our results indicate that going from 6k to 24k HMM states improves perfor-mance signi�cantly. Unsupervised speaker adaptation can be applied very eas-ily to our model by simply retraining those networks in the HNN that receivemore than a certain amount of adaptation data (the ones at the top of thetree). An additional gain of 1.5% in accuracy was achieved using this simplealgorithm. Finally, ACID/HNN models allow to trade o� accuracy against de-coding speed by simply pruning the evaluation of the HNN tree in each frame



based on partial posteriors. This way, a signi�cant amount of network evalua-tions can be omitted with almost no loss in accuracy. In contrast, traditionalacoustic models usually require much more e�ort to achieve the same goal.5. ConclusionsWe present a novel framework for connectionist acoustic modeling and demon-strate its viability on the Switchboard LVCSR task. Based on the principleof divide and conquer, it allows to build and robustly estimate connection-ist acoustic models for arbitrary large sets of context-dependent HMMs. Ourapproach maintains the advantages of discriminatively trained acoustic mod-els while circumventing the limitations of standard hybrid NN/HMM architec-tures. On the 1997 Switchboard development test set, we achieve a competitiveword error rate of 31.8% with an ACID/HNN based acoustic model. Further-more, our approach simpli�es important algorithms such as speaker adaptationand scoring speed-up.References[1] H. Bourlard and N. Morgan, Connectionist Speech Recognition { A Hybrid Approach,Kluwer Academic Press, 1994.[2] M. Finke, J. Fritsch, P. Geutner, K. Ries and T. Zeppenfeld, \The JanusRTk Switch-board/Callhome 1997 Evaluation System", Proceedings of LVCSR Hub5-e Workshop,Baltimore 1997.[3] H. Franco, M. Cohen, N. Morgan, D. Rumelhart and V. Abrash, \Context-dependentconnectionist probability estimation in a hybrid Hidden Markov Model { Neural Netspeech recognition system", Computer Speech and Language, Vol. 8, No 3, 1994.[4] J. Fritsch, \ACID/HNN: A Framework for Hierarchical Connectionist Acoustic Model-ing", In Proc. of IEEE Workshop on Automatic Speech Recognition and Understanding,Santa Barbara, 1997.[5] J. Fritsch, M. Finke and A. Waibel, \Context-Dependent Hybrid HME/HMM SpeechRecognition using Polyphone Clustering Decision Trees", Proc. of ICASSP'97, Munich1997.[6] J. Hampshire II, A. Waibel, \The Meta-Pi Network: Building Distributed Knowl-edge Representations for Robust Pattern Recognition", Tech. Rep. CMU-CS-89-166,Carnegie Mellon University, Pittsburgh PA, August 1989.[7] D. J. Kershaw, M. M. Hochberg and A. J. Robinson, \Context-Dependent Classes in aHybrid Recurrent Network HMM Speech Recognition System", Tech. Rep. CUED/F-INFENG/TR217, CUED, Cambridge, England 1995.[8] J. Sch�urmann and W. Doster, \A Decision Theoretic Approach to Hierarchical Classi�erDesign", Pattern Recognition 17 (3), 1984.[9] A. Waibel, H. Sawai and K. Shikano, \Consonant Recognition by Modular Constructionof Large Phonemic Time-Delay Neural Networks", Proc. of ICASSP'89, Glasgow 1989.


