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Abstract  In this paper we report on our efforts to combine speech and language pro-
cessing toward multi-lingual spontaneous speech translation. The ongoing work extends
our JANUS system effort toward handling spontaneous spoken discourse and multiple lan-
guages. After an overview of the task, databases, and the systom arvchitecture we will focus
on how conncetionist modules are integrated in the overall system design. We will show
that these modules can because of their learning capabilities adapt themselves to the prob-
lem space. Moreover, because of their inherent robustness against noise they seem to be
an adequate tool for analyzing spontaneous speech.

1 Introduction

The goal of the JANUS project 18 mulfi-lingua! machine translation of spontancously spoken dialogs in
a limited domain. Currently we are using the scheduling domain, i.e. twao people scheduling a meeting
with each other. We are working with German, Spanish, and Fnglish as source languages and German,
English, and Japanese as targel languages. This paper reporls on our elforts Lo make Natural Language
Processing (NLP) robusl over spontaneous speech and to use NLP Lo consbrain speech recognition. In
this article we foeus on connectionist approaches to these problems. For statistical and knowledge-hased
approaches to robust parsing and dialog medeling within the JANUS project see [19]. We consider the
connectionist modules in JANUS as additional processing stages complementing other alternate modules.
Our investigation of connectionist approaches in JANUS tries to overcome the following problems:

1. So far, specitying the parsing grammars takes most of the time in the development. Note, that cach
gsource language requires its own parsing grammar. In nsing connectionist learning algorithms we try
to skip this step in the development.

2. When recognizing or parsing spontancous specch one has to handle phenomena like restarts, repairs and
repetitions. Spontancous langnage docs not agree with traditional competence based grammar theorics.
"I'he inherent rabustness of connectianist modules will give us an approximation of the solution even
when the inpuf was noisy.

3. Connectionist systems allow an casy integration of different information sources. Traditienal parsers
base their decisions only on syntactic information. The integration of cg. semantic or prosodic in-
formation in a connectionist module stahilizes processing and rednces the amonunt of ambiguity in its
ontput.

In the following we will describe the Scheduling Task, Then we will give a briel overview of the system
architccture. Within this architecture we use connectionist modules at three different processing stagoes:

o Recognilion
e Parsing

¢ Discourse Processing

Each of these connectianist processing stages will be described in the following sections.

2 The Scheduling Task Database

To be able to develop a systemn [or sponlaneous speech, we are collecling a large database of human-lo-
human dialogs on the scheduling task. Several sites 11 Turope, the US, and Japan have now adoptled
scheduling as a commoeon task under soveral rescarch projects. These projects include the German Gov-
crinment’s Verbmobil project for German and English translation, the Enthusiast project for Spanish-to-
mglish translation and the activities of the C-STAR consortium of companies and universities in the
U.5., Germany, and Japan for translation of German, Knglish, and Japanese; other languages are now
being added as new menibers are joining the consortium.

The data collection procedure involves two subjects who are each given a calendar and are asked Lo
schedule amecting. There are 13 different calendar seenarios differing from cach other in what is scheduled
and how much overlap there 1s in the free time of the two participants. Other scenarios/calendars arc
periadically added. Data has been collected in English, GGerman, and Spanish using the same data
collection protocols at Carnegie Mellon University, Karlsruhe University, and the University of Pittshurgh.



Iinglish Crerman Spanish
dialogs | ullerances | dialogs | ulterances | dialogs | utlerances
recorded 383 4000 451 4628 140 2920
transcribod 328 3300 215 2203 68 1080

Table 1: State of Dala Collection March 1994

Speaker 1: /h#/ fum/ when can we got together
agan [comma) < on our
[m(ecting)] > {comma) fum/ ta discuss
our project {peried} {scos)
Jum/ how's Ghow is@ {comma)l /um/ Menday
the eizghth {quest} around two
thirey {quest}
#key click# #paperruffledt {secs}

Speaker 2: #key . click# /la/ fht/ fubh/
Monday allernoon’s @allerncon is@
no good {period b dseos}
Twve QT haveG ol o meeling from Lwo Lo
four fecommal {seos}
that’s Qrhat i@ nol gonna Ggoing Lod
give us cnough time ta get together
{comma] {scos)
fhgt/ fum/ *¥panse® lucsday afterncon {commal
the ninch {commal
would he okay for me though {commal

F#hey click#t /h#t/ {secs}

Speaker 1: fls/ fh#/ unfortunately Tl 4T will&
he our of town {comma b
from {commal the ninth {ecommal through
the eleventh 4 period} {s
Jum/ checking my calend:
JSimf hd S Friday's GFrids
good doommal 2ither dperiodt {seos)
let’s dlet us@ see {commal maybe next weook
{comma) {scos) /h#/ /oh/ fhgt/ that’s
dthat 1s& bad {commal {scos)
< my class schedule’s Gschedule isd
[t] {commal {scas) >
okay {commal /h#/ how "bour cn
Tuesday the sixteenth {commal
any time after twelve thirsy {period}

#key click# /h#t/ fh#t/ {secs}

5

comma}
s no

Tigure 1: Sample Transcription: Texl contained in slashes represent lhiwman noise; hash marks non-
human noisc; curly braces-intonation (except {secos}); angle brackets—falsc starts; squarc brackets—
mispronunciations; d—contractions; {scos}—cnd of scmantic sentence unit.

The advantages of this cxperimental design using the same calendars for all languages 1s that it solicits
similar domain-limited dialogs while cnsuring a spontancous, natural (not read or contrived) speaking
style. Thus techniques can be compared across languages, and have enabled us to explore automartic
knowledge-acquisition and ML’ techniques in several languages on a comparahle task. ‘lable 1 specifies
the amount of data collected n each language i lerms of the number ol dialogs and the number of
ullerances thal have been recorded and transcribed.

We have developed standard transeription conventions that are emploved across languages, cnsuring
uniformity and consistency. Words are transcribed into their conventional spelling. ‘The transcription
alsa indicates human non-speech noises, non-human noises, silences, false starts, mispronunciations, and
sore wtonation. A sample of parl of a dialogue is given in Figure 1.

Reeent studies [14] and our own observations show that there arc a higher rate of disfluencics in human-
human dialogs and significantly larger speaking rate variations, compared to human-machine database
queries. "Table 2 compares disfluencies in human-human spontaneous scheduling tasks (351 in German,
English, and Spauish and human-machine queries (ATIS). The Lable shows the utterance length in words
as well as human noises ([illed pauses, laughter, coughs, ete. but not iulelligible words such as “okay”,
“well”) and false starts (chopped words and repetitions, deletions, substitutions and inscrtions of words,
but not filled pauses) as percenlages of the total number of words in the transcripts 1. Table 2 suggests
that human—human dialogs lead to longer utterances which are more disfluent.

In addition. 'I'able 3 shows perplexities for bigram and trigram language models for English, Spanish. and

1To exclude artifacts from differing data collection set ups we didn't consider non human noises (c.g. clicks, paper
rustle) in this statistics.



Figure 2: System Diagram

We employ a multi-strategy approach for several of the main processes. For example, we are experimenting
with TDNN, MS-TDNN, MLP, LVQ, and HMM’s for acoustic modeling; n-grams, word clustering, and
automatic phrase detection for language modeling; statistically trained skipping LR parsing, connectionist
parsing, and robust semantic parsing for syntactic and semantic analysis; and statistical models as well

?Discourse processing has not yet been implemented. In this paper we are reporting our plans for this component.



as plan inferencing for identification of the discourse state. The multi-strategy approach should lead to
improved performance with appropriate weighting of the output from each strategy.

Processing starls with speech input in the source language. Recognilion ol the speech signal is done with
Lhe acoustic modeling methods mentioned above, constrained by the language model, which is inlluenced
by the current discourse state. This produces a list of the N-best sentence candidates, which arc then
sent to the translation components of the system.

At the core of our machine translation system is an interlingua, which is intended to be a langnage-in-
dependent representation of meaning. ‘U'he parser outputs a preliminary interlingua text (IL'1) or some
ILT [ragments corresponding Lo the source language input. Alter parsing, the ILT is [urther specilied by
the discourse processor. The discourse processor perflorms [unctions such as disarbiguating tlie speech
act or disconrse function, resolving cllipsis and anaphora, and assembling ILT fragments into full ILTs.
It also updates a calendar in the dynamic diseourse memory to keep track of what the speakers have said
ahout their schedules. Based on the current discourse state, a flag is set, which 13 used by the parser to
resolve ambignities in the next sentence ta be parsed, and by the recognizer to dynamically adapt the
language model to recoguize the next ublerance. Once the ILT is [ully specified, it can be senl Lo the
generalor Lo be rendered in any of the Largel languages.

The formalism uscd to specify an ILT is called a feature sfructure. Featurc structurcs and variants of
them? is a [requently used representalion schieme in computational linguistics.

Conncctionist modules enter this architecture at three places:
1. the recognizer
2. the parser

3. discourse processor

4 Connectionist Speech Recognition

The counectionist speech recogunition modules of the systent are based on two dilferent approaches: Time-
Delay Neural Networks (TDNN} and Learning Vector Quanitzation (LVQ). These approaches and the
current rescarch issucs are bricfly introduced in the next seetions.

4.1 Continuous Speech recognition using LVQ /HMM-Hybrids

LVQ is a neural network based learning vector clustering technique. We have used LVQ to automatically
cluster speech frames into a set of acoustic features. 'I'hese features are fed inta a set of output units
which compule the emission probability of IIMM states.

[n the LVQ based speech recognizer designed [or the Conlerence Registration Task and the Resource
Management Task, an LVQ algorithm with context-dependent phonemes is used for speaker independent
recognition. For cach phonome, there 1s a context independent sct of prototypical vectors. The output
geores for each phoneme segment are computed from the euclidean distance using context dependent
gegment weights.

Recenl improverments ol these recognizers include the introducltion of noise models as well as the im-
provement of the training algorithms; the 1994 results in table 4 were obtained using triphone clustering,
corrective training and feature weights [18].

1991 1994
Conference Registration 9.1 % 37 %
Resource Manageiment 24 % 51 %

'l'able 4: Camparison of error-rates

The noise modeling in the recoguizer was recently unproved [or the spontaneous speech lasks (ESST,
(5ST, 5S5T, sce above). In order to generate acoustic models for the human and nenhuman noises,
we have build classes of noises to maximize available training data per model. Frequent human noises
{(*ah”, breathing, lip smack, “uh”, “um”) and nonhuman noises (key klick, paper rustle) form a class of
their own. l.ess frequent human noises build one class and rare nanhuman noises are joined in another
class. A special class was wntroduced o handle those word [ragments which were generaled by restarls,
repeals, ele., and could not be modeled as regular words. Tor each of these 10 noise classes a dedicated
phoneme was added to the list of phonemes. Although approx. 20% of all words in the spontancous
speech tasks are neises, the lack of training data remains the main problem of acoustic noise modeling.
Current research investigates improvements through clustering of the 10 noise classes [11].

“Basics can be foimd in [5, 13, 15, IG].



N ‘Word Layer

B 27 word units
s (only 4 shown)

ifINRLLLL) ?H>E DTW Layer

h iy >B 27 word templates
M e {only 4 shown)

S'11 Zesi
unity weights—- I
s oty
ssmmmEEmEE fg Phoneme Ln
- o

59 phoneme units
(only 9 shown)

Hidden Layer
15 hidden units

3 time delays-—

}:u \I\HHI\ I\I\“ [ u ! H :u !
H Al Input Layer
1 ‘lm il 16 melscale FFT

A A e IR A coefficients at a 10
| HI‘\u\ul\wuuuu.w

msec frame rate

Figure 3: The MS-TDXN recognizing the excerpted word 'B”. Ouly the activations for the words ‘SIL’,
‘4°, ‘B’, and ‘C” arc shown.

4.2 Letter Recognition with The MS-TDNN

The recognition of spelled strings of letters is essential for speech recognition application involving proper
names or addresses. However, il is very dillicult to gel good recoguition resulls on the highly conflusable
letters, il they constitute only a small [raction among thousands of words ol a large vocabulary recognizer.
In addition, since most letlers are very shorl, they are easily inserted everywhere, and many words are
pronounced Tike letler sequences, lor example“See yon” = “C U7, or “R U F C” = “are you easy”. To
achieve reasonahle results on letter strings, we developed a specialized letter recognizer, which is based
on the MS-TDNN architecture.

The MS-TDNN [7, &] is an cxtension of the TDNN architecturc[20]. Tt intcgrates the time-shift
invariant architecture of a TDNN and a nonlincar time alignment procedure (DTW) into a high accuracy
word-level classifier. Figure 3 shows the MS-TDNN in the process ol recognizing the excerpled word ‘B’
represented by 16 melscale FFT coellicients al a 10 msec [rame rate. The [irsl three layers constitule
a standard TDNN, which nses sliding windows with time delayed conneclions Lo compule a score for
each phoneme for every lrame, these are the activalions in the “Phoneme Tayer”. FEach word (o be
recognized is modeled by a sequence of phonemes. Tn the “DTW (Dynamic Time Warping) Layer” an
optimal alignment path, i.e. the parh with the highest accumulative phoneme scores is found for each
word, the activations along these paths are then collected in the word output units. The network works
with a relatively small number of parameters. 50 rows of hidden units are used for speaker—independent
recognition, corresponding to about 20000 trainable parameters, 1.e. network weights.

Training starls with “bootstrapping”, during which only the [ront-end TDNN is trained as a [rame-hy-
frame phoneme classifier, with phoneme boundaries fixed as given in the training dara. Tn a second phase,
lraining is extended Lo the word Tevel, where phoneme boundaries within the given word boundaries are
freely aligned in the DTW Layer. Instead of phonemes, the output are now words, and error derivatives
are backpropagated from the word units through the alipnment paths and the front-end TDNN.

"The choice of sensible objective functions is of great importance. For training on the phoneme level, there
is an output vector Y = (y1,..., 5, ) and a corresponding target vector T = (¢1,...,%,) for cach framc in
time. T represents the corrcet phoneme j in a “l-out-of-n” coding, i.c. t; = &;. Standard Mean Squarc
Error (MSE =57, (y; — 1;)%) is problematic for “l-out-of-n” codings for large n (n > 50 in our case);
consider for example that for a target (1,0,...,0), the output (0.0,...,0.0) has only half the error than
the more desirable output (1.0,0.2,...,0.2). This problem is avoided by

Entectenand(T,Y) =Y log(L = (y; — £:)°)

i=1



which (like cross enfropy) punishes “outliers” with an crror approaching infinity for [t; — 3| approaching

1.0.

I'or the word level Ltraining, we have achieved best resulls with an objeclive [unclion similar to the
“Classification Tigure of Merit” (CTM) [6], which bries lo maximize the distance d = y. — yn; belween
the correct scorce y, and the highest incorrect score yp; instead of using absolute targets 1.0 and 0.0 for
correct and incorrect word nnits:

Kepm(10Y) = fly.— ) = fld) = (1 —d)?
"I'he philosophy here is not to “touch” any output unit nof (]nect]y related to correch classification. We
[ound it even uselul to backpropagale error only n the case of a wrong or too narrow classilication, Le. il

e — Ypi < ésafefy_-marg-i-n

Experiments. The recognizer was trained and tested both on large English and German data bases. The
English performance was measured on the DARPA Resource Management Spell-mode data, consisting of
a total of 1680 spelled words from 120 speakers. We achieved speaker-independent recognition results of
92.0% letter accuracy, The larger German dala base consisls ol a Lminiug sel of over 8000 strings spelled
by 70 speakers. 90.1% lelter accuracy was achieved on a lest set of 1316 striugs. With every tenth letter
1111a1<*cugnlzcd the string accuracy (as required for example to spell a name or word) 1s still only 56%.
Howcver, we have caxperimented with several techniques[10] fo constrain the scarch space. When the
search space was limited to a list of 40,000 unique names (from a telephone hook with 111,000 entries),
letter and string accuracy could be impraved up to 97% and 92%. respectively.

4.3 Automatic Structuring of Neural Networks for Speech Recognition

Despite the use ol powerlul learning algorithms for most paramelers of a speech recogniger, the best
possible performance greatly depends on the tuning of the architecture to the particular bask. Tor lasi
adaptation of connectionist specch recognizers to new domains without laborious manual tuning the
following algorithms were developed:

e The Auiomatic Struclure QOptimization (ASQO) algorithm [1] that does the architectural tuning auto-
malically for neural network speech recoguition systerns.

e The Automaiic Validation Analyzing Control System (AVACS) [2] thal is designed (o detect overlitling
models ou a class by class basis as early as possible and Lo selectively change their learning and
antomatic structuring process.

For the application of neural netwarks to speech recognition all of the following architectural parameters
have to be well adapled o the task and the given amount of trainiug data {see Figure 3):

e the numher of hidden units
¢ the size of the input windows

¢ the number of phonemie states that model an acoustic event

The ASO algorithm automatically adapts all of these architectural parameters to the given task and
amount of training data in a single training run. The algorithm offers the lexibility to apply neural et
speech recognilion systems lo new domains without the need lor manual tuning of the architeclure.

ASO uses a constructive approach and starts with a small number of paramecters for the given number
of training cxamples and increases this number to improve the performance on the training sct. Unlike
the human developer, the ASO algarithm starts making decisions about resource allocations very early
in the training run, i.e. it is tuning the architecture while the network is learning the task ("tuning by
doing”). This allows the algorithun 1o complete the oplimization process in a single training ruu.

AVACS monitors the learning and tuning process and is designed to detect and avoid overfitting models
on a class by class basis. A validation set is used to test the generalization ability of the system frequently
in the training run. T'he confusion matrices are computed for hoth the training and the validation data.
From these matrices a new confusion-difference matrix is computed. Overfitting can be easily defected
[rom this matrix. In this case, further allocation of new parameters is delayed and all the weighis involved
in overlitting are contaminated with 10 - 30% of noise,

In addition to the advantage of offering an automatic architecture optimization that is automatically
validated and controlled, our approach also offers an artemapt towards controlled crror cqualization.

Experiments. 'I'he algorithms were applied to the optimization of an MS"T'DNN (see above) used for
speaker dependent connected Tuglish letter recoguition. The aulomatically tuned MS-TDNN achieved
97 A% letler accuracy compared (o a 97.5% letler accuracy ol a handiuned MS-TDNN with a manual
tuning cffort of more than one person-year.

5 Connectionist Parsing

We use two different approaches to connectionist parsing, both of which are descendants of the PARSEC-
system developed hy Jain [12]. However, hoth systems improved their expressive power compared with
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Figure 4: Two backpropagation networks that are recursively connected using symbolic procedures to
store interim results. The Boundaries-module computes phrase boundaries. Given a certain context
window of words wy,-w,, the network decides whether a particular word w; (m < i < n) marks a phrase
boundary. The labeling-module computes labels for the phrases found in the former processing stage.
Given a certain context window of phrases p,-ps; (which are represented by the respective words) the
network computes the label l; for a particular phrase py (r < k <s).

the old PARSEC-system which could only output a flat case-based structure without more specific fea-
ture information. As a consequence, the internal structure and features of eg. a noun phrase was left
unanalyzed. The first approach [17] computes a traditional syntax tree for an input sentence. The second
approach [4] tries to output an ILT , or more general, a feature structure (cf. section 3). Both approaches
try to include semantic and prosodic information in their processing. Moreover, both approaches are not
purely connectionist but are based on a hybrid architecture where symbolic procedures are used to map
information from one network to another or to focus on certain information. This hybrid architecture
helps to keep the networks small and accelerate the training process.

5.1 Integrated Compositional Connectionist Parsing (ProPars)

This approach starts with the observations that sentences have no upper bound on their length and
on the depth of the resulting parse trees. This unboundedness of sentence length and output structure
has posed a problem for connectionist based parsing systems so far. Moreover, basing parsing decisions
only on syntactic information would result in ambiguities or wrong parse trees. Therefore we include
semantic and prosodic information in the parsing process. The overall system architecture of this module
(ProPars) consists of two backpropagation networks. The basic architecture is given in Figure 4. The

network labeled Boundaries is responsible for breaking up the input string into phrases.* The second
module, Labels, is responsible for labeling these phrases. The combined work of the Boundaries- and
Labels-module assigns a constituent structure to the string, where the assigned label is the dominating
node and the daughters are the corresponding nodes within the phrase.

Words are represented in the lexicon as binary feature vectors. Within each vector a lexeme has a
unique binary-Id encoding, a vector segment representing syntactic information, and a segment encoding
information about semantic properties (cf. Figure 5). During processing the Boundaries-module checks
for each word in the current input whether it marks a phrase boundary. To do this all vectors of the
words in the current context window are presented to the network. The context window moves over the
string from left to right. After all boundaries have been determined, the symbolic procedures map all
words (i.e. their vectors) and the phrase boundaries to the input nodes of the second Labels-network.
This network assigns labels such as noun (n), noun phrase (np), verb (v), or verb phrase (vp) to each
phrase. The procedure is similar to the one used for computing phrase boundaries. A context window
moves over the phrases in the current input from left to right and for each phrase the network determines
its label. Note the recursion in this architecture. The assigned list of constituent labels at some time
t serves as the input at time #+1. The recursion exits if a string of constituents can be reduced to the
single sentence symbol s. Since the list of constituent labels forms a “sentence” the respective labels have
to be defined in the lexicon, too. Thus, we have to specify lexical items like nouns n and verbs v and
their projections. In this setup we need symbolic procedures for:

e Storing intermediate results: We have to store for each pass (i.e. recursion step) phrase boundaries
and labeling.

e Mapping from the Boundaries-module to the Labels-module.

4 As the discussion below will show, we extend the usage of the word phrase which traditionally refers to wellformed
strings of terminals to wellformed strings of non-terminals as well.
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Figure 5: Lexical vector with additional prosodic information

([1((speech-act *confirm)
{sentence—type *state)
{(frame *clarify))

(]
([topic] ((frame *simple-time))
(L] by)
([]((day-of-week monday)) monday))
(L] (d i)
([I((adverb perhaps))
(1 azsume)))
([clarified]
([ (0 you))
([] (1 mean) )
([J((frame #*simple-time))
([1((day-of-week monday)) monday)
(L] the)
([ ((day 27)) ([rego] twenty seventh))})))

Figure 6: Sentence aligned with its feature structure
o

e Assembling the [inal syotax tree [rom the information stored during parsing. This procedure wvolves,
[or exarnple, deleting unary productions ol the form v — 7.

As indicated in Figure 5 we integrate prosodic information into the parsing process. Consider an utterance
“Let us talk about the canference on Monday™. 'I'he prepositianal phrase “on Maonday” can either attach
ta the verb or to the noun phrase “the conference” giving rise to two different meanings. We hope that
the two dillerent meanings are marked prosodically dilferent such that we can use this information Lo
disambiguale belween Lhese two readings. Another application [or an inlegrated connectionist parsing
approach is what we call wfterance parsmg. Consider the sample deseription in Figure 2. The output of
the recognizer - and the input to the parser-modules - s, of conrse, the unstructured string comprising
most of the time more than one sentence. 'I'his means that we have to deal with sentence haundaries
as well. We hope that an integrated approach by using syntactic, semantic, and prasodic information is
needed Lo handle this problern.

5.2 Feature Structure Connectionist Parsing (FeasPars)

In a different approach we tried to design a conncetionist parsing system FeasPars that dircctly computes
the ILT for a given input sentence (cf. scetion 3).

When we compare a sentence with its |1/l representation, we see that there is a correspondence between
parts of the feature structure, and specific constituents aof the sentence.

Aligning our sentence with parts of the [eature structure, we get a struclure as shown i ligure 6. We
note that:

¢ The sentenee is hierarchically split into constituents.

e Leature pairs are listed with their corresponding constituent.

e Paths are shown 1n square brackets, and express how a constituenlt relales Lo its parenl consliluent.
Over 600 sentences from the ESST task where labeled aceording to this scheme.

FeasPars consists of three main parts:

1. The Chunker

2. The Linguistic Teature Labeler

3. The Constituent Path Finder

The Chunker splits an input sentence into constitucents. It consists of three networks, The first network

finds regular expressions, snch as numhers. Numhers are classified as being ordinal or cardinal numbers.
T'hese regular expressions are presented as words hy the following networks. 'I'he next network groups



words together to phrases. The third network groups phrases together teo clauses. In total, wo get four
levels aof constituency; word/regular expressions, phrases; clanses and sentence.

The Linguistic Fealure Labeler allaches leatures and lealure values (il applicable) to these constiluents.

I'or each [ealure, there is a classifier, which inds one or zero alomic value. Since there are many lealures,
cach constituent may get none, one or several pairs of feature and atomice values. Sinec a feature normally
only occurs at a cortain constituent level, the classifier is specialized for deciding abont a particular feature
at a particular constituent level. T'his specialization is there to prevent the learning task from heing too
complex, thus rendering it well learnahle.

The Conslilueni Path Fender delermines how a conslituent relales Lo 1ts parent coustituent, It has one
classificr per constituent level and constituent path clement.

The following example illustrates how the three parts work:
"I'he parser receives the English sentence:
Can you meet in the morning

The Chunker segments the sentence before passing it to the Linguistic Feature Labeler, which adds
scmantic labels (shown in boldface below):

(((speech-act *suggest)
(sentenec-type *query-if))
((frame *free))

(( can))

(((Irame *you))

( vou)

( teel))
((frame *special-time))

( in)
({(specifier definite)) the)
(((time-of-day morning)) moruing)))

The Constituent Path Finder then adds paths, where appropriate (shown in boldface), and we get:

([ specch-act *suggc*st)
( sentence-type *guery-if})
([J¢ frame *free))
oo )]
[who]({ frame *you))
i you))
([1¢[] meel))

([Wh n]({ frame *special-time))

1
([](( specifier definite)) thl]
([){( time-ol-day morning)) morning)))

Converting this to a fealure structure, we get the ILT:

{((speech-act *suggest)
(sentence-type *query-if)
(frame *free)
(who ((frame *you)))
(when ((frame *simple-time)
(time-of-day morning)))))

6 Connectionist Discourse Modeling

Weork 13 alse underway to model the disconrse by making predictions of subscquent ILTs based on the
previous ones, using a connectionist implementation. "The 111" generated by our LR parser is a language
independent frame structure containing three main slots, speech-act, sentence-type and semantic frome
along with a [ew other secondary blots The speech-acl refers Lo the action perlormed by the senlence,
e.g., suggesl, accepl, and reject. The sentence type relers Lo the surlace [orm of Lhe sentence, e.p.,

statement, yes/no question, wh-question, dircetive. The semantic frame refers to main scmantic content
of the sentence, c.g., busy, free, out-of-town. Other slots in the ILT are whoe, which 1s the person referred
to by the frame, whaet, a possible non-person ohject, and when and topic, a representation of any temporal
component of the utterance.



Spoken Utterance: Actually the twenty sixth and the twenty seventh T'll be at a seminar all day.

((SPEECH-ACT “REIECT)
(SENTENCE-TYPE *$1ATE)
(FRAME *SCHEDULED)

(WHO {(FRAME *T)})
(TOPIC
((FRAME *TIME-LIST)
(CONNECTTIVE AND)
(TTEMS
(FMULLIPLE™
((FRAME *SIMPLE TIME)
(DAY 26))
((FRAML *SIMPLE-TIMLE)
(DAY 27))))))
{ WHAT ((FRAMF “SEMINAR)
(SPRECTRTER TNDEFINTTE)))
(WHEN
((FRAME "SPECIAL-TIME)
(SPECIFIER WIIOLE)
(NAMT DAY)))
{ ADVERRE ACTUALLY})

Figure 7: Example for the ILT representation

The Lop level slots of the most recent ILT are encoded into a pallern of binary inputs. This informalion
along with a hit indicating whether the next utterance comes from the same or different speaker in the
dialog is fed into a multi layer neural network trained by the back-propagation learning algorithm. The
network has to map the input vectars onto a representation of the suhsequent L1, In preliminary work,
the network was trained on 24 dialogues of hand coded 11's from the ESS'1" database. T'he network
learned sowne characteristics of discourse beliavior, and 18 good al making some predictions of likely [illers
[or the speech-act and sentence-type slots of the subsequent ILT. The relalive strength of the oulput
nnits can be nsed to determine the relative prebability of competing fillers for a particular slot.

There are drawbacks with this experiment that are casy to solve: Twenty-four dialognes is not sufficient
far good modeling of discourse. Increasing data for training is underway to yield improved results.
Interjections aften disrupt the context of a sentence; for instance small utterances, such as Well between
lwo [ull sentences wterfere with the association of the ILTs for the (wo senlences. Using the previous
conlent bearing ILT to predict the next ILT, rather than jusl the previous ILT, increases conlexl, aud
can boost results.  With improved results, the prodictions will be nsed te aid speech recognition by
interpolating langnage models appropriate for sentenecs containing the predicted slots.
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