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Abst-rad In this paper we report on our efforts to con1bine speech and language pro­
cessing toward multi-lingual spontaneous speech translation. The ongoing work extends 
our JANUS system effort toward handling spontaneous spoken discourse and 1nultiple lan­
gnagc:s. Aftc:r an ovc:rvic:w of thc: task, datahasc:s, and tlw systc:m architc:cturf! wc: will foc:us 
on how connc:c:tionist modulc:s arc: intc:gratc:d in thc: ovc:rall systmn df!sign. Wc: will show 
that these modules can because of their learning capabilities adapt themselves to the prob­
le1n space. Moreover, because of their inherent robustness against noise they see u1 to be 
an adequate tool for analyzing spontaneous speech. 

1 Introduction 

The goal of the J A~CS project is m ulti-tin_g-ual machine translation of spontaneously spokrn dialoq.s in 
a limlted domain. Currently we a.re using the schedulinp; domain, i.e. two people scheduling a. meeting 
with each other. We are workinp; with German, Spanish, and ~:nglish as source languages and German, 
English, and .Japanese as LargeL languages. This paper reporLs on our dTorLs Lo make N aLurnl Language 
Processing (KLP) robust over sponLaneou::; speech and Lo use KLP Lo c.onsLrnin speech recogniLion. In 
this article we focus on conncctionist approaches to these problems. For statistical and knowledge-based 
approaches to robust parsing and dialog modeling within the JA~CS project. sec (19]. vVc consider the 
connectionist. modules in .J A \J LS as additional proc,essing st.ages complement.inp; other alternate modu Jes. 
Our investigation of c,onn ed.ionist n.pproac,hes in .Ji\ NUS triies to overcome the following prohl ems: 

1. So far, specifying the parsing grammars takes most of the time in the development. Note, that each 
source language requires its own parsing grammar. In using connect.ionist learning algorithms we try 
to skip this step in the development. 

2. vVhen recognizing or parsing spontaneous speech one has to handle phenomena like rest.arts, repairs and 
repetitions . Spontaneous language docs not agree with traditional competence based grammar theories. 
'J'he inherent robustness of conned.ionist modu Jes will give us an approximation of the solution even 
when the input was noisy. 

3. Conncctionist systems allmv an easy intc/1:ration of different information sources. Traditional parsers 
base their decisions only on syntactic information. The integration of cg. semantic or prosodic in­
formation in a connectionist. module stabilizes processinp; and reduces the amount of amhiguity in its 
out.put. 

In the following we will describe the Scheduling Task. Then we will give a brief overview of the system 
architecture. vVithin this architecture we use conncctionist modules at three different processing stages: 

• H.ecogniLion 

• Parsing 

• Discourse Processing 

~;a.ch of these conned.ionist pro<:essing st.ages will he desnibed in the following sedions. 

2 The Scheduling Task Database 

To be able Lo develop a sysLem for ::;ponLaneous ::;peech, we are c.ollec.Ling a large daLabase of human-Lo­
human dialog::; on Lhe .~cheduling Lask. Several ::;iLes in Europe, Lhe US. and .Ja pan have now adopted 
scheduling as a common task under several research projects. These projects include the German Gov­
ernment's Vcrbmobil project for German and En!!:lish translation, the Enthusiast project for Spanish-t.o­
~;nglish t.rnnslation and the ad.ivit.ies of the C-S-'l':\ I{ consortium of companies a nd uni versities in th e 
U.S. , Germany, and .Japan for n anslation of German, b;np;lish, and Japanese: other languages are now 
being added as new membern are joining the con::;orLium. 

The daLa collecLion procedure involves Lwo subjecLs who are each given a calendar and are a.::;ked l.o 
schedule a meeting. There a.re 13 different. calendar scenarios differing from each other in what is scheduled 
and how much overlap there is in the free time of the two participants. Other scenarios/ calendars arc 
periodirnlly added. l)at;i. has b een colle<:ted in b:nglish, German, and Spa nish using th e same data 
colled.ion protomls at Carnegie \:Jell on L niversity, Karlsruhe University, and the L niversity of Pit.tshurgh. 
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Table 1: Sta.Le of Data. Collection March 199-t 

Speaker 1: /h#/ /um/ when can we get toget her 
ugrnn { ~on1111a} < on our 
[m(ccting)] > ( comm,-.J / um/ to discuss 
our proJcct (pcnod} (seas ) 
/um/ how's ti'how isoi:i: {comma} /um/ .vlondny 
the t:ighth {qu€i:it} a ro und tvi..-o 
thiny {quest} 
#key _click# #paper.ruffle# {seos} 

Speake,· 2: #key _click# /ls/ /h# / /uh/ 
1\·fondav allen1om1;s (~'t!,1 llt-=:rr1 o cH1 is:ill 
110 goo~-1 {pt-=:riod} {s':"'.os} 
T'vt-=: ~(fl l1avi:-:•.O; gu1, a met-:1,ing from l;vvo to 

l'our· {comma.} {st-=:os J 
1.l1a.l. ;s ~(~1.l1 ,~ 1, ·,s~(~ nol. gon ri a ,:O;goi ri g; 1.o•:0; 

g ive us enough time t o get togcthcr 
(comm11] (scos] 
/h#/ /um/ "pause* T uesday afternoon {comma} 
the 11111th (comma) 
would be okay for 1ne tho ugh { comma} 
#key _click# /h# / {seos} 

Speake,· 1: /ls/ /h#/ unfortunately I' ll @I will{! 
be out of town {comma} 
l'rom { co111r11a} I.lie 11i111.h { ('.011111rn} 1,liniug h 
U1P. i:-:l ;,-, ~•E-< 11111 {yt-=: riorl } { s.-,.,o s} 
/11m/ ,::b ecking my cal~-md ar· {c:0111111;:,,} 
/ im/ /h#/ F,·id:;.y's ,0;frida_y isl\ rro 
jl;OOd { co111111aJ i:':i1.l1~r {pe riod } { s~os_} 

1--:-t:s ~dikt ust!"1 sec {con1nEt} n1a Jibc next ,vcck 
(comm,-.J (scos) /h#/ /oh/ / h#/ that's 
•tHhat is~d) bad { con1n1a) { scos} 
< my class S("hcdulc1s t!·•s("h cd u lc is;_Q~ 
[t] (comma} (seas} > 
okay {comma} /h#/ how 'b out on 
Tuc5day the sixteent h { comma} 
any time after t, ... ,c:Ive t hirt y { period} 
# key _click# /h#/ / h# / {seos} 

Figure 1: Sample Tra.n8cripLion: TexL contained in sla8he8 represent human nou;e: ha8h marks non­
human noise; curly braces-intonation ( except { seos} ); angle brackets-false starts; square brackcts­
mispronuncia.tions: (iJ'-contractions; { seos }- end of semantic sentence unit. 

The advantages of this experimental design using the same calendars for all languages is that it solicits 
similar domain-limited dialogs while ensuring a spontaneous, natural (not read or contrived) speaking 
styh". Thus techniques <:an he rnmpared across languages , and have enahled 11s to explore automatic 
knowledge-ac,quisition and MT techniques in several languages on a rnmpara ble task . Table 1 specifies 
the a.mount of daLa. collecl-ed in ea.ch la.ngua.ge in Lenrn of Lhe number of dialog8 a nd Lhe number of 
utterances tha t have been recorded and trarncrib ed . 

\-Ve have developed standard transcription conventions that a.re employed a.cross languages, ensuring 
uniformity and rnnsistency. Words are transcribed into tlwir conventional spelling. The tra nsr-ription 
also indir-ates human non-s1wech noises, non-human noises, silences, false starts , mispronunr-iat.ions, and 
8ome into11ation, A :;ample of pa.rt of a. dialogue is given i11 Figure L 

Recent studies [14] and our own observations show that there a.re a higher rate of disfluencies in human­
human dialogs and signifkantly la rger speaking rate vari ations, compared to huma n-mad1ine database 
queries. '!'able 2 <:ompares disfluencies in human-lrnman spontaneous scheduling tas ks (SS'I') in Germa n, 
Engli8h, and Spanish and huma.11-ma.cl1ine queries (A.TIS). T he La.hie show8 Lhe uLLerance leng Lh in words 
a8 well a8 human noise8 _ (filled pa u8e8 , la.ughLer, cough8, eLc. but nol intelligible wonb such as "okay" , 
''wclF' ) and false starts ( chopped words and repetitions, deletions, substitutions and insert ions of words, 
buL noL filled pa.uses) as percentages of Lhe Lol.a l number of words in Lhe trarncripL;; 1

. Table 2 ;;uggesLs 
that human-human dialogs lead to longer utterances which a rc more disfluent. 

In add ition , Table ::i shows perplexities for bigrarn and trigrnm lanp;uage models for ~:nglish , Spanish , and 

1 To exclude a rtifacts from differing data collec tion set ups we didn' t consider n on huma n n oises (e.g. clicks, paper 
rustl~) in this statistics. 
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as plan inferencing for identification of the discourse state. The multi-strategy approach should lead to 
imprnved performance with a.pprnpriate ,veightinp; of the 011tput from each strategy. 

Proces;;ing slads wiLh speech inpul in the source language. Recognition of Lhe speech signal is <lone wiLh 
Lhe acousLic mo<leling method;; mellLioned above, constrailled by Lhe language model, which is influenced 
by the current discourse st.ate. This produces a list of the :"-J-best sentence candidates, which arc then 
sent to the translation components of the system. 

At the core of our machine tra.nsla.tion system is an interlingua, which is intended to he a la.nguap;e-in­
dependent. representation of mea.ninp;. The parser outputs a. preliminary interlinp;11a. text (I r:t') or some 
ILT fragmenL;; correspollding Lo Lhe ;;ource language inpuL. After parsing, Lhe ILT i;; furl.her ;;pecified by 
Lhe discourse proce;;sor. The <liscour;;e processor perform;; function;; such as disambiguating Lhe ;;peech 
act or discourse function, resolving ellipsis and anaphora, and assembling ILT fragments into full ILTs. 
It also updates a calendar in the dynamic discourse memory to keep track-of what the speakers have said 
about tlwir sched11les. Hased on the c11rrent disco11 rse state, a. flap; is set, which is 11sed hy the parser to 
resolve ambiguities in the next sentence to he parsed, and hy the recop;ni :>:er to dynamicall y adapt the 
language model Lo recogniile Lhe nexL uLLernnce. Ollce Lhe ILT is fully ;;pecified, iL call be senL Lo Lhe 
generator Lo be rendered ill ally of Lhe LargeL lang uages. 

The formalism used to specify a n ILT is called a featu re .structure. Feature structures and va riants of 
Lherri3 i;; a frequenLly used representa Lioll ;;cheme in compuLa Lional linguisLic;;. 

Connectionist modules enter this architecture at three places : 

1. the recognizer 

2. the parser 

3. discourse p rocessor 

4 Connectionist Speech R ecognition 

The conllecLionisL ;;peech recognition m odules of the syslem are base<l oil Lwo different. approaches: Time­
Delay Neural NeL work;; (T DKN) and Learning VecLor QuaniLilaLion (LVQ). T hese approache:; an<l Lhe 
current research issues arc briefly introduced in the next sections. 

4.1 Continuous Spccd1 recognition using LVq / HMM-Hyhrids 

LVQ is a neural network based learninp; vector cl11stering technique. We have used LVQ to automatically 
cluster speech fram es into a set of acoustic feat.mes. These features are fed into a set of ompu t units 
which compute the emi;;sioll probabiliLy of IIMM slat.es. 

In Lhe LVQ base<l speech recoglli;1er <lesigned for Lhe Collference RegisLraLioll Task and Lhe Resource 
Management Task, an LVQ algorithm with context-dep endent phonem es is used for sp ca.ker independent 
recognition. For each phoncni'c, there is a context independent set of prototypical vectors . The output 
scores for ea.ch phonem e segm ent a re computed from th e eucli dean distance using context. dependent 
segment weights . 

RecenL improvemenL:; of Lhese recogn i;1en; indu<le Lhe inLro <l ucLion of noise mo<leb as well a:; Lhe im­
provement of the training algorithms; the 1994 results in ta ble 4 were obtained using triphone clustering, 
corrective training and frature weights (18]. 

Confrrencc Registrat ion 
Hesource :VIan~gem ent 

Tabl e 4: Comparison of error-rates 

The noise modeling in Lhe recogniiler was rec.en Lly improved for Lhe 8polltaneous ,speech Lasks (ESST, 
GSST, SSST, sec a bove). In order to generate acoustic models for t he human and nonhuman noises, 
we have build classes of noises t o maximize ava.ila.blc training data per model. Frequent human noises 
("ah", breathing, lip sm ack , "uh" , "um" ) and nonhuma n noises (key ]di ck , paper rust.le) form a class of 
their own. Less frequent huma n noises build one cLiss and rare nonhuma n noises a re joined in another 
class. A special das:; was introduced Lo handle Lhose word fragments which were genernLed by resLarLs, 
repea L8, elc. , and could noL be rnodele<l as regular wor<ls . For ea ch of Lhese 10 noise classes a dedicaLed 
phonem e was added to t he list of phonemes. Although approx. 20% of all words in the spontaneous 
speech t asks arc noises, the lack of training dat a remai ns the m ain problem of acoustic noise modeling. 
Current researr.h invest.ign.res improvem ents through ch1sterin1; of the 10 noise classes [11]. 

;-~Rafii r:~ can h e frmnd in [fi, I :i , I ri : I f>]. 
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Figure 3: The MS-TD'i"N recogmzmg t 1e 
'A\ 'B'i and 'C' arc shown. 

4.2 Letter Recognition with The MS-TDNN 

SIL 

Word Layer 
27 word units 

( only 4 shown) 

DTW Layer 
27 word templates 

( only 4 shown) 

Phoneme L. 
59 phoneme units 

( only 9 shown) 

Hidden Layer 
15 hidden units 

Input Layer 
16 melscale FFT 
coefficients at a 10 
msec frame rate 

n y t 1e activations for the words 'SIL', 

The recognition of spelled strings of letters is essential for speech recognition application involving proper 
name:; or addresses. However, it is very difficuH lo geL good recognition resuH:; on Lhe highly confusable 
letters, if they constilute only a small fraction among U10usa11ds of words of a large vocabulary recognizer. 
Tn addit.ion, since rnosl. letters are very short., tl1ey ,ue e,-1,sily inserl.ed everywhere, and rnany words are 
JH'onounced like let I.er sequences, ror exa111ple"See you" = "CU", or "RUF, C" = "are you easy". To 
achieve reasonable resnlt.s on letter st.rings, we developed a speciali7,ed letter recognizer, which is based 
on the ivTS'-TDNN architect.me. 

The MS-TDNN [7, 8] is an extension of the TDNK architecture[20]. It integrates the time-shift 
invariant architecture of a TDKN and a nonlinear time alignment procedure (DTvV) into a high accuracy 
word-level classifier. Figure 3 show:; Lhe YIS-TDNN in the process of recog11izi11g the excerpted word 'B', 
represeuted by 16 rnelscale FFT coellicients at a 10 msec frame rate. The Jirst three layer:; constitute 
a sl.a.ndard TDNN, wl,ich uses sliding windows wit.h t.irne delayed connect.ions l.o COIIIJHJl.e a score for 
ea.cl, pl1one111e for every frarne, t.hese a.re I.he acl ivat.ions in I.he "Phoneme Layer". Ead, word l.o be 
recogni7,ed is modeled hy a seqnence of phonemes. Tn the "DTvV (Dynamic Time vVarping) Layer", an 
optimal alignment. path, i.e. rhe parh with rhe highest. accnmulat.ive phoneme scores is frnmd for each 
word, the activations along these paths are then collected in the word output units. The network works 
with a relatively small number of parameters. 50 rows of hidden units are used for speaker-independent 
recognition, corresponding to about 20000 trainable parameters, i.e. network weights. 

Training star\:; with "bootstrapping", during which only the front-eud TDNN is trained a:; a frame-by­
frame phoneme classifier, wirh phoneme honndaries fixed as given in the training dara .. Tn a second phase, 
I.raining is extended l.o I.he word level, where phonerne bo,rndaries wit.l,in I.he given word boundaries are 
freely aligned in the DTvV Layer. Instead of phonemes, the output are now words, and error derivatives 
are hackpropagat.ed from the word nnit.s t.hr011gh the alignment. parhs and the front-end TDN'lf. 

The choice of sensible objective functions is of great importance. For training on the phoneme level, there 
is an output vector Y = (gi, . .. , g,,) and a corresponding target vector T = (t 1, ... , t,,) for each frame in 
time. T represents the correct phoneme .i in a "1-out-of~n" coding, i.e. ti = bij. Standard Mean Square 
Error (1'v1SE = I:;'=1 (gi - t;)2) is problematic for "1-out-of-n" codings for large n (n > 50 in our case); 
consider for exarnple that for a target (1, 0, ... , 0), the output (0.0, ... , 0.0) has only half the error than 
the more desirable output (1.0, 0.2, ... , 0.2). This problem is avoided by 

n 

EM cC/cliand(T, Y) = L log( 1 - (y; - ti )2
) 

i=l 



which (like cro% entropy) punishes "outliers" ,vith an error approaching infinity for It.; - '!Ji I approaching 
1.0. 

For Lhe word level Lraining, we have achieved besl resu!Ls wiLh an objedi ve funcLion similar Lo Lhe 
"ClassificaLion Figure of MeriL" ( CFM) [G], which Lries Lo ma.x.imi~e Lhe dis Lance d = Ye - Yl,i beL ween 
the correct score Ye and the highest incorrect score Yhi instead of using absolute targets 1.0 and 0.0 for 
correct and incorrect word unit;-,: - -

J,;c,pu('I', Y-) = f(y,, - y1,;) = f(d) = (1 - d) 2 

The philosophy here is not to "touch'' :my output unit not directly related to correct classifkation. We 
found iL even useful Lo ba.ckpropagaLe error only in Lhe case of a wrong or Loo narrow classification, i.e. if 

Ye - Yhi < O,ojtty .. ma,·g·in 

Experiments. The recognizer was trained and tested both on large English and German data bases. The 
~'.nglish performance was measmed on the l)A RI-';\ Resource Ma.na.genient Spell-mode data., consisting of 
a tot.al of 1680 spelled wmds from 120 speakers. We achieved sp eaker-independent. recognition results of 
92.0% !ell.er accuracy . The larger Cerman data base consists of a Lraining set. of over 8000 strings spelled 
by 70 :;peakers. ~Hl.l rx, lel.Ler accuracy wa:; achieved on a Le:;L ;,;el, of l:H6 ;,;Lring:;. With every LenLh leLLer 
misrecognizecL the string accuracy ( as required for example to spell a name or word) is still only 56%,. 
However, we have experimented with several tedrniques[lO] to constrain the search space. \Vhcn the 
search space was limited to a. list of 40,000 uniqu e names (from a telephone hook with 111,000 entries), 
h"trnr and string ac:cura.c:y could be improved up to 97% and D2%, respectively. 

4.3 Automatic Structuring of Neural Networks for Speech Recognit ion 

Des pi Le Lhe u:;e of powerful learning algoriLluns for m ost. pa.rameLers of a speech recogni~er , Lhe besl 
possible performance great.ly depends on Lhe Luning of Lhe archiLecl.ure Lo Lhe parLicular Lask. For fa.st. 
adaptation of connectionist speech recognizers to new domains without laborious manual tuning the 
following algorithms were developed: - -

• The AuLomaLic SLrucLure OpLimizaLion (A.SO) algoriLhm [1] LhaL does Lhe archiLecl.ural Luning auLo­
maLically for neural neL work speech recogniLion sy;,;Lem:; . 

• The AulomaLic Validation Analyzing ConLrol Syslem (AVA.CS) [2] Lha.L i:; designed Lo del.ecl overfiLLing 
models on a class by class basis as early as pos:;ible and Lo selecLively change Lheir learning and 
automatic structuring process. 

F'or the application of neural networks to speech 1·ecogn it.ion all of the following a rchitectural parameters 
have Lo be well adapted Lo Lhe Lask a.nd Lhe given amounL of Lraining <la.La (see Figure :1): 

• the nllmher of hidden units 

• the size of the input windows 

• the number of phonemic states that model an a.coustic event 

'!'he :\SO algorithm automat.ic,ally adapts all of these architecrnral parameters to the given task and 
amounl of Lraining <la.La in a single Lra.ining run. The algorithm o1I'ers Lhe fle.x.ibiliLy Lo apply neural ne l 
speech recognition ~yslem;,; Lo new domains without. Lhe need for manual Luning of Lhe archiLedure. 

ASO uses a constructive approach and sta.rt.s with a sma.ll number of para.meters for the given number 
of training examples and increases this muubcr to improve the performance on the training set . Unlike 
tlrn huma11 developer, the !\SO algorithm starts making dec,isions a.bout resource alloc,atio11s very early 
in the training nm, i .e. it. is tuning the arc,hitect.me while the network is learning t he task ("tuning by 
doing"). This allows Lhe a lgoriLhm Lo compleLe Lhe opLimii\aLion proce:;;,; in a single Lraining rnn. 

AVACS monitors the lea.min;; and tuning process and is desi;;ned to detect and avoid overfit.ting models 
on a class by class basis. A validation set is used to test the ge11era.liza.tion ability of the system fr;cqucntly 
in th e training run. '!'he confusion matric,es are c,omputed for both the tra ining and the validation data .. 
horn these matrices a new c,onfosion-diiferenc,e ma.nix is compllt.ed. Overfit.ting can be ea.sily detected 
from Lhis maLrix. In Lhis case, further allocation of new paramel.er,s is delayed and all Lhe weigh Ls involved 
in overfiLLing are conlaminale<l wiLh 10 - :10% of noise. 

In addition to the adva.nta;;c of offering an a.utoma.tic architecture optimiza.tion tha.t is automatically 
validated a.nd cont.rolled, m1r approach also offers an at tempt towards controlled error equalization . 

Experiments . The al gorithms were applied ro the optimiz.ation of an l\:IS-'1'1)1\ N (see above) used for 
speaker depemlenL connecLe<l Engli:;h leLLer recogniLion. The auLoma.Lically Luned :VIS-TDN~ achieved 
97 .11% leLLer accuracy compared Lo a 97 .. :iS{ leLLer accuracy of a handLune<l 11,,IS-TDKN w iLh a manual 
tuning effort of m ore than one person-year. 

5 Connectionist Parsing 

We use two different approaches to connect.ionist parsing, both of whid1 are descendants of th e PARSEC­
system developed hy .Ja,in [12]. However, both systems improved their expressive power compared with 
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Figure 5: Lexical vector with additional prosodic information 

([]((speech-act *confirm) 
(sentence-type *state) 
(frame *clarify)) 

( [] 
([topic]((frame *simple-time)) 

( [] 
([]((day-of-week monday)) 

( [] ( [] 
([]((adverb perhaps)) 

( [] 
( [clarified] 

( [] ( [] 
( [] ( [] 
([]((frame *simple-time)) 

([]((day-of-week monday)) 
( [] 
([]((day 27)) 

by) 
monday)) 
i)) 

assume))) 

you)) 
mean)) 

monday) 
the) 
([rego] twenty seventh))))) 

b'igme 6: Senten<:e aligned with its faatme strnd.lll'e 

• Assembling; the fiual synlax lree from t.he iuformal.ion 8lored duriug parsing. Thi8 procedure involves, 
for example, deleting; unary product.ions of l.he form ~' --+ 7. 

As indicated in Figure 5 ,vc integrate prosodic information into the parsing process. Consider an utterance 
"Let us talk about the conference on Monday". The prepositional phrase "on Monday" can either attach 
to the verb or to th e noun phrase "the conference" giving rise to two different meanings. We hope t.lrnt. 
the two different. meaniugs are marked pro8odica.lly different. such that we ca.u use this informatiou l.o 
disambig;uale belween lhese l.wo readings. Anolher application for an integrated counedionist par8iug 
approach is what we call utterance panin_q. Consider the sample description in Figure 2. The out.put of 
the recognizer - and the input to the parser-modules - is, of course, the unstructured st.ring comprising 
most of the time more than one sentence. This means that we have t.o deal with sentence boundn.ries 
as well. We hope that a.n integrated approach by using syntactic, semantic, a.nd prosodic information is 
needed lo handle t.hi.s problem. 

5.2 Feature Structure Connectionist Parsing (FeasPars) 

In a different. approach we tried to design a connectionist parsing system FeasPars that. directly computes 
the ILT for a given input sentence (cf. sect.ion 3). 
When we compare a. sentence with its I I,'(' represenra.t.ion, we see that there is a. correspondence between 
parts of the feature structure, and specific constituents of the sentence. 

Aliguing our senl.ence wil.h pa.rl.8 of lhe fealure sl.rudure, we gel a sl.rudure as 8hown in figure (l. \Ve 
note that: 

• The sentence is hierarchically split into constituents. 

• Fea.t.lll'e pairs are listed with their corresponding constituent. . 

• Path8 are 8hown in square brackels, and expre8s how a cornlil.uenl relal.e8 lo ils pareul. constilueul.. 

Over 600 sentences from the ESST task ,vherc labeled according to this scheme. 

FcasPars consists of three main parts: 

I. The Chunker 

2. The Ling;uisl.ic Fealure Labeler 

:t The Cornlil.uenl. Palh Finder 

The Chunkcr splits an input sentence into constituents . It consists of three networks. The first network 
finds regular expressions, such as numbers . Numbers a.re classified a.s being ordinal or c:ndina.l numbers. 
These regu Jar expressions a.re presented as words hy th e following networks. The nex t network groups 



words together to phrases. The third network groups phrases together to da.uscs. In total, 'Ne get four 
levds of c,onstituenc,y; word/regular expressions, phrn,ses, dauses and senten<:e. 

T he Linguiblu; I'wl'art. Labeler aUaches fealures aw.l feature values (if applicable) lo lhese consLituenLs. 

For each feature, Lhere is a da.-;siuer, which finds one or zero alomic value . Since Lhere are many fea tures, 
each constituent ma.y get none, one or several pairs of ka.ture and atomic values . Since a feature normally 
only occurs a.ta. cert.a.in constituent level, the classifier is specialized for deciding about a particular feature 
at a partirnlar r.onstit11ent level. '!'his sper-iali:.mtion is there to prevent the lerunin g task from being too 
rnmplex, thus rendering it well learnahle. 

The Conblduoll Palh Finder delermine:; how a constiluenL relale:; lo ils parent. consLiLuenL. H has one 
classifier per constituent level and constituent path clement. 

The following example illustrates how the three parts work: 

'!'he parser rer-eives the English sentenr.e: 

Can you meet in the morning 

The Chunker segments the sen tence before passmg it t o the Linguistic Feature Labeler, which acids 
semantic labels (shown in boldface below): 

( ((speech-act *suggest) 
(scntencc-type *query-if)) 
((frame *free)) 
( ( 
(((frame *you)) 
( 

(( 
( (frame *spcr.ial-timc) ) 
( 
(( ( spcr.ificr dcfinit.c)) 
( ((tirne-of-<lay morning)) 

rnn)) 

you)) 
rneel)) 

in) 
the) 
morning))) 

The Constituent Path finder then adds paths, ,vhere appropriate (shown in boldface) , and we get: 

([](( speech-a.ct *suggest) 
( sentence-type *query-if)) 
([]( frame *free)) · 

([]([] 
([who](( fram e *you)) 

([] 
([] ([] 
([when](( frame *sper-ial-time)) 

([] 
([](( sper-ifier defin ite)) 
([](( Lime-of-day morning)) 

can)) 

you)) 
meet)) 

in) 
the) 
morning))) 

ConverLing lhis lo a fea Lure sLrucLure, we gel. Lhe ILT : 

(((speech-act *suggest) 
(sentence-type *query-if) 
(frame *free) 
(who ( (frame *you))) 
( when ( (frame *simple-time) 

(time-of-day morning))))) 

6 Connectionist Discourse Modeling 

\-Vork is a.lso underway to m odel t he discourse by making predictions of subsequent ILTs based on t he 
previous ones, using a rnnner.tionist implementat ion . '!'he 11.:T gern,rnted by our LI{ parser is a language 
ind ep Eendenr fram e strnd.llre r.onta.ining threEe main slots, spach.-ad, srnff.nr:e- t ype and s emant ic f ro.nu 
along wi lh a few other 8econdary sloLs. The speech-act. refers lo Lhe acLiou performed by lhe senLence, 
e.g., :;uggest, accep t , and rejecL. The senLence Lype refers lo the s urface form of lhe sentence, e.g ., 
statement , yes/no quest ion, wh-qucstion, directive. The sem ant ic fram e refrrs to m ain semant ic conten t 
of the sentence, e .g ., busy, free, out-ot~town . Other slots in the ILT arc who , which is t he person referred 
to by the fram e, u;h.(l,t, a possib le non-person ohjed, a nd u;h. rn. rmd topic, a representat ion of any t i,mporal 
r.om ponent of the utterance. 



SpokP.n Ut.t.P.ranr.P: Ad11ally the twenty sixth and the twenty seventh T'll be at, a seminar all day. 

( (SPEECH-ACT XRE.TECT) 
(SENTENCE-TYPE *STATE) 
(FRAME *SCHbLlLLbLl) 
(WHO ((PnAME *I))) 
(TOPIC 

((FnA:vrc xTIME-LISTJ 
(CON\ITCTTVE A'!D) 
(TTEMS 

(* _\:I l_ LTlP LV 
((FHAME *SL\:IPLE-TlME) 
(DAY '.26)) 

( (PnAME *SI:VIPLE-TIME) 
(DAY '.27)))))) 

( WHAT ((FRA:VIE xsElVITNAR) 
(SPECTF'TER T'!DEF'Tl\TTE))) 

(WHEN 
((FHA\:lb xsPEClAL-Tl!'vlE) 
(SPECIPIEn WHOLE) 
('!AME DAY))) 

( ADVERB ACTUALLY)) 

Figure 7: Example for the ILT reprcscn tation 

The Lop level slot.s of Lhe mosl recent ILT are encode<l inlo a patlern of binary inpul.s . This information 
along with a bit indicating whether the next utterance comes from the same or different. speaker in the 
dialog is fed into a multi layer neural network trained by the back-propagation learning algorithm. The 
net.work has to map the input ved.ors onto a representation of the suhsequent I 1:1'. In preliminary work, 
thi, ni,twork wa.s trnined on '24 dialogui,s of hand codi,d 11..'J's from the b:SST dat.aha.si, . The net.work 
learned some cha.racl.erist.ics of discourse behavior, and is good at ma.king some predicl.ions of likely fillers 
for t.he speech-ad an<l sentence-type slot.s of Lhe .subsequenl ILT. T he relative slrengt.h of the output. 
units can be used to determine the relative probability of competing fillers for a particular slot. 

There arc drawbacks with this experiment that arc easy to solve: Twenty-four dialoiz;ucs is not sufficient 
for good modeling of discoursi,. Increasing data for t.ra.ining is undi,rwa.y to yii,lcl improved ri,sults_ 
Interjections oft.i,n disrupt. the context of a sentence; for instanci, small utterances, such as l'l,1ell b i,twi,i,n 
two full sentences interfere wiLh t.he associaLion of Lhe ILT.s for t.he Lwo senlences. Using t.he previous 
conlenl bearing ILT Lo predict the nexl ILT, rather than ju.st t.he previous ILT, increases conlext, and 
can boost results. vVith improved results, the predictions ,viii be used to aid speech recognition by 
interpolating language models a.ppropriatc for sentences containing the predicted slots. -
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