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ABSTRACT
This paper describes a music type recognition system that
can be used to index and search in multimedia databases. A
new approach to temporal structure modeling is supposed.
The so called ETM-NN (Explicit TimeModelling withNeu-
ral Network) method uses abstraction of acoustical events
to the hidden units of a neural network. This new set of ab-
stract features representing temporal structures, can be then
learned via a traditional neural networks to discriminate be-
tween different types of music. The experiments show that
this method outperforms HMMs significantly.

1. INTRODUCTION

As the demand for multimedia databases grows, the devel-
opment of information retrieval systems including informa-
tion about music is of increasing concern. Radio stations
and music TV channels hold archives of millions of mu-
sic tapes and video clips. For an easy and fast search in
databases automatically indexing of tapes and clips is re-
quired. For this purpose the music type is obviously one
important information. A music type recognizer would en-
able an intelligent car radio system to automatically select
favored music channels.

In this paper a recognition system is described that dis-
criminate four major categories of music types: Rock, Pop,
Techno and Classic. Bands like ZZ-Top orMetallica are as-
signed to the category Rock. Softer music like Sade belongs
to Pop music. Hard and fast beats are typical characteristics
of Techno. Haydn, Mussogorsky or Mozart and alike are
representatives for classical music.

A music type recognizer must cope with temporal struc-
tures of acoustic signals. These of speech signals are often
modeled with HMMs [4] but a drawback is their poor dis-
criminative power. In the contrary neural networks provide
a very good discrimination but to compete with temporal
structures special topologies are needed like those proposed
by Elman and Jordan [2]. Since temporal information is
stored in context units, such networks have to learn tempo-
ral structure from the context units.

We suggest a new idea to represent temporal structures
of input signal in order to better compete with temporal

structure variations in the inputs. We call this new archi-
tecture ETM-NN (Explicit TimeModeling with Neural Net-
works). ETM-NN uses statistical analysis of temporal struc-
ture to provide some new features to the whole network.

The paper is organized as follows: In the next section
we give an overview of the ETM-NN. Section 3 describes
the experimental setup, the database and the preprocessing
step. Results on our experiments are reported and discussed
in Section 4.

2. EXPLICIT TIMEMODELINGWITH NEURAL
NETWORKS

2.1. Overview

From an acoustic point of view, music can be described as
a sequence of acoustic events. For the music type recogni-
tion it is relevant to extract information about the temporal
structure of this sequences. Therefore, we have to trans-
form the acoustic signal into a sequence of abstract acoustic
events. This transformation is described in the next subsec-
tion. After this, statistical parameters will be derived from
the sequences. Frequencies of events and transitions in the
sequence are calculated. The derived parameters are com-
bined into one vector which contains the temporal structure
information of the sequence. This so-called characteristic
vector of a piece of music is the input of a 3-layer feed-
forward network which is trained to recognize music types.
The overall system structure is depicted in figure 1.

2.2. Learning acoustic events

Speech events are described in terms of phones. Speech rec-
ognizers use often phonemes or similar units for the acous-
tic modeling. But how to describe the acoustic events of
music? Modeling for example by notes would have many
disadvantages: Often notes are played simultaneously (ac-
cords, polyphonic music) and music samples contain addi-
tional voices and other sounds. For example, one can hear
raindrops falling in some exotic pieces of Techno.

Thus it is difficult to extract single notes from the sig-
nal and works on simple monophonic music. We suggest to
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Figure 1: System structure for explicit time modeling with
neural networks

learn the relevant acoustic events in an unsupervised man-
ner.

For an autoassociative trained 3-layer feed-forward net-
work (encoder nets) it is often observed that the hidden layer
represents approximately the principle components. In [7] it
is shown that the first half of the feed-forward network per-
forms a specific nonlinear transformation of the input data
into a space in which the discrimination should be simpler.

In fact, the activation of the hidden units are a compact
representation of the input feature vector, but our aim is a
good representation to recognize music types instead of au-
toassociate the input vector itself. Therefore, we train the
network to associate the input signal to the music type. The
purpose of this network is not to get a perfect music type
recognizer but to learn abstract acoustic events in the hid-
den layer. Input of the network are the cepstral co-
efficients. The hidden layer has 10 units. After the network
is trained we only use the hidden units, the output units are
ignored.

The abstract event occures if the hidden unit of
this trained network has the highest activation of all hidden
units. The score of the event corresponds to the activation
of hidden unit . Obviously, the number of possible events
is the same as the number of hidden units. Therefore we use
ten events in our system. The minimum duration of an event
is the context size of the input feature vector ( seconds).

To transform the acoustic signal into a sequence of such
events we put each input feature vector of the signal into
the network and compute the hidden activation. With this
procedure, we get the corresponding abstract event for each
input vector. Figure 2 illustrates the activation of the hidden
units for each input vector of a sample of a Techno piece
”Happy Rave”. At the beginning of the sample hidden unit

1

2

3

4

5

6

7

8

9

10

0sec 10sec 20sec 30sec

Figure 2: Activation of the 10 hidden units for a sample of
techno ”Happy Rave”

has the highest activation, followed by hidden units , ,
, , , , , , , and so on. The corresponding event

sequence is , , , , , , , , , , and
so forth.

We require for our definition of events that hidden units
are not activated simultaneously, because we assign an event
to the highest activated unit. A solution to make sure that
only one hidden unit is active would be to perform a com-
petive learning rule in the hidden layer during training the
network, but we observed that this is not needed. An analy-
sis of the hidden activation has shown that the rate of simul-
taneously activated hidden units is small.

2.3. Analysis of temporal structures

In the next step temporal structure information are extracted
from the event sequence. This is done by the temporal struc-
ture analysis module. Input of this module is the event se-
quence obtained by the procedure described above. The
analysis module produces the characteristic vector of a piece
of music by counting, how often events , event pairs
or event triplets occur in the sequence. For example,
the piece of Techno depicted in figure 2 has many transi-
tions from to . The counts of the events and
will be zero, these events are not active over the whole sam-
ple. We call these features in analogy to statistical language
models unigrams, bigrams and trigrams, but our intention is
to use the counts as features instead as probabilities.

Additionally the average event duration is computed.
Duration means, how long a hidden unit has the highest ac-
tivation. The difference to the unigram is that the un-
igram counts the occurencies but not their durations. Also
we use features to represent the scores of the event activa-
tion. The analysis module computes maximum, mean and
variance of the activation score for each event.

To summarize the following features are computed:

unigram-counts

bigram-counts



trigram-counts

event durations

mean, maximum, variance of event activation

The features are normalized over the length of the se-
quence and combined into a single vector that we call char-
acteristic vector. Due to the high number of potential n-
grams the dimension of the vector is quite big. Therefore it
is necessary to reduce the dimension. We select the best
features acording to their disriminative power. The reduc-
tion results in an easy and fast learning of the final neural
network.

2.4. Recognition engine

As a final step, we trained a neural network to recognize the
music type. Input of the network is the characteristic vector
obtained by the temporal structure analysis module. The
temporal structure information is represented in the reduced
characteristic vector. Therefore the network has not to deal
with a sequence of feature vectors anymore.

3. EXPERIMENTAL SETUP

We carried out two kinds of experiments. We evaluated a
standard approach using HMMs to model the music types.
The HMM approach is compared with the ETM-NN train-
ing scheme. All reported results are measured on the evalu-
ation set from the database described in the next subsection.
We used the same preprocesing step for both systems.

3.1. Database

The database consists of hours of audio data for the four
categories Rock, Pop, Techno and Classic. We collected
360 samples of music of approximately seconds. Each
music type has an equal number of samples in the database.
To avoid a specialization to bands we restrict the maximum
number of music pieces for each band to six. The database
is divided in three artist-disjunct sets for training ( ),
cross validation ( ) and evaluation ( ). The samples
were originally obtained from compact discs and sampled
down to 16 kHz. Additionally, we merged both channels of
the stereo signal into one mono signal.

3.2. Preprocessing

The instruments and their timbre are characteristic for dif-
ferent music types. For example, a piano is more typical for
classic and, on the other hand, an electrical guitar is more
typical for Rock music.

The sound of an instrument consists of two components,
the excitation (fundamental tone) and the resonance charac-
teristics (timbre). Physically, timbre can be expressed as

the relation between the energy of the partials (overtones).
Therefore, we compute a short-time power spectrum with a
window size of ms every ms. To filter out the fun-
damental frequency we compute only the first cepstral
coefficients of each window. The resulting feature vector
contains context of adjacent frames so that the dimen-
sion of the feature vector is . Such a feature
vector provides information for 0 ms= seconds of
the signal.

4. RESULTS AND DISCUSSION

4.1. HMM results

As for the ETM-NN we used cepstral coefficients as input
for the HMM system. The system consists of four HMMs
corresponding to the four music types. Each HMM has four
states. We investigated different transition models. Figure
3 shows on the left side a left-to-right model with one back
loop on the other side and an ergodic model.

Figure 3: left-to-right with one back loop and ergodic HMM
transition models

In bothHMM topologies we use amixture of three gaus-
sians to parameterize the emission probabilities. The boot-
strap mechanism starts with one gaussian. We write labels
after five full forward-backward iterations. These labels are
used for initialization of the mixture of gaussians followed
by ten further training iterations. The transition probabili-
ties are also trained. The HMM recognizer with the ergodic
transiton model achieves recognition rate as shown
in table 1. In contrary the HMM with the restricted transi-
tion model has a better performance . A reason for
that is that the reestimation of transition probabilities would
be more unreliable if more potential state transitions are ex-
isting.

4.2. ETM-NN results

We investigated different types of characteristic vectors. First,
we restricted the temporal structure information to event un-
igrams, durations and activation scores. Bigrams and tri-
grams were excluded. The performance of the ETM-NN
was . In the second experiment we added bigram in-
formation to the characteristic vector. This step increased
the recognition rate to . If we add also trigram fea-
tures the performance can be improved to . Obvi-



ously the bigram and trigram features contain useful infor-
mation about the temporal structure.

System recognition rate
HMM with:
left-to-right transitions
ergodic transitions
ETM-NN with:
unigrams, duration, activation
+ bigrams
+ trigrams

Table 1: Performance of HMM and ETM-NN

Detailed results for each music type are shown in ta-
ble 2. The differences between the recognition performance
across the music types are interesting. It seems that sam-
ples of Techno and Classic are easy to discriminate. The
recognition of samples of Rock and Pop seems to be more
difficult. This results are conform with human perception.
We carried out a perceptual study with a group of 37 test
subjects. The subjects were exposed to the same samples
that we used for the test set. They are asked to classify the
music type. The results of this experiment are similar to the
results obtained with our recognition system. Human con-
fusions in this experiment are similar to confusions of the
ETM-NN system. Details of this perceptual study can be
found in [6].

s/r Rock Pop Techno Classic
Rock
Pop
Techno
Classic

Table 2: Confusions obtained by the ETM-NN with tri-
grams

We have modified the ETM-NN to an online system by
computing characteristic vectors on subsequences of events.
Figure 4 shows the recognition rate as a function of dura-
tion for each music type separtly. The system needs only a
few seconds to recognize pieces of Techno or Classic. The
recognition of Rock samples needs much more time and is
more difficult. The temporal progress of the recognition of
Pop music shows also that the recognition rate can be de-
creased for a short period through non typical acoustics.

5. CONCLUSIONS

We presented a music type recognizer for the types Rock,
Pop, Techno and Classic which achieves a recognition rate

stimulus/response: entry of row column is the rate how many sam-
ples from type was classified as type

20%

40%

60%

80%

100%

0sec 10sec 20sec 30sec

rock

20%

40%

60%

80%

100%

0sec 10sec 20sec 30sec

pop

20%

40%

60%

80%

100%

0sec 10sec 20sec 30sec

techno

20%

40%

60%

80%

100%

0sec 10sec 20sec 30sec

classic

Figure 4: recogniton rate as a function of duration for each
music type

of . Our ETM-NN approach combines discriminative
power of neural networks with a direct modeling of tempo-
ral structures. Further research will explore the use of direct
modeling of temporal structures for acoustic signals.
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