Integrating Knowledge Sources for the Specification of a
Task-Oriented Dialogue System

Matthias Denecke
Interactive Systems Inc.

1900 Murray Avenue
Pittsburgh PA 15217

Abstract

We show how the specification of a dialogue sys-
tem can be divided into domain-dependent and
domain-independent parts. We demonstrate
how comparisons of actual representations in
the dialogue history can help to infer hierarchi-
cal dialogue structure. The principles guiding
the inference can be expressed in domain inde-
pendent rules. Using typed feature structures
as the only representation formalism we retain
the simplicity of frame-based systems in terms
of gathering necessary information to fulfil a
task. On the other hand, being able to eas-
ily integrate a type hierarchy into the repre-
sentations and describing the systems behavior
in clauses quantifying over feature structures
in the dialogue history, we not only achieve a
compact specification of the system’s behav-
ior. The described implementation is a first
step towards the implementation of domain-
independent task-oriented dialogue processing
systems.

1 Introduction

In the recent past, several spoken-language dialogue
applications have been implemented. In most of the
cases, the implementations focus on one particular task
such as Air Travel Information Service (ATIS) (see, e.g.,
[Ward, 1994]) or hotel reservation and travel information
([Constantinides et al, 1998]). In some cases ([Ferrieux
and Sadek, 1994]), a shift towards task-independent im-
plementations can be observed, leading to a principle-
based implementation of a task-oriented dialogue system
[Sadek et al., 1997], taking advantage of the structural
similarity in task-oriented dialogues of different domains.
Most of the above-cited applications have in common
that they are able to perform a limited set of opera-
tions (such as hotel reservations) and that, in order to
perform these operations, the user needs to specify a cer-
tain amount of information (such as arrival date). Put
simply, the task of the natural language understanding
component in these implementations is to determine the
operation the user wants to perform, and then obtain
the information necessary to perform the operation.

Alex Waibel

Interactive Systems Labs

Carnegie Mellon University

33

5000 Forbes Avenue
Pittsburgh PA 1521

On the other hand, there are implementations of dia-
logue toolkits (see, e.g., [Sutton et al, 1996]) aiming at
providing a platform to design dialogue systems with-
out the need to take recourse on linguistic specifications.
Approaching the problem of task-independent dialogue
strategies from the other side, these systems typically
offer an implementation of a template dialogue system
bare of any task-specific knowledge at the expense of less
sophisticated models of dialogue structure. When in-
stantiating the system for a particular task, the system
designer typically has to specify the flow of the dialogue,
for example in form of a finite state automaton. Disad-
vantages of this approach are the stiff information flow
following the specification and the fact that complemen-
tary information sources such as results from database
requests can only be integrated with difficulties.

The work presented in this paper aims at combining
advantages of the first type of system — such as natu-
ral dialogue structure — with the key advantage of the
second type of system, namely easy deployment for new
tasks. We assume that the behavior of a dialogue system
can be sufficiently described by answering the following
questions: (i) What are the entities, properties and ac-
tions the user and the system may refer to during dia-
logue? (ii) What kind of information is sufficient for the
system in order to perform the action the user intended
the system to perform? and (iii) How should the system
perform the intended actions? Consequently, we are in-
terested in separating domain-independent and domain-
dependent knowledge in order to simplify as much as
possible the specification for new systems. We show how
the behavior of the natural language processing compo-
nent in a dialogue system can be specified using declara-
tions answering the three questions above, namely spec-
ification of a domain model, a task model and clauses
describing the systems’ behavior. In each instance, the
specifications consist of a set of domain-dependent and
a set of domain-independent specifications.

From a processing point of view, we describe a system
in which the way of determining information to be ex-
changed 1is domain-independent whereas the exchanged
information itself may be domain-dependent. As a re-
sult, we arrive at a specification of a dialogue system in
which domain-specific and domain-independent knowl-
edge are orthogonal.

The system has been implemented in a travel infor-

date & time

reservation

date time restaurantreserval hotelreservation
DAY int HOUR int DATE date ARRIVAL date
MONTH int MIN int TIME time DEPARTURE date
YEAR int PLACE restaurant PLACE hotel

goals
goal_restl_res goal_hotel_res
ACTION reserve_res ACTION reserve_hotel
CANCEL cond CANCEL cond

speechact_question

—\ e = =

obj_abstract goal

speechactl

Figure 1: A part of the type hierarchy and its appropriateness conditions used in the map application. The least

specific type is at the bottom of the tree.

Information increases from the bottom to the top. Two sub-domain

models, called date & time and reservations are merged with the application-specific declaration of the types of the
goals. The part of the hierarchy declaring the speech acts is domain-independent. This is a simplified presentation

of the domain model actually used in the system.

mation both setting. Currently the system is capable of
performing hotel and restaurant reservations and gener-
ating path descriptions to sites of touristic interest.

2 The Representations

2.1 The Domain-Model

We chose as the basic representation formalism through-
out the system typed feature structures [Carpenter, 1992].
The types are ordered in a conceptual model, the type
hierarchy, which represents domain-specific as well as
domain-independent terminological knowledge using IS-
A and IS-PART-OF relations. Figure 1 shows a part of
the type hierarchy we use in our interactive map appli-
cation.

There are several small domain-specific sub-models for
semantically closed domains. Among these are hierar-
chies introducing concepts of time, days and dates, or
reservations, or objects that can be displayed on a map.
In addition, there are domain models representing differ-
ent speech acts, gestures in case of multimodal input and
so on. These domain models are domain-independent.
The domain model for one particular application is then
combined with several domain-dependent sub-models
and the domain-independent model. In addition, there is
one particular type hierarchy declaring the information
necessary for the application to perform the goals. The
junction of all type hierarchies is subsequently referred
to as the domain model . The domain model answer the
first of the three questions, namely which are the enti-
ties, properties and actions in the domain and how do
they relate to each other.

Note that since the domain model is a type hierar-
chy, and as such allows techniques such as inheritance,
reasoning (such as reasoning based on the questions if
the goal has been determined uniquely) about the na-
ture of the goal may take place without knowing what
specifically the goal is. This fact is the computational
basis that allows us to express dialogue strategies in a
domain-independent way, while retaining the possibil-
ity of overloading goal execution operators with domain-
specific procedures.

34

speech_act
ACTION show_object
OBJECT =«

obj_museum

NAME 7 andy warhol museum ”
. address
= ADDR | STR-NME 7 sandusky st ”
STR-NUM 117

Figure 2: An example of a typed feature structure re-
presenting a request to show a museum.

2.2 Semantic Representations

Typed Feature Structures

We use typed feature structures [Carpenter, 1992] such
as the one shown in figure 2 to represent the seman-
tics of the users’ requests. Each structure represents the
semantics of a phrase of one of the main syntactic cate-
gories NP, VP, or PP. Feature structures are particularly
well-suited for dialogue processing since partial informa-
tion may be modelled adequately. This allows for easy
integration of additional knowledge bases. As an exam-
ple, consider the result of a database request filling out
a partially instantiated feature structure.

Since the feature structures are typed we can use them
to express anything from definite descriptions, to speech
acts and intentions and goals. This allows us to perform
any actions, such as unification, compatibility check or
disambiguation, on representations of speech acts and
intentions in the same way as we do on representations
of objects.

Compact Representations

In order to implement a domain-independent dialogue-
processing module; we need to be able to generate re-
ferring expressions that help us to discriminate differ-
ent representations. As an example, consider two hotels
carrying the same name but being located in different

speechact_answer

addresses. From a representational point of view, we
are looking at a set of feature structures some of which
contain common information. In order to generate a
clarification question, prompting the user to select, say,
one of the two hotels, the system should be able to sep-
arate similarities and differences in the representations.
This is a necessary precursor for generating clarification
questions in a domain-independent way.

Sets of feature structures can be represented in an
underspecified representation factoring out similarities
and differences in the different feature structures. For
example, two feature structures of the form [6; F oy]
and [61 F o4] respectively can more compactly be rep-
resented as [61 F o{o1,02}] , o being the greatest lower
bound of ¢; and o5 in the type hierarchy. In addition,
the types and features are annotated with indices of fea-
ture structures in order to avoid overgeneralization, be-
ing similar in spirit to named disjunctions.

B 01,1
01,2
617"1
0>,

22

Figure 3: An underspecified feature structure. The types
0, 0;, 0;, are represented in trees that preserve the sub-
sumption relation from the type hierarchy. Types and
features are annotated with indices referring to the fea-
ture structures that contain them in order to be able to
extract the feature structures correctly from the compact
representation.

The underspecified nodes contain decision trees whose
elements are annotated with the indices of the origi-
nal feature structures. For disambiguation, the dialogue
strategy may select one or more of the decision trees
according to some strategy specific criterion. The selec-
tion criteria might be to disambiguate the feature path
whose value has a decision tree of maximal or mini-
mal entropy, according to the way the question is gener-
ated (for a more detailed presentation on the generation

of clarification questions, see [Denecke, 1997]). Due to

35

the co-indexed types and features in the underspecified
representation the disambiguation of one feature path
typically reduces the ambiguity in other feature paths
as well. The compact representation helps us to select
discriminating information when generating clarification
questions.

It should be noted that although the construction of
the decision trees relies on domain-specific knowledge
(e.g. a museum is more specific than an object in the
above example) the implementation of the underspec-
ification algorithm does not since the selection of the
decision tree can be formulated in terms of entropy and
specificity and constitutes thus a necessary prerequisite
for domain-independent specification of dialogue strate-
gies.

Not only may underspecified feature structures be
used to represent differences and similarities of objects
being ambiguously referred to, but they also serve to
represent ambiguous references to goals or actions. The
same clarification strategies may then be used to disam-
biguate between multiple objects, intentions or actions
that are referred to by one description.

The Task Model

The task model consists of a set of typed feature struc-
tures, referred to as the task descriptions. Informally,
a task description serves to specify a minimal amount
of information that is necessary in order to perform a
specific task, and the conditions that have to be verified
in order for the execution of the task to be admissible.
Consequently, each task description consists of two parts.
The first part describes lower bounds on information re-
lated to the execution for the task associated with the
task description. The second part describes an escape
condition that has to be verified in order for the system
to perform the goal. This is a reformulation of the con-
cept of a persistent goal [Cohen and Levesque, 1994] in
terms of feature structures. The representations of the
task model only constrain the information necessary in
order to perform a task; it does not describe how the
task should be carried out. This is done by clauses as
described in section 3.4.

Since the task model describes lower bounds on in-
formation particular to one application it is application-
specific and can not be reused in general. However, only
the task model describes the informational part of the
tasks the dialogue system may carry out.

In case the provided information is still not specific
enough to determine the intended task uniquely, an un-
derspecified representation of all possible task represen-
tations allows to generate clarification questions to seek
additional information.

The task model is specific for one particular appli-
cation and needs to be specified by the application de-
signer. It answers the second of the three questions,
namely which actions can the system perform and what
is the information it needs to do so.

2.3 The User and the System Model

Currently, the user model simply consists of a single
stack containing representations of intentions. The in-
tentions are those inferred by the system the user wants

[goal_reservation_rest 1
[reserve_restaurant
hotelreservation
INFO OBJ DATE date]
TIME time
reserve_restaurant
CANCEL | 1RuTH false]

Figure 4: Strictly lower bounds of the information nec-
essary to perform a restaurant reservation is represented
in the value of the INFO feature. The CANCEL feature
represents information that will remove the goal from
the stack and thus represents an escape condition.

to achieve. The user model and the system model hold
representations that are inferred dynamically during dia-
logue processing. They are used to represent current
mental states of the system and the user.

3 Relating Goals, Intentions and
Structures in Discourse

In the following, we show how the specifications of do-
main and task model are used by the system for dia-
logue processing. In order to do so, we do not need to
rely on any prestructured dialogue model such as dia-
logue grammars or finite-state automata. Moreover, we
show that although determining the discourse relations
may rely on domain-specific knowledge the formulation
of the algorithms is domain-independent. Consequently,
one particular dialogue strategy can be used in different
domains. We understand by dialogue strategy any se-
quence of actions undertaken by the dialogue system in
order to obtain information towards one or more goals.
We understand by goal any amount of information suffi-
cient for the system to perform one of the actions it has
been designed to perform. By saying ‘a goal is executed
we refer sloppily to the state of the system in which (a)
enough information for a goal to be identified uniquely
and (b) all required information necessary to perform the
actions associated with the goal have been gathered.

3.1

In the current implementation, the dialogue manager has
access to the components shown in figure 6.

First, there is the dialogue history. The dialogue his-
tory is a blackboard consisting of four different levels.
Each level can be organized, independently of the oth-
ers, as a linear list, a tree or a stack each of which hold
possibly underspecified typed feature structures. The
four layers correspond to orthographic, syntactic and se-
mantic representations as well as representations of the
objects (“the world’) the utterances refer to.

It should also be noted that the dialogue manager has
access to all levels of representation at any time. As a
consequence, the processing steps are not required to be

Components of the Dialogue Manager

36

in a certain predetermined order (such as parsing fol-
lowed by semantic construction followed by database ac-
cess followed by clarification questions or some feedback
generation). Instead, conditions posed on the represen-
tations may trigger any kind of action at any time in
the process, which greatly increases the flexibility of the
dialogue processing.

Orthographic Semantic

Syn/Sem Objects

bj_restaurant bj_restaurant
UANT all INAME " kiku express "
INATIONALITY chinese! " peking garden "

all chinese restaurants det adj_nat N_obj_rest

Figure 5: The four different levels of representation. At
all times, the dialogue manager has access to all four lev-
els and may pass any information on to other processing
modules without being restricted by a static flow of in-
formation

Second, there are two stacks holding feature structures
representing the user’s and the system’s intentions, re-
spectively. The dialogue manager updates the model
of the user’s intentions with all instantiations of task
models that are compatible with the information in the
current dialogue history. The need to organize the in-
tentional model hierarchically stems from the fact that
before the user can give all the information necessary
for the system to accomplish a goal (e.g. hotel reserva-
tion) the user might need the system to accomplish a
sub-goal first (e.g. give complementary information on
the hotel). The intentional model of the system typi-
cally holds a copy of the intentional model of the user.
However, since the user’s and the system’s models are
separated, it is possible to further restrict the intentions
of the system by additional conditions so that the system
would not need to do everything the user asks it to do.
Hereby triggered incompatibilities between the system’s
and the user’s intentions can also be used as conditions
for additional recovery strategies.

Clearly distinguished from the intentional models is a
representation of the current communicative goal. While
the user’s intention might be to perform a hotel reserva-
tion, the current communicative goal might be to spec-
ify the arrival date (which in turn might trigger subdi-
alogues on its own, e.g. the user accidently referring to
the 30%" of February).

The dialogue manager has access to the feature struc-
tures held in the different components. The dialogue
manager is programmed by a set of if-then—else clauses
described below.

The system architecture is client/server based, en-
hanced by an additional message passing scheme. The
speech recognizer JANUS has been integrated in the sys-
tem. The output of the speech recognizer is analyzed
by the Phoenix Semantic Parser [Ward, 1994]. The re-
sulting semantic parse tree is converted into a typed
feature structure representing the semantics of the ut-
terance. The semantic representation is added to the
history which, in turn, triggers the dialogue processing

described below.

Users Intention

Previous Communicative Goal

Systems Intention

oal_hotel_res Current Communicative Goal oal_hotel_res
NFO reserve_hotel oal_obtain_info INFO reserve_hotel
0BJ | hotelreservation INFO reserve_hotel OBJ | hotelreservation
RRIVAL date e e RRIVAL date
DEPARTURE date RRIVAL date DEPARTURE date
PLACE hotel LACE hotel
Dialogue Manager peechact_request
INFO reserve_hotel
I~ falEh - HEE = OBJ hotelreservatio peechact_obtain_info
IF - THEN - ELSE NFO reserve_hotel
OBJ | hotelreservation
RRIVAL date

Figure 6: The overall architecture of the system. The users intention is to make a hotel reservation. The system
opens a subdialogue in order to inquire the arrival date. The communicative goal of the user is temporarily replaced
by the goal the generated by the system-initiated subdialogue. However, the intentions of user and system remain
unchanged as the hotel reservation could not yet take place. Only the semantic layer of the four-layered blackboard
is shown. The representations shown are simplifications of the representations actually used in the system.

3.2 Discourse Structure

We consider the performative aspect of a speech act to be
limited to an update of the discourse, including models
of intentions. This is in contrast with one commonly held
view that speech acts are direct incarnations of actions.
Continuing this line of thought, a speech act may be seen
as a function mapping a context onto a context [Levin-
son, 1983], again the context including the mental states
of the participants in the conversation. This allows us to
clearly separate the actions invoked by a speech act lead-
ing to an update of the discourse and the execution of
the application-specific tasks. Consequently, we have a
domain-independent formulation of dialogue strategy in
terms of discourse update as an advantage of our system.

The information provided by some speech act may
contribute to the information available in the discourse
in different ways. First of all, incoming information may
be compatible with the information available in the dis-
course and increase the specificity towards a goal. A
typical case would be the answer of a clarification ques-
tion. Second, new information may be compatible with
the intention of the speaker, but incompatible with the
information established in the discourse. A speech act of
this kind constitutes a repair. Third, information may be
incompatible with the intention of the speaker and pos-
sibly the information in the discourse which indicates a
subdialogue. In other words, the informational relation
between the speech act and the dialogue state determines
partly the way of updating the discourse. Since the re-
presentations of the speech acts are constructed by unifi-
cation of feature structures in function of the parse tree,
lexical information can be projected up to the speech act

37

level in case where lexical information already constrains
the type of the speech act.

The relations between information in the discourse
and the intentions of the user help us to infer a hierar-
chical structure of discourse. Each level in the hierarchy
consists of a list of possibly underspecified feature struc-
tures and references to levels below the current level.
There are no predefined dialogue structures. Rather, the
structure is inferred as information enters the system. If
a new speech act is classified as opening a subdialogue, a
new level below the current one is created. If a commu-
nicative goal is reached, the current level is closed and
the level above the current one becomes the current level
again.

Comparing to [Grosz and Sidner, 1986], we equate
somewhat simplistically the structure of discourse with
the hierarchical representation on the semantic level,
while the intentional structure is expressed by the pos-
sibly underspecified representations in the intentional
states of the user and the system. The focus of attention
is limited to the current level of discourse and the levels
accessible towards the top.

It is important to note that while the procedures to
update the discourse and to infer the dialogue structure
may rely on domain-specific knowledge, the formulation
of the clauses does not. Instead, the discourse update
may be expressed in terms of subsumption and compat-
ibility of different representations. The specification of
the discourse update remains thus domain-independent.

3.3 Reference

Due to separate levels of representation for descriptions
and objects referred to ambiguous or empty reference
can be modelled explicitly. Referring expressions typi-
cally trigger database requests returning variable num-
bers of possible referents. The referents are represented
in underspecified feature structures separating similar-
ities and differences in the representations. Figure 7
shows an ambiguously referring, a uniquely referring and
an overspecified description as they are represented in
the third and fourth level of the discourse history as
shown in figure 5.

otel otel
PRICE cheap PRICE cheap
DDRESS "new york' DDRESS "new york'
AME (o)
otel otel
DDRESS "new york' DDRESS "new york'
AME "ritz" AME "ritz"
PRICE expensive|
otel undef
PRICE cheap
DDRESS "new york'
AME "ritz"

Figure 7: Different representation of descriptions and
their referents. The first description refers ambiguously
to a set of objects that is compactly represented in an
underspecified feature structure. The second description
refers uniquely to one object. The third description is
overspecified; no object in the data base fits the descrip-
tion. The representations are depicted in a simplified
fashion.

In addition to the parallel representation of descrip-
tions and referents, links explicitly represent the rela-
tionship between the representations. Since the links are
also accessible at the clause level, it is possible to deter-
mine for each expression the number of referring objects.
This helps us to identify “what the speaker intends to
be picked out by a noun phrase” [Cohen and Levesque,
1994]. Consequently, it is possible to formulate dialogue
strategies depending on the kind of references found in
the discourse.

Moreover, it should be noted that since not only defi-
nite descriptions and objects but also actions and goals
are represented in feature structures, similar conditions

38

EVAL_GOAL :

isunique (top (U)),

isatomic(

subtract (

top(U)@[INFO],
top(S)@Q[INFO]))

evalgoal (top(95)),

pon((U))),

pop((S))-

Figure 8: The rule triggering the action associated with
the task descriptions. U and S refer to the user’s and
the system’s model of intentions, respectively. pop and
top are the usual operations on stacks. If the intention
of the user is uniquely determined (first condition) and
all the information in the discourse meets the constraints
imposed by the value of the [INFO] feature (second con-
dition) then the goal is evaluated and the current inten-
tions of system and user are removed from the stack.

can be formulated on representations of intentions and
actions.

3.4

The dialogue manager is programmed by a set of if-
then—else clauses [Denecke, 1997] each of which consists
of three lists of predicates representing the condition, the
positive conclusion and the negative conclusion, respec-
tively. The predicates range over typed variables. The
typed variables in the predicates are instantiated with
feature structures held in the focus of the discourse, in-
tentional models and communicative goal.

The clauses can be divided into domain-specific and
domain-independent clauses, the former ones govern-
ing domain-specific interaction with domain-specific
databases, possibly hardware and the like, while the
latter ones specify the dialogue strategy. The clauses
for the dialogue strategy rely on the differences in re-
presentations contained in the discourse and the inten-
tional states and quantifications over these. These differ-
ences are then expressed in underspecified typed feature
structures as shown above. Although differences are ex-
pressed using domain-specific types from the type hierar-
chy, the calculation of the differences and their quantifi-
cation is independent from the particular domain model.

Figure 8 shows a domain-independent clause stating
that if the intention of the user has been determined
uniquely and all information necessary to evaluate the
goal related to the user’s intention could be accumulated
then the goal should be evaluated and the current repre-
sentations of the intentions of the user and the system
respectively should be removed from the stacks.

In addition to defining rules, the language allows for
the definition of procedures, and going along with this,
overloading. The evalgoal predicate typically is over-
loaded with some application-specific definition related
to the goal. The possibility to overload predicates is
one of the crucial features that allows us to specify dia-
logue strategies in a domain-independent fashion. The

Integrating Knowledge Sources

overloaded predicates speciy the behavior of the system
when the intention of the user has been determined and
sufficient information has been accumulated to make the
execution of the task possible. The specification of the
domain-specific rules answers the third question of how
to perform the intended tasks.

The input stemming from the parser triggers appro-
priate clauses to fire. If the current input is the first one
for a new dialogue, all compatible task descriptions are
retrieved, and an underspecified feature structure repre-
senting all of them is loaded in the model of the user’s
intention. The first step to do now is to disambiguate
the intention if it is not unique. Since database requests
and processing of semantic representations can be inter-
leaved, information query results may additionally in-
crease the specificity of the representations thus leading
to fewer clarification questions.

The application-specific clauses together with the task
model and parts of the domain model are the only in-
stances that describe the behavior of the dialogue sys-
tem, meaning that a move to a new application domain
would require modification of only these instances.

The described features have been implemented in a
travel information booth setting. The overall turn-
around time, i.e. the time between receiving the hypoth-
esis of the speech recognizer and producing the output
of the system, is typically between one and two seconds
on a 200 MHz Pentium II Linux machine. The execution
time depends primarily on the number of and the opera-
tions performed on the objects returned by the database
requests.

4 An Example

In the following section, an example will illustrate
the interaction of knowledge sources as specified by
the clauses. A user’s request, e.g. I would like to
reserve a table may be mapped, due to recognition
errors and partial parsing, to the following partial repre-
sentation

goal_reservation
reserve

INFO OBJ reservation

The two matching task descriptions would be the
one for hotel reservation and restaurant reservation, the
corresponding underspecified feature structure represen-
ting both descriptions would have the value of the path
INFO set to reserve {reserve_hotel, reserve_restaurant}
which would prompt a corresponding clarification ques-
tion. Subsequent unification with the semantic re-
presentation of the answer a restaurant reservation
please will disambiguate entirely the representation on
top of the users’ stack. Since now the intention of the
user has been determined, clauses calculating the infor-
mational differences between the information required
in the task description and the information available
in the discourse fire to obtain complementary informa-
tion. In this case, the system will prompt for the arrival
date. The communicative goal of this action is to obtain
the specified information, consequently, a representation

39

of the goal is pushed onto the stack G and a seman-
tic representation containing the propositional content
of the question is generated. This leads to the situa-
tion depicted in figure 6. The user’s answer the day
after tomorrow generates a semantic representation of
the form [dateREL_DAY + 2] which, in turn, will trigger a
database lookup, unifying a representation of the actual
date with the representation of the deictic expression.
Since this information is more specific than the commu-
nicative goal, the sub dialogue is closed and the new
information is integrated in the representation of the in-
tention of the system. The requirement for the path
ARRIVAL is thus fulfilled, and another path is selected in
order to obtain complementary information.

Note that the user’s response can also generate a
sub dialogue. If for example the systems question
Which category would you prefer is answered with
How much is the cheapest, the incoming information
is not compatible with the communicative goal and,
moreover, is not a repair, so a new subdialogue is en-
tered. in this way, hierarchical dialogue structure is in-
ferred.

An utterance like i don’t need a reservation any
more will generate a representation of the form

goal_reservation
reserve

INFO [TRUTH false]

This representation will cause the comparison of the
value of the INFO feature in the semantic representation
with the value of the CANCEL feature of the currently
activated task description on the stack to fail. This, in
turn, will cause this task description and all descriptions
on top of it to be removed.

5 Comparison to related Work

A variety of different approaches to dialogue process-
ing have been proposed in the past. Some features of
our system bear similarity with features implemented in
the Artimis system [Sadek et al., 1997]. These include
domain-independent speech acts, the joint application of
a domain-independent and a domain-dependent model
and explicit representation of a persistent goal. How-
ever, the systems differ in the way information is pro-
cessed. The behavior of the Artimis system is specified
by a set of basic rational principles, expressed in modal
logic. Principles governing communication are domain-
independent, while non-communicative principles may
be domain-dependent. The action to be undertaken by
the dialogue system is determined by an inference pro-
cess. In contrast, our system relies on less power logi-
cal foundations (the description logic underlying typed
feature structures) and inference processes. Instead of
having a theory based on rational principles, our system
periodically compares available information with the in-
formation necessary to perform one of the possible goals.
Consequently, a specification of a task resolves to a spec-
ification of a lower bound of information (expressed in a
feature structure), together with the associated actions
(expressed in a clause). Since these concepts are closer

to forms and standard programming languages, a system
designer may find these specifications more convenient to
use than axioms in modal logic.

Compared to dialogue systems that have explicit re-
presentations of states such as finite-state-based systems,
we feel that our information-centered approach leads to
more flexible dialogues and potentially avoids unneces-
sary clarification questions. The reason is that for ex-
ample database requests may be executed at any time in
the processing chain and partially instantiated represen-
tations may be filled with information stemming from
databases instead of having to ask the user to provide
complementary information.

While we do not necessarily gain functionality
by the separation of domain-dependent and domain-
independent knowledge, we do not lose functionality ei-
ther. On the other hand, it becomes easier to deploy the
system to new tasks.

6 Discussion

We described a dialogue system in which domain-specific
and domain-independent specifications are separated.
We showed, as a prerequisite of a domain-independent
dialogue strategy, how to determine the semantic con-
tent for clarification questions in a domain-independent
way. We showed how the underlying dialogue strategy
seeks to obtain information specific enough to select one
among a set of possible tasks to fulfil and, subsequently,
to obtain the information necessary to actually accom-
plish the task.

We demonstrated that, as a consequence of such de-
sign, it is possible to formulate discourse update and dia-
logue strategy in a generic way, taking advantage of in-
formational differences in different representations. The
resulting dialogue specification template is instantiated
with domain models and domain-specific lists of actions
in order to fulfil the tasks.

We chose to determine the speakers intention in a
rather simple fashion, namely by selecting all possible
goals that are compatible with the semantic content of
the utterances so far. This comes at the expense of being
able to deal with indirect speech acts only insomuch as
the intended speech act may be inferred during semantic
construction, a characteristic that stands in contrast to
plan-based approaches. However, it is our hope that a
more sophisticated inference procedure intended to de-
termine the purpose of the utterance may overcome this
problem by constructing semantic representations that
are less closely related to the verbatim interpretation of
the utterance. If and how this problem can be solved in
a domain-independent way remains an open question for
the time being.

References

[Carpenter, 1992] Bob Carpenter. The Logic of Typed
Feature Structures. Cambridge University Press,

1992.
[Cohen and Levesque, 1994] P.R. Cohen

and H.J. Levesque. Preliminaries to a Collabora-

tive Model of Dialogue Speech Communications 15
(1994), pages 265-274.

40

[Constantinides et al, 1998] P. Constantinides, S.
Hansma, C. Tchou and A. Rudnicky. A schema
based approach to dialog control. Proceedings of the
International Conference on Spoken Language Pro-
cessing, pages 409 - 412, Sidney, Australia, 1998.

[Denecke, 1997] M. Denecke. A Programmable Multi-
Blackboard Architecture for Dialogue Processing
Systems. Proceedings of the Workshop on Spoken
Dialogue Processing, ACL/EACL, Madrid, Spain,
1997.

[Denecke, 1997] M. Denecke and A. Waibel. Dialogue
Strategies Guiding Users to Their Communicative
Goals Proceedings of Eurospeech, Rhodos, Greece,
1997.

[Grosz and Sidner, 1986] B. J. Grosz, and C. L.Sidner.
Attention, intentions, and the structure of dis-
course. Computational Linguistics, 12, 1986, pages

175-204.

[Levinson, 1983] Steven C. Levinson. Pragmatics. Cam-

bridge, 1983.

[LuperFoy, 1995] Susann LuperFoy. Implementing File
Change Semantics for Spoken Language Dialogue
Managers Proceedings of the ESCA Workshop on
Spoken Dialogue Systems, pages 181 - 184, Vigso,
Denmark, 1995.

[Ferrieux and Sadek, 1994] A. Ferrieux and M.D.Sadek.
An Efficient Data-Driven Model for Cooperative
Spoken Dialogue Proceedings of the International
Conference on Spoken Language Processing, pages
979 - 982,Yokohama, Japan, 1994.

[Sadek et al., 1997] M.D. Sadek, Bretier, Panaget. AR-
TIMIS: Natural Dialogue meets Rational Agency
Proceedings of the International Joint Conference
on Artificial Intelligence, Nagoya, Japan, 1997.

[Sutton et al, 1996] S. Sutton, D. G. Novick, R. A. Cole,
and M. Fanty. Building 10,000 spoken-dialogue sys-
tems. Proceedings of the International Conference
on Spoken Language Processing, Philadelphia, PA,
October 1996.

[Ward, 1994] Wayne H. Ward. FEzxtracting Information
in Spontaneous Speech. Proceedings of the Interna-
tional Conference on Spoken Language Processing,
pages 83-87, Yokohama, Japan, 1994.

