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ABSTRACT
This paper describes the design of a multilingual speech recognizer
using an LVCSR dictation database which has been collected un-
der the project GlobalPhone. This project at the University of
Karlsruhe investigates LVCSR systems in 15 languages of the world,
namely Arabic, Chinese, Croatian, English, French, German, Italian,
Japanese, Korean, Portuguese, Russian, Spanish, Swedish, Tamil,
and Turkish. Based on a global phoneme set we built different multi-
lingual speech recognition systems for five of the 15 languages. Con-
text dependent phoneme models are created data-driven by introduc-
ing questions about language and language groups to our polyphone
clustering procedure. We apply the resulting multilingual models to
unseen languages and present several recognition results in language
independent and language adaptive setups.

1. Introduction
As the demand for speech recognition systems in multiple languages
grows, the development of multilingual systems which combine the
phonetic inventory of many languages into one single acoustic model
set is of increasing importance. The benefits of such an approach are:

1. Reduced complexity of systems by sharing models and param-
eters, adressed for example in [1]

2. Integrated language identification as for example described in
[2] and [3]

3. Bootstrapping systems for unseen languages with limited adap-
tation data [4], [5], [6].

Combining acoustic models requires the definition of multilingual
phonetic inventories. Previous systems have been limited to con-
text independent modeling. For the monolingual case context depen-
dent modeling is proven to increase recognition performance signif-
icantly. Such improvements from context dependence extend nat-
urally to the multilingual setting, but the use of context dependent
models raises the question of how to construct a robust, compact,
and efficient multilingual model set. By applying a decision tree
based clustering procedure we trained three context dependent sys-
tems which share their parameters in different ways. For one system
we add language questions and afterwards analyze the resulting de-
cision tree.

For all experiments we use our multilingual database GlobalPhone
which is briefly introduced in the first section of this paper. In the
second part, we describe the monolingual systems trained with this
database. The multilingual acoustic modeling is introduced in the
next section. In the last two sections we present results in monolin-
gual, multilingual, and crosslingual setups based on the systems cre-
ated.

Language Utterances Speakers Spoken units
Chinese 5124 77 150,000
Croatian 2826 62 80,000
Japanese 5641 62 200,000
Korean 1587 22 140,000
Turkish 5371 82 112,000
Spanish 5455 79 160,000
German 1000 3 14,000

Table 1: GlobalPhone data used for training

2. The GlobalPhone Database
For the development of multilingual recognition systems, we have
been collecting the GlobalPhone database which currently con-
sists of the languages Arabic, Chinese (Mandarin and Wu), Croatian,
German, Japanese, Korean, Portuguese, Russian, Spanish, Swedish,
Tamil and Turkish. In each language about 100 native speakers were
asked to read 20 minutes of political and economic articles from a na-
tional newspaper. Their speech was recorded in office quality, with
a close-talking microphone. The corpus is fully transcribed includ-
ing spontaneous speech effects. Up to now we collected 233 hours
of spoken speech from about 1300 speakers in total. Further details
about the GlobalPhone project are given in [7].

Table 1 shows the part of the GlobalPhone database used for train-
ing. The monolingual and multilingual test sets consist of 100 ut-
terances per language, the crosslingual experiments are evaluated on
200 German utterances. Because of the limited corpus size, we are
not able to estimate reliable LVCSR n-gram models and vocabular-
ies, which results in high out-of-vocabulary rates. Since we focus
here on acoustic modeling and compare error rates across languages,
we reduced the OOV-rate to 0.0% by including all test words into the
language model as monograms with small probabilities. We defined
a 10K test dictionary by supplementing the test words with the most
frequently seen training units.

3. Monolingual Systems
We developed monolingual LVCSR systems applying our fast
crosslingual bootstrap technique [6] to initialize the not yet modeled
languages. In each language the resulting baseline engine consists of
a fully continuous 3-state HMM system with 1500 polyphone mod-
els. Each HMM-state is modeled by one codebook which contains a
mixture of 16 Gaussian distributions. The preprocessing is based on
13 Mel cepstral coefficients with first and second order derivatives,
power and zero crossing rate. After ceptral mean substraction, a lin-
ear discriminant analysis is used to reduce the input to 24 dimensions.



Language Performance [ER]
Chinese 18.4%
Croatian 20.0%
Japanese 10.0%
Korean 47.3%
Spanish 20.0%
Turkish 16.9%

Table 2: Error Rates [ER] of currently best monolingual systems

Table 2 shows the performance in error rates achieved by our cur-
rently best monolingual systems. The results for Chinese are given
in terms of pinyin units, for Japanese in terms of hiragana words, and
for the Korean language in morpheme based syllables.

4. Language Independent Speech
Recognition

For multilingual speech recognition we intend to share acoustic
models of similar sounds across languages. Similarities of sounds
are documented in international phonemic inventories like Sampa,
Worldbet, or IPA [8], which classify sounds based on phonetic
knowledge. On the other hand data-driven methods are proposed for
example in [9]. In this paper we introduce a data-driven procedure
for multilingual context dependent acoustic modeling.

4.1. Global Phoneme Set
Based on the phonetic inventory of five monolingual systems we de-
fined a global phoneme set for the languages Croatian, Japanese, Ko-
rean, Spanish and Turkish. Sounds which are represented by the
same IPA symbol share one common phoneme categorie. The result-
ing set is shown in table 3 in Worldbet notation. Altogether it consists
of 78 phonemes plus a silence and two noise models for spontaneous
speech effects. 14 phonemes are shared across all five languages, but
half of the set consists of mono-phonemes belonging to only one of
the five languages.

4.2. Multilingual Acoustic Modeling
Based on these 78 phoneme categories, we build three different mul-
tilingual systems: ML5-mix, ML5-sep, and ML5-tag. In the first one
we share all models across languages without preserving any infor-
mation about the language. For each of the 78 phonemes we initial-
ize one mixture of 16 Gaussian distributions and train the models by
sharing the data of all five languages. The resulting recognizer ML5-
mix is a fully continuous system with 3000 models mixed over all
languages. In the second multilingual systemML5-sep each element
is modeled separately for each language. No data are shared, all mod-
els except silence and noise are language dependent. For each of the
170 phonemes we initialize one mixture of 16 Gaussian distributions,
after training this results in a fully continuous system with 3000 lan-
guage dependent models. In the third multilingual system ML5-tag
we attached a language tag to each of the 78 phoneme categories in
order to preserve the language information.

To achieve context dependent phoneme models we apply a decision
tree clustering procedure which uses an entropy based distance mea-
sure, defined over the mixture weights of Gaussians, and a ques-
tion set which consists of linguistically motivated questions about
the phonetic context of a phoneme model. During clustering, the
question with the highest entropy gain is selected when splitting

Phonemes [Worldbet] KO SP CR TU JA
n,m,s,l,tS,p,b,t,d,g,k X X X X X
i,e,o X X X X X 14
f,j,z X X X X
r,u X X X X
dZ X X X X 6
a X X X
S X X X
h X X X
4 X X X 4

,x,L X X
A X X
N X X
V,Z X X
y,7 X X
ts X X 10
p’,t’,k’,dZ’,s’,oE,oa,4i, X
uE,E, ,i ,u ,iu,ie,io,ia X 17
D,G,T,V,r(,ai,au,ei,eu,oi X
a+,e+,i+,o+,u+ X 15
palatal c, palatal d X 2
ix, soft X 2
?,Nq,V[,A:,e:,i:,o:,4: X 8
Monolingual 40 40 30 29 31
Multilingual 78

Table 3: Global Phoneme Set [Worldbet notation]

the tree node according to this question. After reaching the prede-
fined number of polyphones the splitting procedure ends. We ex-
tended this clustering routine to the multilingual case by introduc-
ing questions about the language and language groups to which a
phoneme belongs. Therefore the decision whether phonetic context
information is more important than language information becomes
data driven. We started with 250,000 quintphones over the five dif-
ferent languages and created two fully continuous systems, ML5-
tag3 with 3000 models and ML5-tag75 with 7500 models which is
exactly the same size as the five monolingual systems (5x1500).

4.3. Analysis of Language Questions
Before reporting recognition results using the multilingual systems
we intend to describe the pertinence of language questions compared
to phonetic questions as well as the language information rate of
polyphone models.
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Figure 1: Importance of Language Questions



# 500 models # 1500 models # 3000 models
76 KO+TU 100 KO+TU 146 word bound
38 KOREAN 73 KOREAN 131 back-vow
30 front-vow 73 back-vow 130 front-vow
27 back-vow 65 front-vow 128 consonant
23 vowel 61 word bound 113 KO+TU
22 unvoiced 53 consonant 98 KOREAN
20 silence 48 unvoiced 97 voiced
19 fric-sibil 48 alveodental 90 vowel
16 word bound 46 vowel 88 unvoiced
14 nasal 42 voiced 85 nasal
10 voiced 42 nasal 84 alveodental
10 round 36 silence 79 JAPANESE
10 JAPANESE 36 plos-unvoic 63 plos-unvoic
10 consonant 35 frik-sibil 59 frik-sibil
9 plos-unvoic 32 JAPANESE 59 close-vow
9 open-vow 29 round 56 silence
9 CR+JA+SP 28 plosive 55 round

Table 4: Prominence of asked questions
For the purpose of pertinence we computed the sum of entropy gain
and plotted it over the number of splitted polyphones in figure 1. The
curve ”sum of all questions” gives the overall entropy gain of all
questions asked during the clustering procedure, whereas the curve
”phonetic context questions” shows the entropy gain belonging to
non-language questions. The gap between both curves indicates that
major parts of the entropy gain results from language questions. The
remaining five curves give the contribution of questions belonging
to only one language. It is shown that questions about Korean and
Turkish are more important than about other languages, especially in
the beginning of clustering. This indicates that sounds in those two
languages are definetely different from the rest. Both results demon-
strate that language questions are frequently asked and are especially
in the beginning more important than questions about the phonetic
context of a phoneme. It is also evident that the data-driven decision
does not reflect the IPA-based classification across languages. In ta-
ble 4 we compile the detailed list of asked questions ranked by fre-
quency, after clustering 500, 1500, and 3000 polyphone models. The
highly frequent occurence of the question about the language group
Korean+Turkish sustains the above findings. Also the decreasing im-
portance of language questions towards the end of splitting process
can be seen from comparing column ”500 models” to ”3000 models”.
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Figure 2: Language distribution of tree node

Second, we want to analyze the language information rate of the re-
sulting polyphone models. For this purpose we computed the lan-
guage distribution for each split node as pictured in figure 2. We re-

placed the Gaussians’ distributions in the existing polyphone clus-
ter tree by these language distributions and recalculated the entropy
based distance. The cumulated distance is plotted over the number
of nodes in figure 3. The most important finding is that most parts of
language information are clustered out after about 3000 splits, which
means that a multilingual system with 3000 polyphone models and
more consists of mostly monolingual acoustic models.
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Figure 3: Language information rate of clustered polyphones

4.4. Multilingual Experiments
The following multilingual experiments are twofold: first we explore
which sharing method performs best, and second we examine the
profit of sharing the acoustic parameters. The system architecture,
the preprocessing and the training procedure are identical throughout
this tests. To answer the first question we compare the performance
of the multilingual system ML5-tag3 to ML5-mix for all languages.
Figure 4 shows that the tagged system outperformes the mixed sys-
tem significantly by 5.3% error rate (3.1% - 8.7%). This indicates
that preserving the language information and introducing questions
about languages and language groups leads to significant improve-
ments in the multilingual setup.

Figure 4: Results for multilingual setup [Error Rate]

To answer the second question we varied the number of polyphones
modeled in the best multilingual system ML5-tag. In ML5-tag3 the
model number is reduced to 40% of the monolingual systems (3000
vs 5x1500), which leads in average to 3.14% (1.2% - 5.0%) perfor-
mance degradation. But not all of the degradation can be explained
by the reduced model number as the comparison with ML5-tag75
shows. This system is of same model size like the 5 monolingual
systems, but we still observe an average performance gap of 1.07%
(0.3% - 2.4%). We therefore conclude that language independent
modeling decreases the model precision for recognition of seen lan-
guages which coincident to other studies e.g. [1].



5. Language Adaptive Speech Recognition
In this section we investigate the multilingual systems’ performance
when applied to recognize unseen languages. Our goal is to rec-
ognize German spoken speech. Experiments with and without lan-
guage adaptation are performed. For adaptation we used up to 1000
utterances, for testing 200 utterances of 3 speakers from ourGlobal-
Phone database. The German baseline system achieves 15.8% word
error rate tested on a 60k-dictionary. For our experiments we pre-
sume that the German pronunciation dictionary is given.

5.1. Dictionary Adaptation
For recognizing unseen languages we need to define an appropriate
mapping from our global phoneme set to the target phonemes. In our
experiments we replaced the German phonemes by the correspond-
ing IPA-based phoneme category. Since the global phoneme set con-
tains models from five languages, a German sound can have up to
five counterparts. In the first experiment we therefore explore differ-
ent pronunciation dictionaries: Three dictionaries where the German
phonemes are mapped to language dependent phonemes (Japanese,
Spanish, and Turkish) and a 5-lingual dictionary containing the pro-
nunciation variants of all five languages. In the 5-lingual case the
decision for the best matching pronunciation variant is left to the de-
coder. We choose the system ML5-tag3 to compare the four dictio-
naries because it performs best in the multilingual setup. It achieves
50% word error rate on the 5-lingual dictionary which clearly out-
performes the Japanese (65.0%) and the Spanish (59.5%) but not the
Turkish (49.5%) one. The results can be explained by the fact that
Japanese phonotactic does not cover the German one because of its
mora structure; Turkish tends to have long words and fits better into
the German phonotactic whereas the 5-lingual dictionary has 5 times
more entries which leads to higher confusion. We looked into the
pronunciation variants used by the decoder, and found that Spanish
models are preferred for short function words, which might result
from the fact that 20% of the Spanish corpus consists of 2 phoneme
long words.

Second we compared the multilingual systems based on the 5-lingual
dictionary to each other. Surprisingly ML5-mix performed best with
41.5% word error rate. It outperforms ML5-sep which gave low-
est performance (53%), also ML5-tag3 (50.0% error rate) and even
ML5-tag75 which achieved 47.5% word error rate. ML5-tag75 has
more than twice as many models as ML5-mix and gave best results
on the multilingual setup. This indicates that it is useful to develop
dedicated multilingual systems depending on whether multilingual
or crosslingual speech recognition tests are projected.

5.2. Crosslingual Training
We intend to adapt the recognizers to the German data. For this pur-
pose we took the system ML5-mix and train it on 1500, 7500, and
14000 German spoken words. Two iterations Viterbi training are per-
formed. The same procedure was applied to the monolingual recog-
nizers. Figure 5 compares the performance of the monolingual sys-
tems toML5-mix for different amount of adaptation data. Obviously
the word error rate decreases during training the acoustic models on
German speech but in case of the monolingual systems no further
significant improvement seems to be achieved by adding more data.
Since we do not recompute the polyphone tree, the remaining gap be-
tween the best crosslingual result and the German baseline turned out
to be reasonable. The major outcome is that the multilingual system
outperformes all monolingual systems. The average performance of

the monolingual systems is 36.4% word error rate (47.4% - 28.4%),
versus 27.1% for ML5-mix. We therefore can conclude that boot-
strapping from a multilingual recognition system achieves better re-
sults, especially if nothing is known about the new unseen language.
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Figure 5: Results for language adaptation [Word Error]

6. Conclusion
In this paper multilingual LVCSR systems for five languages, namely
Croatian, Japanese, Korean, Spanish, and Turkish are presented. To
create multilingual context dependent acoustic models we evaluated
different methods of parameter sharing, among other things ques-
tions about languages and language groups are introduced. We ap-
plied the trained systems to monolingual, multilingual and crosslin-
gual setups. The results indicate that the method of parameter shar-
ing shoud be decided depending on whether multilingual or crosslin-
gual speech recognition is projected.
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