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ABSTRACT 

Many speech recognition systems [Lee88], [Shi85], 
[Hua92], use multiple information streams to  com- 
pute HMM output probabilities (e.g. systems 
based on semicontinuous or discrete HMM’s use 
one codebook for cepstral coefficients, and another 
one for delta cepstral coefficients). The final score 
is a weighted sum of the contributions of every 
stream. These weights can be found empirically 
and usually the same set of weights is used for ev- 
ery acoustic model. There is reason to  believe that 
there are features which are more important for 
some acoustic models than for others. Especially, 
one would expect the beginning and ending seg- 
ment of a phoneme to be more context dependent 
than the middle part, so in that case the proba- 
bility estimator of the speec.h recognizer should 
put more emphasis on the delta-spectrum than 
on the spectrum. Experiments [Shi85], [Boc93], 
have shown that  spectral or cepstral coefficients 
are more important than their derivatives and more 
important than power or delta-power coefficients. 
ln this paper we propose an algorithm for learning 
individual stream weights for every HMM state. 
Since these individual weights are a superset of 
the stream-only dependent weights, they can re- 
produce the results of the stream-only dependent 
weights and, additionally, discriminate between 
HMM states. Thus, the recognition performance 
must improve. 

1. TRAININ(: 

(:onsider a system which uses 71 informat,ion 
streams. At a given time t ,  and for a given HMM- 
state S, each information strearn i will compute 
a class-dependent probability J:(ztl.S’), where zt 
is the speech signal a t  time t .  The overall prob- 
ability for state S a t  time t is then P ( z t ( S )  = ny=, Pi(ztI,Y)**, where cri is a weightingfactor for 
the i-th stream (sometimes called codebook expo- 
nent). We also demand 0 < cri < 1 and cri = I ,  
to  make sure that  P(ztl,S) is a probability. We 
suggest to  use a different cri for each HMM s t a k  
A’, thus defining 

Here cri(.Y) reflects the importance of stream i for 
the HMM state ,S. A large o;(S) will let stream 
i have a greater impact on the overall probability 
of S. lJsrially HMM-based speech recognition sys- 
tems use -log P(z,I,S) instead of P(ztl,’i’) for com- 
puting state sequence probabilities. This nieans 
that 

n 

-logf(zrJ.Y) = ~ - l o g q z t I , s ’ )  ‘ c r I ( S )  (2) 
i=l 

Now, we would like to train oi(,Y) such that, some 
optimization criterion is met. During training, thc 
forced aligment procedure finds an optimal path. 
If a t  some time t the HMM-state on the optimal 
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path, C‘, did not get the highest probability of all 
states, then there is some other state that  has 
the highest probability, and we will adjust our pa- 
rarneters to increase the probability for (,’ and to 
decrease the probability for H. If the state on the 
optimal path already has the highest probability, 
no training will occur a t  all. Now, let cl(t) be 
the contribution of stream i to the score for the 
correct state (,‘ a t  time t ,  and let LF’t(n,C‘) := 
-log P(z t ( ( : ) ,  so c t ( t )  := -log Pi(ztl(,’) antl 
LPt(n,(,’) = E:=, c i ( t )  . mi((:). Let b i ( t )  be the 
contribution of the stream i to the srore for the 
best state H a t  t imet  (i.e. the state with the high- 
est probability). This means that 
Cyxl c i ( t )  . ni(C:) 5 Cy=, b i ( t )  . ni(H) .  The goal 
of the training procedure is to modify tri(H) and 
(rt(C:) such that L P t ( n ,  C )  decreases and LF’t(n, H )  
increases. For tha t ,  we need to compute the deriva- 
tive of 
LPt((u,  ,S‘) with respect to ni(S). The update rule 
will then be: 

We can easily see, that  in the general rase the 
updated system will produce a higher probability 
for the correct Viterbi-path (or for some given la- 
bels). Note that the partial derivative (*) 
will not yield the correct result since the (Y%(,S) 
antl nj(,5’) are not independent from each other 
herause of the above mentioned summation con- 
straint. So any gradient descent step must re- 
sult in a set of cq(,5’)’s which meet this constraint. 
Without this constraint the probability of a state 
S could be increased most, by increasing all ni(,S‘), 
which we don’t want because we would like to dis- 
criminate between different features. 
AII infinitesirnalstep fromA(,S) = ((YI(,S), . . . nTL(.S)) 

cr,L(,5’) + &) could thus be defined as 6j := and 
6i := t . a for i # j. This st,ep definition 
modifies n,(,5’) by f ,  while all the other ni(,5’) are 
modified to meet the summation constraint and to 
krep their mutual ratios unchanged. Other step 

t,o A’(S)  = (n ; (S )  = nl(,S’) + 61, . . . c & ( ,  S) = 

definitions are possible. Now we are nurrierically 
computing the derivative of a function, whose do- 
main is an ri-dimensional space, only for values on 
a hyperplane of that  spare. With this step def- 
inition we find: (the differential d* will he used 
t,o denote t,hat, th r  drrivat.ivr is restricted t,o t,he 
hyperplane of tlie feat,ure spare which meets the 
summation constraint): 

Here, we have ignored that the actual size of t,he 
irifiriitesirnal step is soinewhat greater than t , re- 
sulting in a somewhat greater tlenoniinat,or. Hut, 
since we will use a stepsize X for performing the 
gradient, tlesrent, X will sribsurrie this difference. 
For a simple t,wo-feature system, eq. (5) rrsults 
in: 

2. IMPLEMENTATION ISSITES 
We, have to consider the possibility of one feature 
always being the best for some model. In this case 
its feature weight would rise with every updatr. 
Notliiiig wuultl stop it from growing greater than 
1.0 and thus pushing tlie other feature weights be- 
low 0.0. This, obviously, is an unwant,etl effect. 
One ad hoc solution to this problem cuuld he t,o 
simply define some floor and ceiling valur to keep 
the feature weights in their bounds. We used two 
other approaches. One is t,o apply a sigmoid to  
n i ( ~ ) ~ p ~ ~ ~ ~ ~  and to update c u i ( ~ )  according to 

Is there reason t,o believe that one feature F,, is 
more iniportant than some other feature Fb in 
training iteration k antl that  Fb is mure irripor- 
t,ant in it~eration k + I ?  In fact, one should ex- 
prct lit,tle change from one iterat,ion t,o t,he next,, 
even if the segmentations of some srnt,ences tlif- 
fer. So we can expect N ~ ( H ) ~ + ” ,  t,he value of 

( v i  updoted - - sigmoid(ru,(R) . - x . d*::L$fll) 
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n i ( H )  after iteration L + 71 to be approxirnately 
R ~ ( H ) ~  - 71 . X(d*LPt(cu, H ) / d * n j ( H ) )  (if no sig- 
moid is applied). We have found that the dif- 
ferenc.es from iteration t o  iteration are in fact so 
small that this approximation is valid, which sug- 
gested a second solution to  the above mentioned 
problem, namely to run simply one or two itera- 
tions with a large stepsize, or alternatively to  use 
a cross validation mechanism to decide what num- 
ber of iterations (i.e. what stepsize A) is best,. 

Task 

(:R 
RM 

3 .  EXPERIMENTS 

We have performed experiments on the English 
(ionference Registration Task (CR) [Woo921 and 
the Resource Management, Task (RM), using the 
speec.h recognizer [Sch92] of the JANlJS Speech to 
Speech Translation System [WaiSI]. The  recog- 
nizer computes class conditional probabilities for 
a DTW searc.h. It uses an LVQ-trained 50-cluster 
codebook for each of 48 phones and probability 
distributions over these clusters for 1300 context 
dependent phones. For CR we used about 1000 
sent,ences from 60 speakers to  t.rain the system. 
The k s t s  were performed on a test set with a per- 
plexity of about 7 and a vocabulary size of about 
400 words. The RM system was trained on about 
3000 sentences from about 100 male speakers and 
tested on the male portion of the February 1989 
official DARPA test set with a wordpair gram- 
mar of perplexity 60, and a vocabulary of 1000 
words. (The tests on the female portion usually 
yield the same or slightly better results.) In the 
training phase, no other parameters besides the 
feature weights were modified. So the improve- 
ment in performance is due only to  the training 
of the feature weights. The  following table shows 
the results: 

error rate 2 iterations error 
of baseline of stream reduction 

6.8% 3 6% 47% 
9.7% 7.8% 20% 

system weight training 

Error reduction bv stream weiehts training 

The feature weights used in the experiment,s 
from which we extracted the original error rate 
were fixed a t  0.55 for feature Fa (16 niel scale 
spectral coefficients) and 0.45 for feature 4 (16 
delta spectral coefficients). This is the same ratio 
as the one used in [Lee88], [Hua92]. We have ver- 
ified that  these values are in fact the best choice 
for fixed feature weights in our system. All exper- 
iments were performed without using a sigmoid, 
the stepsize X was chosen to modify the feature 
weights by no more than +/ - 0.1 per iteration. 
In agreement with other results [Shi85], we have 
found that  the optimal models of different phonemrs 
depend on different features more heavily. Even 
diflerent parts of the same phoneme rely on tlif- 
ferent features. The following figure shows the 
development of the feature weights for the begin- 
ning, middle, and final segments averaged over all 
phonemes: 

beginning middle final 
segment segment segment 

0.02 

towards favoring 
spectral coefficients 

We can see that  the weights of the beginning antl 
the final segments were trained to put more cui- 
phasis on the delta spectral features, while t,lie 
weights for the middle segments favored the spec- 
tral features. This observation, however, is not, 
enough convincing to  say that generally all the 
phone boundary states are more dependent on del- 
t a  coefficients. Except, for some few phonemes we 
have not found the relative importance of thc dif- 
ferent streams to be significantly homogenous over 

of phonemes like vowels or consonant,s. 
Since we were using generalized triphones, t,lirrr 
is also no reliable way to  tell whether some class 
of contexts is tending more towards one feat.ure or 
t,owards the ot,her. 
The following diagram shows the gradient for each 
of the 48 phonemes of onr system, averaged over 
all contexts and H M M  states. We can see t,tiat, 
some phonernes like S antl SH antl even the silence 
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phoneme tend more to  favoring delta-coefficients, 
although one might expect that these phonemes’ 
acoustics are rather static. and less context depen- 
dent. The  explanation for this observation is the 
fact that  delta coefficients do model the dynam- 
ics of a signal hut not necessarily the context. A 
stable context-independent signal like silence also 
has very stable delta coefficients. 
sm 
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greater numbers of features, like e.g. delta-spectral- 
coeffic.ients, delta-delta-spectral-coe~cients, power, 
delta-power and delta-delta-power. Certainly, one 
may expect different results for other pairs of fea- 
ture and delta-feature. Experiments with non- 
generalized triphones including crossword triphones 
will give us more information about the tlepen- 
dence of the stream weights on the different types 
of contexts. 
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4. FUTURE WORK 

So far we have only performed experiments with 
two streams. We believe that  the proposed ap- 
proach will be even more fruitful for systems with 
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