
A Comparison of Zero/Few-shot Approaches
to Natural Language Understanding

Master’s Thesis of

Danqing Liu

KIT Department of Informatics
Institut for Anthropomatics and Robotics (IAR)

Interactive Systems Lab (ISL)

Reviewers: Prof. Dr. Alex Waibel
Prof. Dr. Tamim Asfour

Advisors: M.Sc. Leonard Bärmann
M.Sc. Stefan Constantin

30. September 2022 – 30 . March 2023

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

PLACE, DATE

. .

(Danqing Liu)

Acknowledgments

First, I would like to thank Prof. Dr. Alexander Waibel for the opportunity to write my

thesis at the Interactive Systems Labs. I would also like to thank my advisors, Leonard

Bärmann and Stefan Constantin. Leonard helped me in the early stages of my graduate

studies as a fellow student. Later on, as my thesis main advisor, he provided me with

invaluable guidance and professional opinions, helping me to overcome various di�culties

in my research. Stefan introduced me to the �eld of Natural Language Processing and

provided me with essential support during my thesis work. Furthermore, I also want to

express my gratitude to Rainer Kartmann. His mentorship and expertise have shaped my

research skills and enabled me to successfully complete my thesis. Finally, I would like

to thank Patrick Hegemann for his professional advice, as well as his emotional support,

especially his �rm belief in my abilities. Without the support of these individuals, this

research paper would not have been possible. I am grateful for their contributions.

最后，我想用中文感谢支持我学业的家人和朋友。他们的关心和鼓励使我能够顺
利完成我的毕业设计。

i

Abstract

In a scenario where an arti�cial agent robot assists humans with everyday tasks, it is desired

to create more intuitive and e�cient communication between humans and machines. As

natural language is the primary means of how people express their needs and desires,

agents should be able to interact with humans using natural language.

Therefore, a natural language task-oriented dialog system is required, which helps users

accomplish speci�c tasks through natural language interactions, such as booking a �ight,

ordering food, or scheduling an appointment.

One of the critical components in such task-oriented dialog systems is natural language

understanding, which allows the accurate identi�cation of the user’s intent and extraction

of important information which helps in completing the task and responding appropriately.

In this work, we propose three di�erent systems for intent classi�cation and slot-�lling

tasks in such a natural language understanding component. The �rst approach is based

on semantic parsing of the user utterance, rule-based phrase extraction, and �nally a

classi�cation using Sentence-BERT. The second approach works by �ne-tuning a BERT

model that is pre-trained on a large dataset. In the third and �nal approach, we use

Sentence-BERT to select a known example that is similar to the user utterance, and then

dynamically construct a prompt based on a designed template for response generation

using GPT-3. We evaluate and analyze the performance of all three approaches under

di�erent experimental settings, with a focus on zero-shot and few-shot settings.

Based on the results of the experiments, we can conclude that the semantic parsing

approach as our baseline for zero-shot learning performs better in domains where its

intents and slots are similar to the wording of the user utterance. The �ne-tuning approach,

however, works better when more examples are given, and can adapt fast to a new

task when it is pre-trained on a similar task, but not necessarily has better performance

than without task-speci�c pre-training. Furthermore, it needs to be trained each time

when solving tasks in a new domain, while the other two approaches only require the

de�nition of the task (intents and slots). GPT-3 has shown its ability to adapt to tasks

in di�erent domains with minimum information, but it produces unorganized output

in some cases, which increases the di�culty in the post-processing stage. For the three

approaches mentioned above, the code for training and evaluation can be found at https:

//github.com/DankiLiu/dliu-ds-ma.git.

ii

https://github.com/DankiLiu/dliu-ds-ma.git
https://github.com/DankiLiu/dliu-ds-ma.git

Contents

Acknowledgments i

Abstract ii

1 Introduction 1

2 Basics 4
2.1 Task-Oriented Dialog Systems . 4

2.2 The Encoder-Decoder Architecture . 5

2.3 Transformer . 6

2.3.1 BERT . 7

2.3.2 Sentence-BERT . 8

3 Related Work 9
3.1 Pipeline Structured Task-Oriented Dialog Systems 9

3.2 End-to-End Task-Oriented Dialog Systems 11

3.3 Zero-Shot and Few-Shot Learning . 12

4 Task Definition and Three Approaches 14
4.1 Task De�nition . 14

4.2 Semantic Parsing . 14

4.2.1 Architecture . 15

4.2.2 Post-processing . 18

4.3 Fine-tuning a Pre-trained BERT Model 19

4.3.1 Architecture . 19

4.3.2 Post-processing . 21

4.4 Dynamic Prompt Construction with GPT-3 21

4.4.1 Architecture . 21

4.4.2 Post-processing . 23

5 Dataset Selection and Data Processing 24
5.1 The ATIS Dataset . 24

5.1.1 Statistics . 25

5.1.2 Data Processing . 27

5.2 The MASSIVE dataset . 27

5.2.1 Statistics . 28

5.2.2 Data Pre-processing . 29

iii

Contents

6 Experiment and Evaluation 30
6.1 Experimental Setup . 30

6.1.1 Few-shot Datasets . 30

6.1.2 Experiments on Semantic Parsing 31

6.1.3 Experiments on Pre-trained BERT Model 31

6.1.4 Experiments on GPT-3 . 31

6.2 MUC-5 Evaluation Metrics . 32

6.3 Evaluation . 33

6.3.1 Results of Semantic Parsing . 33

6.3.2 Results of Fine-tuning a Pre-trained BERT Model 35

6.3.3 Results on Dynamic Prompt Construction on GPT-3 37

6.3.4 Comparison of Three Approaches 40

7 Conclusion 42

Bibliography 44

iv

1 Introduction

An arti�cial agent aims to assist humans with everyday tasks. Under this scenario, it

is desired to create a more intuitive and e�cient communication between human and

machines. Natural language is no doubt the primary means of how people express their

needs and desires. By allowing humans to interact with agents using natural language,

it not only bridges the gap between the capabilities of machines and the ways in which

humans prefer to communicate, but also enables a wider range of people to interact with

agents, as it eliminates the need for specialized technical knowledge or training. In addition,

natural language interfaces can simplify complex tasks by breaking them down into a

series of simple commands or questions, which can be easily understood and executed by

the agent. This can help reduce errors and increase e�ciency, making it easier for people

to accomplish their tasks and achieve their goals.

For this purpose, a natural language task-oriented dialog system is required. A task-

oriented dialog system is designed to help users accomplish speci�c tasks through natural

language interactions, such as booking a �ight, ordering food, or scheduling an appoint-

ment. A traditional pipeline structure dialog system consists of four components, which

are natural language understanding (NLU), dialog state tracker (DST), dialog policy (Policy)

and natural language generation (NLG). NLU is a critical part of a task-oriented dialog

system for agents to solve everyday tasks. NLU enables an agent to understand and inter-

pret the natural language input provided by the user, allowing it to accurately identify the

user’s intent, as well as the important information that helps the agent to complete the

task and respond appropriately.

More speci�cally, NLU is responsible for two tasks: 1) intent classi�cation and 2) slot-

�lling. An example is shown in Figure 1.1, when a person says to the arti�cial agent:

"Show me the �ights from New York to Atlanta.". The agent has to be able to know that

1) the person’s intention is to show �ights, and 2) the information needed to ful�ll user’s

intention, such as the �ight should depart from New York and arrive in Atlanta. With

Figure 1.1: An example for intent classi�cation and slot-�lling tasks in a NLU component.

1

1 Introduction

the information extracted by NLU, the agent can perform the task in the later components
and interact with the user if further information is needed.

Traditionally, these tasks have relied on supervised learning algorithms that require
large amounts of labeled data to achieve high accuracy. However, labeling data can
be time-consuming and expensive, particularly in certain domains with relatively few
resources.

Zero-shot and few-shot approaches aim to address these challenges by leveraging pre-
existing knowledge and few labeled examples to achieve reasonable performance on the
task. Zero-shot learning involves training a model on one task and testing it on a di�erent
but related task without any task-speci�c training examples. Few-shot learning, on the
other hand, involves training a model with very few labeled examples and using it to
perform the task.

By using zero-shot and few-shot approaches, the cost and e�ort required to train a
natural language understanding component can be signi�cantly reduced, making it more
accessible and practical for a wider range of applications.

By developing an e�ective NLU component with zero/few-shot learning, a task-oriented
dialog system can provide several bene�ts:

1. Improved accuracy: An e�ective NLU component can accurately understand the
user's intent and extract information from user utterance, reducing errors and im-
proving the overall accuracy of the system's responses and adapt to new domains
with limited examples.

2. Greater �exibility: A well-designed NLU component can handle a wide range of
inputs, allowing users to express their needs and preferences in a variety of ways.

3. Enhanced user experience: By accurately interpreting user input and providing
relevant responses, an NLU component can enhance the overall user experience,
making it easier and more intuitive for users to interact with the agent.

NLU aims to classify user utterances to an intent category, to extract important in-
formation and to annotate utterances with a semantic type using the prior knowledge
of the possible intent categories and semantic types of a task in a speci�c domain. For
consistency in wording, intent categories are referred to as intent labels, and semantic
types are referred to as slot labels in the following content.

Mansimov et al. [16] utilize semantic parsing to predict intent and slots for a span of
characters through iteration, while other work adopts pre-trained models to adapt to tasks
in new domains [10, 36, 23, 3, 29, 4, 37]. With the huge success of pre-trained models, a
combination of prompt engineering and a large pre-trained model shows its strength at
tackling tasks in a task-oriented dialog systems [14, 29, 17]. Some work also takes a step
in exploring zero-shot and few-shot approaches for solving NLU tasks [22, 34, 17, 18, 14,
33, 2].

In this work, we want to research di�erent approaches for solving intent classi�cation
and slot-�lling tasks in a natural language understanding component of a task-oriented
dialog system and their performance with di�erent experimental settings, especially their
performance under zero-shot and few-shot settings. Three approaches are introduced: 1)

2

semantic parsing, 2) �ne-tuning a pre-trained BERT model [6], and 3) dynamic prompt
construction with GPT-3 [2].

In chapter 2, basic concepts about task-oriented dialog systems and language models
are explained. Then the recent related work is introduced in chapter 3. The architecture of
the three proposed approaches and their implementation are described in detail in chapter
4. In chapter 6, extensive experiments are designed for each approach from di�erent
perspectives, and their results are analyzed with respect to several key aspects. Finally,
chapter 7 concludes the thesis by summarizing the evaluation results on three approaches.

3

2 Basics

This chapter explains the basic concepts and techniques that this work builds on. The
reader should already have fundamental knowledge about deep neural networks (DNNs)
and how they are trained through back-propagation.

2.1 Task-Oriented Dialog Systems

Task-Oriented Dialog (TOD) systems are designed to assist users to achieve prede�ned
tasks in everyday scenarios such as booking a �ight or making a restaurant reservation. To
this end, conventional TOD systems typically use a pipeline approach. However, with the
limitations of the conventional pipeline, as well as the power demonstrated by pre-trained
sequence-to-sequence models, there is a strong trend towards end-to-end dialog systems.
Both approaches for developing a TOD system, as well as other important concepts are
described in the following.

Pipeline Architecture A traditional way of developing a TOD system is to use a pipeline
architecture. A TOD has four components: a natural language understanding (NLU)
module, a dialog state tracking (DST) module, a dialog policy (POL), and a natural language
generation (NLG) module. NLU interprets the user'sintent from the given utterance
and extracts information that is relevant to accomplish the user's intent. The associated
information is represented as task-speci�cslots and theirvalues. DST then tracks the
values of slots, and POL will decide which action the system will take. Finally, NLG
generates the response according to the system action. This work focuses on two sub-
tasks of NLU, intent classi�cation, and slot-�lling. For a task in a speci�c domain, intent
classi�cation predicts the intent of the user from prede�ned intent categories, and slot-
�lling identi�es which information can �ll into the slots of the pre-de�ned task-speci�c
slots.

End-to-End Due to the arguments that a model with separated modules accumulates error,
and that better performance of individual modules does not necessarily lead to a better
performance of the whole model, recent work [10, 36, 17, 23, 28, 29] utilizes pre-trained
models to implement end-to-end TOD systems. In an end-to-end TOD system, given
the user utterance as input, the model outputs the response directly without having the
information in the intermediate steps such as dialog state explicitly.

Domain In the context of TOD systems, a domain refers to a speci�c area or topic that
the dialog system is designed to handle. For example, airline reservation is the domain
for a TOD system that helps the user to search for and book �ights. A domain contains a
collection of intents and slots. Each slot can take one possible value, and each task given

4

2.2 The Encoder-Decoder Architecture

by the user in an utterance contains only one intent. However, the number of slots is
undetermined and depends on how much information is provided in the utterance.

2.2 The Encoder-Decoder Architecture

In the late 1980s, time delay neural network (TDNN) [32] is purposed to model sequential
data and applied to a task of phoneme classi�cation for automatic speech recognition.
Nowadays, Encoder-Decoder [30] models are designed to solve Sequence-to-Sequence
problems, which is a special class of Sequence Modelling Problems. This section �rst
introduces the de�nition of Sequence Modelling Problems, then explains how an encoder-
decoder model is built.

Figure 2.1: An unrolled recurrent neural network.

Sequence Modelling Problems Sequence Modelling Problems refer to problems/tasks
where either the input and/or the output is a sequence of data. Consider the model for
solving Intent Classi�cation (IC) task in NLU, where given a user utterance as input, the
model predicts a user intent. The user utterance is a sequence of words, and the classes
of intent are pre-de�ned. Essentially, the model predicts an intent class from a sequence
of words. The problem of predicting a single class from a sequence of data is called a
Sequence Classi�cationproblem.

However, for a Slot-Filling task in NLU, the model takes a sequence of words as input
and predicts a slot label for each word. The output of a slot-�lling task is a sequence
of slot labels (if a word does not belong to any of the de�ned slot labels, the output is a
class representing "no slot label"). The problem where the input and the output are both
sequences is referred to as aSequence-to-Sequence (Seq2Seq)problem. More speci�cally,
because the input and output sequences for Slot-Filling tasks have the same length, it is
also called aToken Classi�cationproblem.

RNN Traditional Deep Neural Networks (DNN)require inputs and targets of a task that
can be encoded into a vector of �xed length instead of a variable length. In the context

5

2 Basics

of natural language processing where the input is a sequence of words, if inputs are
encoded into vectors of �xed length, important information such as positions of the words
is missing. To solve this issue,Recurrent Neural Networks (RNNs)[27] are proposed to
model sequential data.

As shown in �gure 2.1, RNNs have a loop that can pass the history information from one
step to the next, so that the information exists in the entire network. Taking an inputGC� 1
at positionC� 1, a neural network outputs a value>C� 1, and the hidden state� C� 1 is passed
to the next step as prior information. In the next step, the network hidden state� Cis the
weighted sum of� C� 1 andGCby, � , and the network makes the prediction based on both
input GCand� C� 1. 2.1 is the equation for calculating� C.

� C= 5¹, � � C� 1 ¸ , GGCº (2.1)

However, as the network proceeds through the sequence, the further the past information
is from the current location, the smaller is its weight in the current hidden state. Therefore,
the prediction in the current step depends more on the recent information and thus the
network can not learn a long-range dependency. This is called thevanishing gradient
problem.

LSTM and GRUTo enable recurrent neural networks to learn from long-term memories,
Long Short-Term Memory (LSTM)is proposed [27]. Each LSTM unit contains four parts:
cell state, forget gate, input gate and output gate. The cell state passes the information
throughout the network so that the information from early time steps can be carried all
the way to the last step. The di�erent gates in LSTMs are used to regulate the �ow of
information and learn which information is important to preserve or get rid of.

The approach of Gated Recurrent Units (GRU) is similar to that of LSTMs. Instead of using
a cell state to transfer information, a GRU uses the hidden state. GRU has only two gates,
a reset gate and an update gate.

Encoder and Decoder The encoder-decoder architecture aims to solve Seq2Seq problems.
An encoder is a stack of several recurrent units (RNN, LSTM or GRU cells) that accept the
inputs sequentially and encode them into a hidden vector. This hidden vector is then the
input of a decoder. A decoder is a stack of recurrent units where each unit predicts an
output at each time step.

2.3 Transformer

The transformer architecture is the basis for well-known models like BERT [6] and GPT-3
[14] which are also used in this work. Same as recurrent neural networks, transformers
are also designed to solve Seq2Seq problems. However, instead of processing all the inputs
sequentially, transformers compute the representations of the inputs all at once with the
mechanism called self-attention.

Encoder-Decoder Architecture The transformer adopts an encoder-decoder architecture
that is explained above, the encoder extracts features from input sequence, and the decoder

6

2.3 Transformer

uses the features to produce an output sequence. The transformer's encoder is a stack of
encoder blocks, and the output of the last encoder block is the input of the decoder. The
decoder also consists of multiple decoder blocks.

Input Embedding and Positional Encoding The inputs are �rst tokenized into tokens. The
token positions are important information for sequential data, with positional encoding,
the model has the information of token positions.

So�max and Output Probabilities The decoder outputs one token at a time, and this output
token will become a part of the input for the next step. The output will go through a
linear transformation and then a softmax layer so that its dimension is changed from the
embedding vector size into the size of a number of output classes and then converted
into probabilities. There are two ways to predict the class from the output probabilities.
The �rst method is to choose the class with the highest probability, and it is calledgreedy
method. The second method, however, looks for the best combination of the tokens rather
than selecting the most probable class at a time, and is calledbeam search.

2.3.1 BERT

BERT (Bidirectional Encoder Representations from Transformers, [6]) is based on trans-
former architecture that was pre-trained simultaneously on two tasks: language modelling
and next sentence prediction. With these two training objectives, BERT learns latent repre-
sentations of words and sentences in context. After pre-training, it can be �ne-tuned with
fewer resources on smaller datasets to adapt to speci�c tasks such as intent classi�cation
and slot-�lling tasks.

Masked LM In language modelling task, 15% of the words in each input sequence are
replaced with a [MASK] token. The model aims to predict the original value of the masked
words based on the context provided by the other, non-masked works in the sequence. In
order to make predictions, a classi�cation layer is added on top of the BERT which takes
the hidden representation of the sequence from BERT as input and outputs a distribution
over all vocabulary.

Next sentence prediction In the next sentence prediction task, the model receives pairs of
sentences as input and learns to predict if the second sentence in the pair is the subsequent
sentence in the original document. In order to distinguish both sentences, a [CLS] is
inserted at the beginning of the �rst sentence and [SEP] is inserted at the end of each
sentence, and a sentence embedding is added to indicate which part is the �rst sentence
and which is the second. Finally, a positional embedding is added to mark the positional
information of each token. When training the BERT model, Masked LM and Next Sentence
Prediction are trained together, with the goal of minimizing the combined loss function of
the two strategies.

Fine-tuning With the pre-trained BERT, we can use it for a speci�c task by �ne-tuning
the model on the new dataset. In our work, it is de�ned that each user utterance has one
user intent and multiple slots. Due to this reason, we can consider intent classi�cation as

7

2 Basics

a sequence classi�cation task, and slot-�lling task as a token classi�cation task. We can
make use of a pre-trained BERT model by adding a classi�cation layer on top.

There are two ways of �ne-tuning a pre-trained BERT model to a new task, one way is to
update parameters in both the encoder (pre-trained BERT) and the classi�er, another way
is to freeze the parameters in the encoder and only update the parameters in the classi�er.

2.3.2 Sentence-BERT

The construction of BERT makes it unsuitable for semantic similarity search as well as for
unsupervised tasks like clustering [26]. Sentence-BERT is a modi�cation of the pre-trained
BERT network that use siamese and triplet network structures to derive semantically
meaningful sentence embeddings that can be compared using cosine-similarity.

8

3 Related Work

Motivated by the need to build task-oriented dialog systems that can quickly adapt to a
new task with minimal training data, this work focuses on comparing di�erent approaches
for building a natural language understanding component that solves intent classi�cation
and slot-�lling tasks under a few-shot setting, and furthermore discusses their abilities to
adapt to a new domain with limited examples.

Architecturally, the implementation of a dialog system can generally be divided into two
categories, implementing each component of a TOD separately so that each component is
trained to be excellent at one speci�c task, or building an end-to-end TOD so that it reaches
the overall best performance without caring much about the transaction details between
components. However, building a TOD often requires a large amount of annotated data
for each speci�c domain which is hard to obtain. From these perspectives, in this chapter,
the related work will be introduced mainly in three aspects: di�erent approaches that
adopt a pipeline structure for building a dialog system are described in section 3.1, work
that trains an end-to-end TOD in section 3.2, and work that focuses on discussing how to
apply few-shot or zero-shot approaches for realizing a TOD in section 3.3.

3.1 Pipeline Structured Task-Oriented Dialog Systems

In this section, the works that apply a pipeline structure to solve tasks in TOD are intro-
duced. Most of the work aims at solving intent classi�cation and slot-�lling tasks, while
other works focus on other tasks in a TOD, yet its approaches are also valuable to have a
closer look at. Semantic parsing aims to analyze natural language sentences, extract their
meaning, and process them into a formal, structured representation. [16] introduces an
encoder network that incrementally builds a semantic parse tree for each user utterance.
As shown in Figure 3.1, at each iteration, it predicts either an intent label or a slot label
for a span of characters in the utterance, as long as the prediction is not terminated, the
predicted label is inserted to the input at the predicted position to be the input of the next
iteration. The model continues the prediction iteration until the end position is at the ter-
mination position. Same as the task de�ned in this thesis, a user utterance is used as input
rather than dealing with multi-turns dialogues. The semantic parsing approach in this
thesis constructs a similar semantic parse tree as this work, however, each label annotates
a sequence of words in the user utterance instead of annotating characters. Moreover, it
utilizes existing parsing models to build a baseline model for zero-shot semantic parsing.
In other words, no training is involved in the semantic parsing approach. [7] presents
three di�erent improvements to a semantic parsing model, contextualized embeddings,
ensembling, and pair-wise re-ranking based on a language model.

9

3 Related Work

Figure 3.1: Overview of generation of a semantic parse tree in [16].

Sequence labeling can be adopted for natural language tasks such as slot-�lling. [33]
and [34] adopt self-training to achieve a better performance on sequence labeling tasks
with low-resource labeled data.

[4] extends BERT to a joint intent classi�cation and slot-�lling model. The input tokens
are embeddings of the input text that starts with special token [CLS] and ends with [SEP].
BERT then produces a hidden state vector from the input tokens. For intent classi�cation
tasks, an intent label is predicted based on the hidden state of the special token [CLS],
denoted� 1. Equation 3.1 shows how the classi�er predicts the intent label., 8 and18 are
the weight matrix and bias for the intent classi�cation task.

~8 = so‡max¹, 8� 1 ¸ 18º (3.1)

And for the slot-�lling task, a slot label is predicted for each hidden state of other tokens.
The hidden state� = corresponds to the=C� token, and, B and1B are the weight matrix
and bias for the slot-�lling task.

~B
= = so‡max¹, B� = ¸ 1Bº•=2 1”””# (3.2)

The second approach in this work also utilizes a pre-trained BERT to train our own multi-
task model for solving NLU tasks. Although the two works have the similar idea of using
BERT as a pre-trained model and adapt it to solve intent classi�cation and slot-�lling tasks,
the architecture of the models are not the same. Instead of predicting an intent label from
the �rst special token, we add another classi�cation layer and predict the user's intent
with the hidden representation from the whole user utterance.

10

3.2 End-to-End Task-Oriented Dialog Systems

[12] tackles the intent classi�cation task by considering the features of the dialog text
and Chinese characters. Instead of using word-level features used by most work, it applies
CNN to extract character-level local features of the Chinese characters, and a bidirectional
gated recurrent unit layer architecture to capture the contextual semantic information to
predict the intent of the user.

[38] tackles cross-domain slot-value prediction tasks by applying a slot gate to learn to
predict whether a value should be predicted for a domain-slot. The value is either a span in
the utterance, or a value from a candidate list for that slot. This work focuses on training a
dialog system on a single domain and aims to exam the ability for a single-domain dialog
system to transfer to another domain with few examples.

[22] develops a multi-layer Transformer neural network model SC-GPT to convert a
dialog act representation in a semantic form into a response in natural language. SC-GPT
is also trained in a �rst pre-train, then �ne-tune manner.

As introduced in this section, to solve NLU tasks in a TOD separately from other
components, a popular way is making use of semantic parsing approaches that analyze
the syntactic and structure of a sentence. Another idea is to apply transfer learning. A
pre-trained model that is already trained on a large unlabeled corpus such as BERT is a
powerful encoder and can be �ne-tuned with a relatively small amount of data for a target
task, yet still has a promising performance.

3.2 End-to-End Task-Oriented Dialog Systems

In this section, the work that builds an end-to-end TOD is introduced. Despite training
in an end-to-end manner, some work can be used for down-stream tasks in NLP such as
intent classi�cation and slot-�lling. Most of the work applies transfer learning and uses
models such as BERT and T5 as a backbone. Furthermore, a concept in machine learning
called prompt engineering is explained in this section.

Transfer Learning Inspired by the recent success of applying transfer learning to Natural
Language Processing (NLP) tasks, [23] presentsSOLOIST for building task bots at scale.
SOLOIST deals with multi-turns dialogues and each dialog turn is a concatenation of dialog
history, dialog belief, database state, and delexicalized dialog response. [23] uses GPT-2 as
the model backbone and trains a pre-trained task-grounded response generation model
on large dialog corpora. Then the pre-trained model is �ne-tuned and adapted to a new
task using a machine teaching tool. The authors did a component-wise evaluation on NLP
tasks. The intent classi�cation is de�ned as classifying a user utterance into one of several
pre-de�ned classes and the last hidden state bySOLOIST is used as the representation for
sequence classi�cation. Compared to our transfer learning approach, the di�erence is that
they useSOLOIST as a encoder to produce hidden representation for intent classi�cation
while we use a �ne-tuned BERT. A slot-�lling task inSOLOIST is de�ned as a turn-based
span extraction problem where we de�ne a token classi�cation problem and only observe
single-turn utterance. [37] also makes use of GPT-2 and �ne-tunes it to build an end-to-end
TOD.

11

3 Related Work

Figure 3.2:An overview forPPTOD. For each task, the model tasks the dialog context and
the task-speci�c prompt as input and learns to generate the corresponding
target text [29].

Prompt Engineering in Transfer Learning Based on pre-training, researchers have proposed
prompting methods to increase the model performance. A prompting methods survey [15]
mentions that prompt engineering can be used in text classi�cation as well as information
extraction tasks. A natural way to create prompts is to manually create intuitive templates
based on human introspection. [29] introduces a uni�ed plug-and-play model for multi-
task TOD namedPPTOD. The authors integrate components in a TOD into a uni�ed model
and enable the model to handle multi-tasks by plugging a task-speci�c prompt into the
dialog context as the model input. An overview is shown in �gure 3.2.PPTODis �rst
initialized with T5 [25] and pre-trained on a heterogeneous set of dialog corpora that
consist of partially-annotated data, and then �ne-tuned to a new task with task-speci�c
labelled data. Di�erent from our approach,PPTODsolves the intent classi�cation problem
as a generation problem instead of a classi�cation problem, it directly generates the text
of intent label. Another end-to-end modelCINS purposes a Comprehensive Instruction
to di�erent TOD downstream tasks. To solve intent classi�cation, dialog state tracking,
as well as natural language generation tasks, [17] also employs T5 model to generate the
output text for each task. The model input for each task consists of a input text as well
as a Comprehensive Instruction that consists of atask de�nitionthat de�nes the task, a
task constraintthat de�nes the output space of the task, and aprompt. Figure 3.2 shows an
example of the Comprehensive Instruction of a intent classi�cation task.

3.3 Zero-Shot and Few-Shot Learning

Using data-driven approaches for TODs often requires �ne-grained annotations to learn
the dialog model in a speci�c domain, which is one of the biggest challenges for task-
oriented dialog systems [40]. Acquiring a large amount of annotated dialog data can be
very expensive, especially due to the diversity and complexity of dialog tasks in di�erent
domains. Thus, exploring few-shot methods for building dialog systems is a promising
research direction that can yield signi�cant bene�ts in practical applications. Transfer

12

3.3 Zero-Shot and Few-Shot Learning

Figure 3.3:The uni�ed framework of applying Comprehensive Instruction to di�erent
TOD downstream tasks [17].

learning takes few-shot in TODs a big step forward, as it enables large language models to
quickly adapt to a new domain with limited annotated data.

Some the above mentioned transfer learning based approaches performed evaluations
in a low-resource setting [23, 17, 29, 22]. [23] performs a task-grounded pre-training
with a joint objective, while [29] trains the pre-trained model with a maximum likelihood
objective, and [17] directly makes use of the pre-trained T5 without additional training.
The few-shot testing on all above mentioned models draw a consistent conclusion: a larger
model is a better few-shot learner. Furthermore, in slot-�lling tasks, the transfer ability of
a model also depends on domain types. The model performs better on a group of domains
that are similar to each other, yet performs bad on other few. The authors assume this is
because some domain has domain-speci�c slots that are rare in other domains [17].

Another way to tackle with the the data-shortage problem is to applyself-training, so
that it can make use of the large amount of unlabeled, or partially labeled data to train a
high-performing model. The idea is to �rst train aTeacheron the labeled examples for
generating pseudo-labels for unlabeled data, and then select data from all labeled data to
train a Student. The whole process is iterative, in the next iteration, theStudentbecomes
the Teacher[18, 34, 33].

Applying prompt engineering to large language models has been a great success, re-
searchers continue to explore their possibilities for zero-shot learning. [14] shows that by
simply adding �Let us think step by step.� as a single prompt template can greatly improve
the zero-shot performance on a pre-trained large language model. To explore more on
the few-shot/zero-shot ability on a large language model, in this work, di�erent prompt
templates are designed to make use of GPT-3 [2] for solving intent classi�cation task and
slot-�lling task in a TOD system.

13

4 Task De�nition and Three Approaches

The purpose of this work is to implement di�erent approaches for solving intent classi�ca-
tion and slot-�lling tasks in a natural language understanding component of a task-oriented
dialog system, as well as explore their ability to transfer to new domains and evaluate
their performance with limited data. Three approaches are proposed, namely 1) seman-
tic parsing approach, 2) �ne-tuning a pre-trained BERT model, and 3) dynamic prompt
construction with GPT-3.

In this chapter, the intent classi�cation and slot-�lling tasks are de�ned in detail, and
the architecture of each of the three approaches is described.

4.1 Task De�nition

Intent classi�cationandslot-�lling are two important tasks in the natural language un-
derstanding component of a dialog system. We consider a single command from the
user as the task input, i.e., multi-turns dialog is not in the scope of this thesis. Given a
user utterance, the goal of the intent classi�cation task is to assign a semantic label that
represents theintent of the user. In the meantime, the goal of the slot-�lling task is to
label tokens in the user utterance with semantic types referred to asslots , the labeled
tokens are key information for performing the task.

For each di�erent domain, a set of semantic labels for intents and slots are de�ned. For
example, when the goal is to help customers to book �ights, the user's intent can be to
look for �ight information, book a �ight, or provide customer service, and the slot labels
can be the time of �ight, price information, and so on. However, in the scenario where the
goal is to manage the alarm for the user, the user's intent can be to set an alarm or remove
an alarm, and the slots for information can be the time of the alarm and the date of the
alarm.

In our de�nition, each user utterance has only one user intent, whereas an utterance
can contain information that matches one or more slots. For example, given the user
utterance �Book me a �ight from New York to Boston�. The intent of the user isbook

flight , and the slot categories for "New York" and "Boston" aredepart city andarrival

city respectively. The labels such asbook flight , depart city as well asarrival city

are pre-de�ned for the task-domainflight .

4.2 Semantic Parsing

Despite the irregularity of user expression, the user's intention can be inferred from the
grammatical structure of the utterance. With this in mind, the following parsing methods

14

4.2 Semantic Parsing

are considered: part-of-speech tagging (POS-tagging), dependency parsing (DP) as well as
named-entity recognition (NER).

Part-of-speech tagging In grammar, a part of speech is a category of words (or, more
generally, of lexical items) that have similar grammatical properties [24]. Words that
are assigned to the same part of speech generally display similar syntactic behavior. For
example, in the sentence �I like to read books�, the word "like" is tagged asVBP, which stands
for "Verb, non-3rd person singular present", indicating that the word "like" is recognized
as a "verb".

Dependency parsing Dependency parsing is the task of extracting a dependency parse of
a sentence that represents its grammatical structure and de�nes the relationships between
words [21]. When a word is dependent on another word, a relation between them exists
and a dependency type is assigned to this relation indicating which type of dependency
they have. For example, in the sentence �The cat eats tasty �sh�, "The" is dependent on
"cat" with the dependency type "dt", which means the word "The" is adeterminer of the
word "cat".

Named-entity recognition Named-entity recognition (NER) is a sub-task of information
extraction that can locate and classify tokens into pre-de�ned categories such as person
names, organizations, locations, and so on [19]. A NER system can annotate the entity in
the text by the names of entities. For example, in the text �Jim bought 300 shares of Acme
Corp. in 2006.�, "Jim" and "Acme Corp." will be recognized as aPerson and aOrganization

respectively [20].

With the above-mentioned semantic parsing methods, an approach for solving intent
classi�cation and slot-�lling tasks can be designed. The important information in text often
appears in phrases rather than individual words. Combining part-of-speech tagging and
dependency parsing, phrases carrying important information can be extracted. However,
in order to extract the important information and clear out the unrelated information as
much as possible, rules are needed to �lter the tokens in the utterance. The intuition of
rule designing is that some dependencies and POS tags may indicate that the target token
carries more important information than others.

4.2.1 Architecture

The semantic parsing approach consists of three steps. In the �rst step, the user utterance
is parsed using POS, NER, and DP. The parsing outputs are then processed in the next
step using the heuristic rules and phrases that represent the user intent, and pieces of
information for the slots are extracted. In the third step, an intent label is predicted from
the pre-de�ned intent labels according to their similarity to the intent phrases, the slot
labels are also assigned in the same way, only that for each slot phrase, one slot label is
assigned.

Figure 4.1 shows an overview of the semantic parsing approach. Each block in the �gure
colored in light green represents a step in the semantic parsing approach.

15

4 Task De�nition and Three Approaches

Figure 4.1: An overview of semantic parsing approach.

Figure 4.2: A user utterance is parsed using three semantic parsers (POS, NER and DP).

16

4.2 Semantic Parsing

Semantic parsing The input of this �rst step is a user utterance in natural language text.
The input utterance is processed by three di�erent semantic parsing methods, namely
part-of-speech tagging (POS), dependency parsing (DP), and named-entity recognition
(NER). An example is shown in Figure 4.2. Part-of-speech tagging categorizes each word
in the utterance with a particular part-of-speech token. Named-entity recognition labels
words or phrases that are recognized as an entity. In our example, even though "new york"
and "atlanta" are both city names in the USA in lowercase, only "new york" is recognized
asSTATE_OR_PROVINCE. We use the part-of-speech tagging, named-entity recognition,
and dependency parsing provided by the Natural Language Toolkit (NLTK) to parse the
user utterance and output the parsing result for the next step.

Figure 4.3: A user utterance and intent and slot phrases extracted from it.

Phrase extraction With the result from the last step, the goal of this step is to extract the
phrases that can represent user intent and other important information for completing the
task. As the example shown in the last step, part-of-speech tags and dependency graph of
a sentence contain information such as the role of a word in the context that can be used
to predict the user's intention and other slot information. Named-entity recognition can
provide extra information about the words in the utterance. Hence, some simple rules are
designed to extract the phrases from the utterance that can represent the user's intention
and other important information.

Each parsed result can be mapped to each token of the sentence. Tokens are groups of
characters when the sentence is split by spaces. Each token has a part-of-speech tag and
is a node in the dependency graph. If this token has a dependency with another token, the
index of this other token and the type of dependency will be stored in this node. A token
can have zero to more than one dependency.

The basic idea of the rule design is that we consider some part-of-speech and types of
dependency to carry more information than others. For example,VBis the part-of-speech
tag of a verb, its object combined with itself usually can indicate the intention of the user.
On the contrary,Dt is the tag of a determiner, which can usually be omitted from the
sentence without changing the meaning of the sentence.

The algorithm for extracting the intent and slot phrases is described in the following: We
de�ne the following annotations:) is a list of tokens in the given utterance, and each
elementC8 at index8is a string.%$(are part-of-speech tags of tokens in) , each element
?>B8matches a tokenC8. �%Bis a list of dependency nodes that match one-by-one to tokens
in) . Each dependency node has a dictionary that stores how other tokens are dependent

17

4 Task De�nition and Three Approaches

on this token in key-value pairs. The key is the type of dependency and the value is the
index of the other token.# �' is a list of name-entity types of the tokens. For each token
C8, if it is a recognized name-entity, the name-entity type will be assigned to the element at
that index. Because elements in)• %$(• �%B, and# �' all match one-to-one to the tokens
in utterance, so they have the same length.

We iterate through elements in lists by index, if a dependency dictionary exists, we iterate
through its key-value pairs. If the key (dependency type) is not in our de�ned dependency
types we consider this dependency as not important and skip it, otherwise, we construct a
phrase. How to construct the phrase is described in the second procedure. Given tokens
list) and dependency key-value pair of the current token, we get the indices of the tokens
that dependent on current token from value, sort them in the increasing order and then
concatenate the token at those indices with a space in between.

After constructing the phrase, we determine whether this phrase is an intent phrase or a
normal token phrase by examining the part-of-speech tag of the current token. If?>B8 is
+ � or + �%, then it is recognized as an intent. The phrase will also be categorized as an
intent phrase and added into%�, otherwise, it is a slot phrase and will be added to%).

Classi�cation The intent label and slot labels are predicted in this step given intent phrases
and slot phrases from the last step. Theoretically, there can be an arbitrary number of
intent phrases and we need to predict one intent label from them. The process of how an
intent label is classi�ed is shown in Figure 4.4, assuming there are two intent phrases and
four intent labels. The intent phrases and labels are both embedded with Sentence-BERT
[26], resulting in six embedding vectors. The cosine similarity between each intent phrase
and intent label is calculated. The similarity scores are shown in the table. To this end, the
intent label with the largest similarity score is selected and classi�ed as the intent of the
utterance. In our example, the second intent phrase and the third intent label have the
largest similarity score, and the third intent label is our predicted user's intent.

Slot label assignments are similar to intent labels, only that we assign one label to each
slot phrase instead of only one for all phrases. For each slot phrase, the cosine similarity
between Sentence-BERT embedding of itself and of all slot labels are calculated and
compared, and the label with the largest cosine score to the slot phrase is assigned to the
phrase. To this end, an intent label, as well as a set of slots are predicted for the given user
utterance.

4.2.2 Post-processing

The output from the semantic parsing approach consists of two parts, an intent label for
the utterance, and a correspondence between slot labels and phrases. Because the phrases
are extracted using heuristic algorithms, it does not exist in other approaches, and thus
can not be used directly to compare with the outputs from other approaches as well as the
ground truth. In order to make a fair comparison to the outputs from other approaches,
post-processing is necessary. The solution is to process the intent label, as well as the
slot-phrase correspondence into a list of key-value pairs and format them in organized
text.

18

	Acknowledgments
	Abstract
	Introduction
	Basics
	Task-Oriented Dialog Systems
	The Encoder-Decoder Architecture
	Transformer
	BERT
	Sentence-BERT

	Related Work
	Pipeline Structured Task-Oriented Dialog Systems
	End-to-End Task-Oriented Dialog Systems
	Zero-Shot and Few-Shot Learning

	Task Definition and Three Approaches
	Task Definition
	Semantic Parsing
	Architecture
	Post-processing

	Fine-tuning a Pre-trained BERT Model
	Architecture
	Post-processing

	Dynamic Prompt Construction with GPT-3
	Architecture
	Post-processing

	Dataset Selection and Data Processing
	The ATIS Dataset
	Statistics
	Data Processing

	The MASSIVE dataset
	Statistics
	Data Pre-processing

	Experiment and Evaluation
	Experimental Setup
	Few-shot Datasets
	Experiments on Semantic Parsing
	Experiments on Pre-trained BERT Model
	Experiments on GPT-3

	MUC-5 Evaluation Metrics
	Evaluation
	Results of Semantic Parsing
	Results of Fine-tuning a Pre-trained BERT Model
	Results on Dynamic Prompt Construction on GPT-3
	Comparison of Three Approaches

	Conclusion
	Bibliography

