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Abstract

In a scenario where an artificial agent robot assists humanswith everyday tasks, it is desired

to create more intuitive and efficient communication between humans and machines. As

natural language is the primary means of how people express their needs and desires,

agents should be able to interact with humans using natural language.

Therefore, a natural language task-oriented dialog system is required, which helps users

accomplish specific tasks through natural language interactions, such as booking a flight,

ordering food, or scheduling an appointment.

One of the critical components in such task-oriented dialog systems is natural language

understanding, which allows the accurate identification of the user’s intent and extraction

of important information which helps in completing the task and responding appropriately.

In this work, we propose three different systems for intent classification and slot-filling

tasks in such a natural language understanding component. The first approach is based

on semantic parsing of the user utterance, rule-based phrase extraction, and finally a

classification using Sentence-BERT. The second approach works by fine-tuning a BERT

model that is pre-trained on a large dataset. In the third and final approach, we use

Sentence-BERT to select a known example that is similar to the user utterance, and then

dynamically construct a prompt based on a designed template for response generation

using GPT-3. We evaluate and analyze the performance of all three approaches under

different experimental settings, with a focus on zero-shot and few-shot settings.

Based on the results of the experiments, we can conclude that the semantic parsing

approach as our baseline for zero-shot learning performs better in domains where its

intents and slots are similar to the wording of the user utterance. The fine-tuning approach,

however, works better when more examples are given, and can adapt fast to a new

task when it is pre-trained on a similar task, but not necessarily has better performance

than without task-specific pre-training. Furthermore, it needs to be trained each time

when solving tasks in a new domain, while the other two approaches only require the

definition of the task (intents and slots). GPT-3 has shown its ability to adapt to tasks

in different domains with minimum information, but it produces unorganized output

in some cases, which increases the difficulty in the post-processing stage. For the three

approaches mentioned above, the code for training and evaluation can be found at https:

//github.com/DankiLiu/dliu-ds-ma.git.
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1 Introduction

An artificial agent aims to assist humans with everyday tasks. Under this scenario, it

is desired to create a more intuitive and efficient communication between human and

machines. Natural language is no doubt the primary means of how people express their

needs and desires. By allowing humans to interact with agents using natural language,

it not only bridges the gap between the capabilities of machines and the ways in which

humans prefer to communicate, but also enables a wider range of people to interact with

agents, as it eliminates the need for specialized technical knowledge or training. In addition,

natural language interfaces can simplify complex tasks by breaking them down into a

series of simple commands or questions, which can be easily understood and executed by

the agent. This can help reduce errors and increase efficiency, making it easier for people

to accomplish their tasks and achieve their goals.

For this purpose, a natural language task-oriented dialog system is required. A task-

oriented dialog system is designed to help users accomplish specific tasks through natural

language interactions, such as booking a flight, ordering food, or scheduling an appoint-

ment. A traditional pipeline structure dialog system consists of four components, which

are natural language understanding (NLU), dialog state tracker (DST), dialog policy (Policy)

and natural language generation (NLG). NLU is a critical part of a task-oriented dialog

system for agents to solve everyday tasks. NLU enables an agent to understand and inter-

pret the natural language input provided by the user, allowing it to accurately identify the

user’s intent, as well as the important information that helps the agent to complete the

task and respond appropriately.

More specifically, NLU is responsible for two tasks: 1) intent classification and 2) slot-

filling. An example is shown in Figure 1.1, when a person says to the artificial agent:

"Show me the flights from New York to Atlanta.". The agent has to be able to know that

1) the person’s intention is to show flights, and 2) the information needed to fulfill user’s

intention, such as the flight should depart from New York and arrive in Atlanta. With

Figure 1.1: An example for intent classification and slot-filling tasks in a NLU component.
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1 Introduction

the information extracted by NLU, the agent can perform the task in the later components

and interact with the user if further information is needed.

Traditionally, these tasks have relied on supervised learning algorithms that require

large amounts of labeled data to achieve high accuracy. However, labeling data can

be time-consuming and expensive, particularly in certain domains with relatively few

resources.

Zero-shot and few-shot approaches aim to address these challenges by leveraging pre-

existing knowledge and few labeled examples to achieve reasonable performance on the

task. Zero-shot learning involves training a model on one task and testing it on a different

but related task without any task-specific training examples. Few-shot learning, on the

other hand, involves training a model with very few labeled examples and using it to

perform the task.

By using zero-shot and few-shot approaches, the cost and effort required to train a

natural language understanding component can be significantly reduced, making it more

accessible and practical for a wider range of applications.

By developing an effective NLU component with zero/few-shot learning, a task-oriented

dialog system can provide several benefits:

1. Improved accuracy: An effective NLU component can accurately understand the

user’s intent and extract information from user utterance, reducing errors and im-

proving the overall accuracy of the system’s responses and adapt to new domains

with limited examples.

2. Greater flexibility: A well-designed NLU component can handle a wide range of

inputs, allowing users to express their needs and preferences in a variety of ways.

3. Enhanced user experience: By accurately interpreting user input and providing

relevant responses, an NLU component can enhance the overall user experience,

making it easier and more intuitive for users to interact with the agent.

NLU aims to classify user utterances to an intent category, to extract important in-

formation and to annotate utterances with a semantic type using the prior knowledge

of the possible intent categories and semantic types of a task in a specific domain. For

consistency in wording, intent categories are referred to as intent labels, and semantic

types are referred to as slot labels in the following content.

Mansimov et al. [16] utilize semantic parsing to predict intent and slots for a span of

characters through iteration, while other work adopts pre-trained models to adapt to tasks

in new domains [10, 36, 23, 3, 29, 4, 37]. With the huge success of pre-trained models, a

combination of prompt engineering and a large pre-trained model shows its strength at

tackling tasks in a task-oriented dialog systems [14, 29, 17]. Some work also takes a step

in exploring zero-shot and few-shot approaches for solving NLU tasks [22, 34, 17, 18, 14,

33, 2].

In this work, we want to research different approaches for solving intent classification

and slot-filling tasks in a natural language understanding component of a task-oriented

dialog system and their performance with different experimental settings, especially their

performance under zero-shot and few-shot settings. Three approaches are introduced: 1)
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semantic parsing, 2) fine-tuning a pre-trained BERT model [6], and 3) dynamic prompt

construction with GPT-3 [2].

In chapter 2, basic concepts about task-oriented dialog systems and language models

are explained. Then the recent related work is introduced in chapter 3. The architecture of

the three proposed approaches and their implementation are described in detail in chapter

4. In chapter 6, extensive experiments are designed for each approach from different

perspectives, and their results are analyzed with respect to several key aspects. Finally,

chapter 7 concludes the thesis by summarizing the evaluation results on three approaches.
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2 Basics

This chapter explains the basic concepts and techniques that this work builds on. The

reader should already have fundamental knowledge about deep neural networks (DNNs)

and how they are trained through back-propagation.

2.1 Task-Oriented Dialog Systems

Task-Oriented Dialog (TOD) systems are designed to assist users to achieve predefined

tasks in everyday scenarios such as booking a flight or making a restaurant reservation. To

this end, conventional TOD systems typically use a pipeline approach. However, with the

limitations of the conventional pipeline, as well as the power demonstrated by pre-trained

sequence-to-sequence models, there is a strong trend towards end-to-end dialog systems.

Both approaches for developing a TOD system, as well as other important concepts are

described in the following.

Pipeline Architecture A traditional way of developing a TOD system is to use a pipeline

architecture. A TOD has four components: a natural language understanding (NLU)

module, a dialog state tracking (DST) module, a dialog policy (POL), and a natural language

generation (NLG) module. NLU interprets the user’s intent from the given utterance

and extracts information that is relevant to accomplish the user’s intent. The associated

information is represented as task-specific slots and their values. DST then tracks the

values of slots, and POL will decide which action the system will take. Finally, NLG

generates the response according to the system action. This work focuses on two sub-

tasks of NLU, intent classification, and slot-filling. For a task in a specific domain, intent

classification predicts the intent of the user from predefined intent categories, and slot-

filling identifies which information can fill into the slots of the pre-defined task-specific

slots.

End-to-End Due to the arguments that a model with separated modules accumulates error,

and that better performance of individual modules does not necessarily lead to a better

performance of the whole model, recent work [10, 36, 17, 23, 28, 29] utilizes pre-trained

models to implement end-to-end TOD systems. In an end-to-end TOD system, given

the user utterance as input, the model outputs the response directly without having the

information in the intermediate steps such as dialog state explicitly.

Domain In the context of TOD systems, a domain refers to a specific area or topic that

the dialog system is designed to handle. For example, airline reservation is the domain

for a TOD system that helps the user to search for and book flights. A domain contains a

collection of intents and slots. Each slot can take one possible value, and each task given
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2.2 The Encoder-Decoder Architecture

by the user in an utterance contains only one intent. However, the number of slots is

undetermined and depends on how much information is provided in the utterance.

2.2 The Encoder-Decoder Architecture

In the late 1980s, time delay neural network (TDNN) [32] is purposed to model sequential

data and applied to a task of phoneme classification for automatic speech recognition.

Nowadays, Encoder-Decoder [30] models are designed to solve Sequence-to-Sequence

problems, which is a special class of Sequence Modelling Problems. This section first

introduces the definition of Sequence Modelling Problems, then explains how an encoder-

decoder model is built.

Figure 2.1: An unrolled recurrent neural network.

Sequence Modelling Problems Sequence Modelling Problems refer to problems/tasks

where either the input and/or the output is a sequence of data. Consider the model for

solving Intent Classification (IC) task in NLU, where given a user utterance as input, the

model predicts a user intent. The user utterance is a sequence of words, and the classes

of intent are pre-defined. Essentially, the model predicts an intent class from a sequence

of words. The problem of predicting a single class from a sequence of data is called a

Sequence Classification problem.

However, for a Slot-Filling task in NLU, the model takes a sequence of words as input

and predicts a slot label for each word. The output of a slot-filling task is a sequence

of slot labels (if a word does not belong to any of the defined slot labels, the output is a

class representing "no slot label"). The problem where the input and the output are both

sequences is referred to as a Sequence-to-Sequence (Seq2Seq) problem. More specifically,

because the input and output sequences for Slot-Filling tasks have the same length, it is

also called a Token Classification problem.

RNN Traditional Deep Neural Networks (DNN) require inputs and targets of a task that

can be encoded into a vector of fixed length instead of a variable length. In the context
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2 Basics

of natural language processing where the input is a sequence of words, if inputs are

encoded into vectors of fixed length, important information such as positions of the words

is missing. To solve this issue, Recurrent Neural Networks (RNNs)[27] are proposed to

model sequential data.

As shown in figure 2.1, RNNs have a loop that can pass the history information from one

step to the next, so that the information exists in the entire network. Taking an input 𝑥𝑡−1
at position 𝑡 − 1, a neural network outputs a value 𝑜𝑡−1, and the hidden state ℎ𝑡−1 is passed
to the next step as prior information. In the next step, the network hidden state ℎ𝑡 is the

weighted sum of ℎ𝑡−1 and 𝑥𝑡 by𝑊ℎ , and the network makes the prediction based on both

input 𝑥𝑡 and ℎ𝑡−1. 2.1 is the equation for calculating ℎ𝑡 .

ℎ𝑡 = 𝑓 (𝑊ℎℎ𝑡−1 +𝑊𝑥𝑥𝑡 ) (2.1)

However, as the network proceeds through the sequence, the further the past information

is from the current location, the smaller is its weight in the current hidden state. Therefore,

the prediction in the current step depends more on the recent information and thus the

network can not learn a long-range dependency. This is called the vanishing gradient
problem.

LSTM and GRU To enable recurrent neural networks to learn from long-term memories,

Long Short-Term Memory (LSTM) is proposed [27]. Each LSTM unit contains four parts:

cell state, forget gate, input gate and output gate. The cell state passes the information

throughout the network so that the information from early time steps can be carried all

the way to the last step. The different gates in LSTMs are used to regulate the flow of

information and learn which information is important to preserve or get rid of.

The approach of Gated Recurrent Units (GRU) is similar to that of LSTMs. Instead of using

a cell state to transfer information, a GRU uses the hidden state. GRU has only two gates,

a reset gate and an update gate.

Encoder and Decoder The encoder-decoder architecture aims to solve Seq2Seq problems.

An encoder is a stack of several recurrent units (RNN, LSTM or GRU cells) that accept the

inputs sequentially and encode them into a hidden vector. This hidden vector is then the

input of a decoder. A decoder is a stack of recurrent units where each unit predicts an

output at each time step.

2.3 Transformer

The transformer architecture is the basis for well-known models like BERT [6] and GPT-3

[14] which are also used in this work. Same as recurrent neural networks, transformers

are also designed to solve Seq2Seq problems. However, instead of processing all the inputs

sequentially, transformers compute the representations of the inputs all at once with the

mechanism called self-attention.

Encoder-Decoder Architecture The transformer adopts an encoder-decoder architecture

that is explained above, the encoder extracts features from input sequence, and the decoder

6



2.3 Transformer

uses the features to produce an output sequence. The transformer’s encoder is a stack of

encoder blocks, and the output of the last encoder block is the input of the decoder. The

decoder also consists of multiple decoder blocks.

Input Embedding and Positional Encoding The inputs are first tokenized into tokens. The

token positions are important information for sequential data, with positional encoding,

the model has the information of token positions.

Softmax and Output Probabilities The decoder outputs one token at a time, and this output

token will become a part of the input for the next step. The output will go through a

linear transformation and then a softmax layer so that its dimension is changed from the

embedding vector size into the size of a number of output classes and then converted

into probabilities. There are two ways to predict the class from the output probabilities.

The first method is to choose the class with the highest probability, and it is called greedy
method. The second method, however, looks for the best combination of the tokens rather

than selecting the most probable class at a time, and is called beam search.

2.3.1 BERT

BERT (Bidirectional Encoder Representations from Transformers, [6]) is based on trans-

former architecture that was pre-trained simultaneously on two tasks: language modelling

and next sentence prediction. With these two training objectives, BERT learns latent repre-

sentations of words and sentences in context. After pre-training, it can be fine-tuned with

fewer resources on smaller datasets to adapt to specific tasks such as intent classification

and slot-filling tasks.

Masked LM In language modelling task, 15% of the words in each input sequence are

replaced with a [MASK] token. The model aims to predict the original value of the masked

words based on the context provided by the other, non-masked works in the sequence. In

order to make predictions, a classification layer is added on top of the BERT which takes

the hidden representation of the sequence from BERT as input and outputs a distribution

over all vocabulary.

Next sentence prediction In the next sentence prediction task, the model receives pairs of

sentences as input and learns to predict if the second sentence in the pair is the subsequent

sentence in the original document. In order to distinguish both sentences, a [CLS] is

inserted at the beginning of the first sentence and [SEP] is inserted at the end of each

sentence, and a sentence embedding is added to indicate which part is the first sentence

and which is the second. Finally, a positional embedding is added to mark the positional

information of each token. When training the BERT model, Masked LM and Next Sentence

Prediction are trained together, with the goal of minimizing the combined loss function of

the two strategies.

Fine-tuning With the pre-trained BERT, we can use it for a specific task by fine-tuning

the model on the new dataset. In our work, it is defined that each user utterance has one

user intent and multiple slots. Due to this reason, we can consider intent classification as

7



2 Basics

a sequence classification task, and slot-filling task as a token classification task. We can

make use of a pre-trained BERT model by adding a classification layer on top.

There are two ways of fine-tuning a pre-trained BERT model to a new task, one way is to

update parameters in both the encoder (pre-trained BERT) and the classifier, another way

is to freeze the parameters in the encoder and only update the parameters in the classifier.

2.3.2 Sentence-BERT

The construction of BERT makes it unsuitable for semantic similarity search as well as for

unsupervised tasks like clustering [26]. Sentence-BERT is a modification of the pre-trained

BERT network that use siamese and triplet network structures to derive semantically

meaningful sentence embeddings that can be compared using cosine-similarity.

8



3 Related Work

Motivated by the need to build task-oriented dialog systems that can quickly adapt to a

new task with minimal training data, this work focuses on comparing different approaches

for building a natural language understanding component that solves intent classification

and slot-filling tasks under a few-shot setting, and furthermore discusses their abilities to

adapt to a new domain with limited examples.

Architecturally, the implementation of a dialog system can generally be divided into two

categories, implementing each component of a TOD separately so that each component is

trained to be excellent at one specific task, or building an end-to-end TOD so that it reaches

the overall best performance without caring much about the transaction details between

components. However, building a TOD often requires a large amount of annotated data

for each specific domain which is hard to obtain. From these perspectives, in this chapter,

the related work will be introduced mainly in three aspects: different approaches that

adopt a pipeline structure for building a dialog system are described in section 3.1, work

that trains an end-to-end TOD in section 3.2, and work that focuses on discussing how to

apply few-shot or zero-shot approaches for realizing a TOD in section 3.3.

3.1 Pipeline Structured Task-Oriented Dialog Systems

In this section, the works that apply a pipeline structure to solve tasks in TOD are intro-

duced. Most of the work aims at solving intent classification and slot-filling tasks, while

other works focus on other tasks in a TOD, yet its approaches are also valuable to have a

closer look at. Semantic parsing aims to analyze natural language sentences, extract their

meaning, and process them into a formal, structured representation. [16] introduces an

encoder network that incrementally builds a semantic parse tree for each user utterance.

As shown in Figure 3.1, at each iteration, it predicts either an intent label or a slot label

for a span of characters in the utterance, as long as the prediction is not terminated, the

predicted label is inserted to the input at the predicted position to be the input of the next

iteration. The model continues the prediction iteration until the end position is at the ter-

mination position. Same as the task defined in this thesis, a user utterance is used as input

rather than dealing with multi-turns dialogues. The semantic parsing approach in this

thesis constructs a similar semantic parse tree as this work, however, each label annotates

a sequence of words in the user utterance instead of annotating characters. Moreover, it

utilizes existing parsing models to build a baseline model for zero-shot semantic parsing.

In other words, no training is involved in the semantic parsing approach. [7] presents

three different improvements to a semantic parsing model, contextualized embeddings,

ensembling, and pair-wise re-ranking based on a language model.

9



3 Related Work

Figure 3.1: Overview of generation of a semantic parse tree in [16].

Sequence labeling can be adopted for natural language tasks such as slot-filling. [33]

and [34] adopt self-training to achieve a better performance on sequence labeling tasks

with low-resource labeled data.

[4] extends BERT to a joint intent classification and slot-filling model. The input tokens

are embeddings of the input text that starts with special token [CLS] and ends with [SEP].

BERT then produces a hidden state vector from the input tokens. For intent classification

tasks, an intent label is predicted based on the hidden state of the special token [CLS],

denoted ℎ1. Equation 3.1 shows how the classifier predicts the intent label.𝑊 𝑖
and 𝑏𝑖 are

the weight matrix and bias for the intent classification task.

𝑦𝑖 = softmax (𝑊 𝑖ℎ1 + 𝑏𝑖) (3.1)

And for the slot-filling task, a slot label is predicted for each hidden state of other tokens.

The hidden state ℎ𝑛 corresponds to the 𝑛𝑡ℎ token, and𝑊
𝑠
and 𝑏𝑠 are the weight matrix

and bias for the slot-filling task.

𝑦𝑠𝑛 = softmax (𝑊 𝑠ℎ𝑛 + 𝑏𝑠), 𝑛 ∈ 1...𝑁 (3.2)

The second approach in this work also utilizes a pre-trained BERT to train our own multi-

task model for solving NLU tasks. Although the two works have the similar idea of using

BERT as a pre-trained model and adapt it to solve intent classification and slot-filling tasks,

the architecture of the models are not the same. Instead of predicting an intent label from

the first special token, we add another classification layer and predict the user’s intent

with the hidden representation from the whole user utterance.
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3.2 End-to-End Task-Oriented Dialog Systems

[12] tackles the intent classification task by considering the features of the dialog text

and Chinese characters. Instead of using word-level features used by most work, it applies

CNN to extract character-level local features of the Chinese characters, and a bidirectional

gated recurrent unit layer architecture to capture the contextual semantic information to

predict the intent of the user.

[38] tackles cross-domain slot-value prediction tasks by applying a slot gate to learn to

predict whether a value should be predicted for a domain-slot. The value is either a span in

the utterance, or a value from a candidate list for that slot. This work focuses on training a

dialog system on a single domain and aims to exam the ability for a single-domain dialog

system to transfer to another domain with few examples.

[22] develops a multi-layer Transformer neural network model SC-GPT to convert a

dialog act representation in a semantic form into a response in natural language. SC-GPT

is also trained in a first pre-train, then fine-tune manner.

As introduced in this section, to solve NLU tasks in a TOD separately from other

components, a popular way is making use of semantic parsing approaches that analyze

the syntactic and structure of a sentence. Another idea is to apply transfer learning. A

pre-trained model that is already trained on a large unlabeled corpus such as BERT is a

powerful encoder and can be fine-tuned with a relatively small amount of data for a target

task, yet still has a promising performance.

3.2 End-to-End Task-Oriented Dialog Systems

In this section, the work that builds an end-to-end TOD is introduced. Despite training

in an end-to-end manner, some work can be used for down-stream tasks in NLP such as

intent classification and slot-filling. Most of the work applies transfer learning and uses

models such as BERT and T5 as a backbone. Furthermore, a concept in machine learning

called prompt engineering is explained in this section.

Transfer Learning Inspired by the recent success of applying transfer learning to Natural

Language Processing (NLP) tasks, [23] presents SOLOIST for building task bots at scale.

SOLOIST deals with multi-turns dialogues and each dialog turn is a concatenation of dialog

history, dialog belief, database state, and delexicalized dialog response. [23] uses GPT-2 as

the model backbone and trains a pre-trained task-grounded response generation model

on large dialog corpora. Then the pre-trained model is fine-tuned and adapted to a new

task using a machine teaching tool. The authors did a component-wise evaluation on NLP

tasks. The intent classification is defined as classifying a user utterance into one of several

pre-defined classes and the last hidden state by SOLOIST is used as the representation for

sequence classification. Compared to our transfer learning approach, the difference is that

they use SOLOIST as a encoder to produce hidden representation for intent classification

while we use a fine-tuned BERT. A slot-filling task in SOLOIST is defined as a turn-based

span extraction problem where we define a token classification problem and only observe

single-turn utterance. [37] also makes use of GPT-2 and fine-tunes it to build an end-to-end

TOD.
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3 Related Work

Figure 3.2: An overview for PPTOD. For each task, the model tasks the dialog context and

the task-specific prompt as input and learns to generate the corresponding

target text [29].

Prompt Engineering in Transfer Learning Based on pre-training, researchers have proposed

prompting methods to increase the model performance. A prompting methods survey [15]

mentions that prompt engineering can be used in text classification as well as information

extraction tasks. A natural way to create prompts is to manually create intuitive templates

based on human introspection. [29] introduces a unified plug-and-play model for multi-

task TOD named PPTOD. The authors integrate components in a TOD into a unified model

and enable the model to handle multi-tasks by plugging a task-specific prompt into the

dialog context as the model input. An overview is shown in figure 3.2. PPTOD is first

initialized with T5 [25] and pre-trained on a heterogeneous set of dialog corpora that

consist of partially-annotated data, and then fine-tuned to a new task with task-specific

labelled data. Different from our approach, PPTOD solves the intent classification problem

as a generation problem instead of a classification problem, it directly generates the text

of intent label. Another end-to-end model CINS purposes a Comprehensive Instruction

to different TOD downstream tasks. To solve intent classification, dialog state tracking,

as well as natural language generation tasks, [17] also employs T5 model to generate the

output text for each task. The model input for each task consists of a input text as well

as a Comprehensive Instruction that consists of a task definition that defines the task, a

task constraint that defines the output space of the task, and a prompt. Figure 3.2 shows an
example of the Comprehensive Instruction of a intent classification task.

3.3 Zero-Shot and Few-Shot Learning

Using data-driven approaches for TODs often requires fine-grained annotations to learn

the dialog model in a specific domain, which is one of the biggest challenges for task-

oriented dialog systems [40]. Acquiring a large amount of annotated dialog data can be

very expensive, especially due to the diversity and complexity of dialog tasks in different

domains. Thus, exploring few-shot methods for building dialog systems is a promising

research direction that can yield significant benefits in practical applications. Transfer
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3.3 Zero-Shot and Few-Shot Learning

Figure 3.3: The unified framework of applying Comprehensive Instruction to different

TOD downstream tasks [17].

learning takes few-shot in TODs a big step forward, as it enables large language models to

quickly adapt to a new domain with limited annotated data.

Some the above mentioned transfer learning based approaches performed evaluations

in a low-resource setting [23, 17, 29, 22]. [23] performs a task-grounded pre-training

with a joint objective, while [29] trains the pre-trained model with a maximum likelihood

objective, and [17] directly makes use of the pre-trained T5 without additional training.

The few-shot testing on all above mentioned models draw a consistent conclusion: a larger

model is a better few-shot learner. Furthermore, in slot-filling tasks, the transfer ability of

a model also depends on domain types. The model performs better on a group of domains

that are similar to each other, yet performs bad on other few. The authors assume this is

because some domain has domain-specific slots that are rare in other domains [17].

Another way to tackle with the the data-shortage problem is to apply self-training, so
that it can make use of the large amount of unlabeled, or partially labeled data to train a

high-performing model. The idea is to first train a Teacher on the labeled examples for

generating pseudo-labels for unlabeled data, and then select data from all labeled data to

train a Student. The whole process is iterative, in the next iteration, the Student becomes

the Teacher [18, 34, 33].
Applying prompt engineering to large language models has been a great success, re-

searchers continue to explore their possibilities for zero-shot learning. [14] shows that by

simply adding “Let us think step by step.” as a single prompt template can greatly improve

the zero-shot performance on a pre-trained large language model. To explore more on

the few-shot/zero-shot ability on a large language model, in this work, different prompt

templates are designed to make use of GPT-3 [2] for solving intent classification task and

slot-filling task in a TOD system.
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4 Task Definition and Three Approaches

The purpose of this work is to implement different approaches for solving intent classifica-

tion and slot-filling tasks in a natural language understanding component of a task-oriented

dialog system, as well as explore their ability to transfer to new domains and evaluate

their performance with limited data. Three approaches are proposed, namely 1) seman-

tic parsing approach, 2) fine-tuning a pre-trained BERT model, and 3) dynamic prompt

construction with GPT-3.

In this chapter, the intent classification and slot-filling tasks are defined in detail, and

the architecture of each of the three approaches is described.

4.1 Task Definition

Intent classification and slot-filling are two important tasks in the natural language un-

derstanding component of a dialog system. We consider a single command from the

user as the task input, i.e., multi-turns dialog is not in the scope of this thesis. Given a

user utterance, the goal of the intent classification task is to assign a semantic label that

represents the intent of the user. In the meantime, the goal of the slot-filling task is to

label tokens in the user utterance with semantic types referred to as slots, the labeled

tokens are key information for performing the task.

For each different domain, a set of semantic labels for intents and slots are defined. For

example, when the goal is to help customers to book flights, the user’s intent can be to

look for flight information, book a flight, or provide customer service, and the slot labels

can be the time of flight, price information, and so on. However, in the scenario where the

goal is to manage the alarm for the user, the user’s intent can be to set an alarm or remove

an alarm, and the slots for information can be the time of the alarm and the date of the

alarm.

In our definition, each user utterance has only one user intent, whereas an utterance

can contain information that matches one or more slots. For example, given the user

utterance “Book me a flight from New York to Boston”. The intent of the user is book

flight, and the slot categories for "New York" and "Boston" are depart city and arrival

city respectively. The labels such as book flight, depart city as well as arrival city

are pre-defined for the task-domain flight.

4.2 Semantic Parsing

Despite the irregularity of user expression, the user’s intention can be inferred from the

grammatical structure of the utterance. With this in mind, the following parsing methods

14



4.2 Semantic Parsing

are considered: part-of-speech tagging (POS-tagging), dependency parsing (DP) as well as

named-entity recognition (NER).

Part-of-speech tagging In grammar, a part of speech is a category of words (or, more

generally, of lexical items) that have similar grammatical properties [24]. Words that

are assigned to the same part of speech generally display similar syntactic behavior. For

example, in the sentence “I like to read books”, the word "like" is tagged as VBP, which stands

for "Verb, non-3rd person singular present", indicating that the word "like" is recognized

as a "verb".

Dependency parsing Dependency parsing is the task of extracting a dependency parse of

a sentence that represents its grammatical structure and defines the relationships between

words [21]. When a word is dependent on another word, a relation between them exists

and a dependency type is assigned to this relation indicating which type of dependency

they have. For example, in the sentence “The cat eats tasty fish”, "The" is dependent on

"cat" with the dependency type "dt", which means the word "The" is a determiner of the

word "cat".

Named-entity recognition Named-entity recognition (NER) is a sub-task of information

extraction that can locate and classify tokens into pre-defined categories such as person

names, organizations, locations, and so on [19]. A NER system can annotate the entity in

the text by the names of entities. For example, in the text “Jim bought 300 shares of Acme

Corp. in 2006.”, "Jim" and "Acme Corp." will be recognized as a Person and a Organization

respectively [20].

With the above-mentioned semantic parsing methods, an approach for solving intent

classification and slot-filling tasks can be designed. The important information in text often

appears in phrases rather than individual words. Combining part-of-speech tagging and

dependency parsing, phrases carrying important information can be extracted. However,

in order to extract the important information and clear out the unrelated information as

much as possible, rules are needed to filter the tokens in the utterance. The intuition of

rule designing is that some dependencies and POS tags may indicate that the target token

carries more important information than others.

4.2.1 Architecture

The semantic parsing approach consists of three steps. In the first step, the user utterance

is parsed using POS, NER, and DP. The parsing outputs are then processed in the next

step using the heuristic rules and phrases that represent the user intent, and pieces of

information for the slots are extracted. In the third step, an intent label is predicted from

the pre-defined intent labels according to their similarity to the intent phrases, the slot

labels are also assigned in the same way, only that for each slot phrase, one slot label is

assigned.

Figure 4.1 shows an overview of the semantic parsing approach. Each block in the figure

colored in light green represents a step in the semantic parsing approach.
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4 Task Definition and Three Approaches

Figure 4.1: An overview of semantic parsing approach.

Figure 4.2: A user utterance is parsed using three semantic parsers (POS, NER and DP).
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4.2 Semantic Parsing

Semantic parsing The input of this first step is a user utterance in natural language text.

The input utterance is processed by three different semantic parsing methods, namely

part-of-speech tagging (POS), dependency parsing (DP), and named-entity recognition

(NER). An example is shown in Figure 4.2. Part-of-speech tagging categorizes each word

in the utterance with a particular part-of-speech token. Named-entity recognition labels

words or phrases that are recognized as an entity. In our example, even though "new york"

and "atlanta" are both city names in the USA in lowercase, only "new york" is recognized

as STATE_OR_PROVINCE. We use the part-of-speech tagging, named-entity recognition,

and dependency parsing provided by the Natural Language Toolkit (NLTK) to parse the

user utterance and output the parsing result for the next step.

Figure 4.3: A user utterance and intent and slot phrases extracted from it.

Phrase extraction With the result from the last step, the goal of this step is to extract the

phrases that can represent user intent and other important information for completing the

task. As the example shown in the last step, part-of-speech tags and dependency graph of

a sentence contain information such as the role of a word in the context that can be used

to predict the user’s intention and other slot information. Named-entity recognition can

provide extra information about the words in the utterance. Hence, some simple rules are

designed to extract the phrases from the utterance that can represent the user’s intention

and other important information.

Each parsed result can be mapped to each token of the sentence. Tokens are groups of

characters when the sentence is split by spaces. Each token has a part-of-speech tag and

is a node in the dependency graph. If this token has a dependency with another token, the

index of this other token and the type of dependency will be stored in this node. A token

can have zero to more than one dependency.

The basic idea of the rule design is that we consider some part-of-speech and types of

dependency to carry more information than others. For example, VB is the part-of-speech

tag of a verb, its object combined with itself usually can indicate the intention of the user.

On the contrary, Dt is the tag of a determiner, which can usually be omitted from the

sentence without changing the meaning of the sentence.

The algorithm for extracting the intent and slot phrases is described in the following: We

define the following annotations: 𝑇 is a list of tokens in the given utterance, and each

element 𝑡𝑖 at index 𝑖 is a string. 𝑃𝑂𝑆 are part-of-speech tags of tokens in 𝑇 , each element

𝑝𝑜𝑠𝑖 matches a token 𝑡𝑖 . 𝐷𝑃𝑠 is a list of dependency nodes that match one-by-one to tokens

in 𝑇 . Each dependency node has a dictionary that stores how other tokens are dependent
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4 Task Definition and Three Approaches

on this token in key-value pairs. The key is the type of dependency and the value is the

index of the other token. 𝑁𝐸𝑅 is a list of name-entity types of the tokens. For each token

𝑡𝑖 , if it is a recognized name-entity, the name-entity type will be assigned to the element at

that index. Because elements in 𝑇, 𝑃𝑂𝑆, 𝐷𝑃𝑠 , and 𝑁𝐸𝑅 all match one-to-one to the tokens

in utterance, so they have the same length.

We iterate through elements in lists by index, if a dependency dictionary exists, we iterate

through its key-value pairs. If the key (dependency type) is not in our defined dependency

types we consider this dependency as not important and skip it, otherwise, we construct a

phrase. How to construct the phrase is described in the second procedure. Given tokens

list𝑇 and dependency key-value pair of the current token, we get the indices of the tokens

that dependent on current token from value, sort them in the increasing order and then

concatenate the token at those indices with a space in between.

After constructing the phrase, we determine whether this phrase is an intent phrase or a

normal token phrase by examining the part-of-speech tag of the current token. If 𝑝𝑜𝑠𝑖 is

𝑉𝐵 or 𝑉𝐵𝑃 , then it is recognized as an intent. The phrase will also be categorized as an

intent phrase and added into 𝑃𝐼 , otherwise, it is a slot phrase and will be added to 𝑃𝑇 .

Classification The intent label and slot labels are predicted in this step given intent phrases

and slot phrases from the last step. Theoretically, there can be an arbitrary number of

intent phrases and we need to predict one intent label from them. The process of how an

intent label is classified is shown in Figure 4.4, assuming there are two intent phrases and

four intent labels. The intent phrases and labels are both embedded with Sentence-BERT

[26], resulting in six embedding vectors. The cosine similarity between each intent phrase

and intent label is calculated. The similarity scores are shown in the table. To this end, the

intent label with the largest similarity score is selected and classified as the intent of the

utterance. In our example, the second intent phrase and the third intent label have the

largest similarity score, and the third intent label is our predicted user’s intent.

Slot label assignments are similar to intent labels, only that we assign one label to each

slot phrase instead of only one for all phrases. For each slot phrase, the cosine similarity

between Sentence-BERT embedding of itself and of all slot labels are calculated and

compared, and the label with the largest cosine score to the slot phrase is assigned to the

phrase. To this end, an intent label, as well as a set of slots are predicted for the given user

utterance.

4.2.2 Post-processing

The output from the semantic parsing approach consists of two parts, an intent label for

the utterance, and a correspondence between slot labels and phrases. Because the phrases

are extracted using heuristic algorithms, it does not exist in other approaches, and thus

can not be used directly to compare with the outputs from other approaches as well as the

ground truth. In order to make a fair comparison to the outputs from other approaches,

post-processing is necessary. The solution is to process the intent label, as well as the

slot-phrase correspondence into a list of key-value pairs and format them in organized

text.
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4.3 Fine-tuning a Pre-trained BERT Model

Figure 4.4: Intent classification with Sentence-BERT.

4.3 Fine-tuning a Pre-trained BERT Model

A pre-trained model is a saved network that was previously trained on a large dataset.

The model can be used to solve similar problems by training it on a new dataset. The

process of training the pre-trained model on the new dataset is called fine-tuning. Given

this idea, we can make use of a pre-trained model that does similar tasks as the slot-filling

task and fine-tune it on the new dataset. Pre-trained BERT [6] is designed to solve token

classification tasks, as well as sequence classification tasks by fine-tuning all layers or

one additional output layer only for a specific task. Because each utterance has only one

intent, we can consider the intent classification task as a sequence classification task. As

for labeling the information in the utterance for different slots, we can consider it a token

classification task. If a token is recognized as key information for a slot, it will be labeled a

slot label, otherwise, it will be labeled as "O".

4.3.1 Architecture

Because different tasks have different slots and intent labels, the shape of the output layers

of fine-tuned BERT model is also different. That is why the pre-trained BERT model has to

be fine-tuned for each domain. To make token-level predictions, as well as sequence-level

predictions, a multi-task model needs to be constructed.

Model overview An overview of the model is shown in Figure 4.5. The input is a user

utterance that will first be tokenized by a tokenizer. The tokenized input will then be
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encoded with the pre-trained BERT model to a hidden representation. The hidden rep-

resentation will be forwarded into both the token classification head and the sequence

classification head. Token classification outputs a token prediction, which contains possi-

bility distributions for all tokens over all token labels. For each token, the label with the

largest probability is selected as output. The output of the token classification task is a

sequence of token labels. The sequence classification head, however, produces only one

probability distribution and outputs an intent label that has the largest probability.

Figure 4.5: Fine-tuned BERT Architecture

Model training For each specific domain, a set of intent and slot labels are defined. A

token classification head and a sequence classification head are initialized according to

the number of intents and slots respectively. There are two ways for training a model, one

way is to train both encoder and classifiers when adapting to a new domain, and the other

way is to freeze the parameters in the encoder and only train the classifiers. We adopted

both training methods in our experiments for different evaluation purposes.

Decoding The output of the sequence classification head is a distribution over all intent

classes, and the output of the token classification head is a sequence of distributions of

slot classes with length 𝑛, where 𝑛 is the number of input tokens. For outputs from both

heads, the prediction labels are selected greedily. Each distribution contains probabilities

of all classes, the class with the highest probability will be selected as the target class. For
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4.4 Dynamic Prompt Construction with GPT-3

intent classification, one intent class with be selected, and for the slot-filling task, a slot

label will be selected for each token.

4.3.2 Post-processing

Like in semantic parsing, the output from the fine-tuned model also need to be processed

in a unified format. When adjacent tokens have the same slot label, these tokens are

considered as a phrase, and this phrase is the value of the slot label. The intent label is the

value of the slot "intent". All the slot-value pairs are concatenated together.

4.4 Dynamic Prompt Construction with GPT-3

GPT-3 is an auto-regressive language model that produces text. Given an initial text as

prompt, it will produce text that continues the prompt. Because of the above mentioned

nature of GPT-3, we expect to get the right answer when we ask the right question (when

we have the right prompt). We expect that GPT-3 can solve intent classification and

slot-filling tasks when a suitable prompt is given.

4.4.1 Architecture

For the GPT-3 approach, a pipeline is designed. Different templates are designed to

construct prompts, if an example is required when constructing a prompt, an example will

be selected from the database. A prompt will then be constructed and used as input for

GPT-3 to generate the output.

Figure 4.6: Dynamic prompt construction with GPT-3 - an overview.

An overview is shown in Figure 4.6. Given a user utterance, if the task is a one-shot

learning task, an example is selected from a set of examples. The example selection will

be explained in detail later. The selected example and the user utterance are forwarded to

the prompt construction step and replace the placeholder in the prompt template. The
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4 Task Definition and Three Approaches

constructed prompt is the input for GPT-3, and finally, GPT-3 generates a response for the

task.

Example selection In this work, we designed templates for constructing zero-shot and

one-shot prompts for GPT-3. When an example is needed, it is necessary to select a better

example from the available examples. Figure 4.7 shows how an example is selected from

a set of examples. In this work, we prepared some example tasks in each domain by

randomly selecting one example for each intent and slot label. Because an example for

one intent can also contain sampled slots, and an example of a slot can also contain a

sampled intent, there can be multiple examples for each intent and slot class. The number

of examples is the sum of the number of intents and the number of slots in this domain.

Both user utterance and examples are encoded using Sentence-BERT, the cosine similarity

of the embedded utterance and samples are calculated and the score is a vector of length

𝑛, where 𝑛 is the number of examples from the database. The example that has the largest

similarity score is selected for prompt construction.

Figure 4.7: Select one example from a set of examples for GPT-3 using Sentence-BERT.

Prompt templates Due to the reason that the example selection and prompt construction

happens at inference time, although we can accelerate the process by embedding the

examples in advance and store them in the memory, it is not ideal in terms of time and cost

to have multiple examples for each task. Thus, we designed different prompt templates for

constructing prompts for GPT-3 dynamically. As shown in table 4.1, each template has

placeholders in curly brackets. These placeholders can be replaced with the task-specific

information accordingly. For example, the placeholder {oneshot_example} can be replaced

by a selected example from the target domain and inserted into the prompt. With these

templates, we can design a prompt that contains no example (zero-shot) or one example

(few-shot), or a prompt that has information about the possible intent and slot categories

(keys) by choosing to add information at the placeholders. The input user utterance will

be placed into the placeholder {utterance}.
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Table 4.1: Prompt templates for dynamic prompt constructing of GPT-3.

Info_Extractor Extract the intent and slots for the following user

utterance and show them in key-value pairs format.

{keys}{oneshot_example}

utterance:{utterance}

output:

NLU_Machine A machine receives user utterances as commands and de-

tects the user intent and extracts specific pieces of infor-

mation or entities from the utterance. These pieces of

information or entities are referred to as slots. The ma-

chine outputs them in key-value pairs format, such as “in-

tent user_intent;slot1 entity1;slot2 entity2;...”{keys}

{oneshot_example}

Given the following user utterance, what is the machine

output?

utterance:{utterance}

output

Robot_Translator A robot receives user utterances as commands, but it can

only assist the user when the user’s intent and other key

information in the utterance are translated into key-value

pairs. In this format, each key describes a value, which

is a word or phrase from the original sentence. such as

“someKey someValue;...” {keys}{oneshot_example}

Given user utterance {utterance}, I want to translate the

utterance so that the robot understands it, translation

4.4.2 Post-processing

GPT-3 is a text generation model that generates free text given a prompt. Due to this

reason, the responses from GPT-3 are unorganized and may contain special characters

such as "\n", "{" and "}". For different prompts, the output of GPT-3 can have quite different

formats, depending on what the GPT-3 model understands from the prompt. Thus, it can

be very complicated to process the data into the unified format. We need to observe the

output of GPT-3 and design the post-processing process for each prompt category. The

general idea is to remove special characters in the response and transfer it into key-value

pairs. Nevertheless, if we defined the output format specifically or provide an example with

the output format we want GPT-3 to generate in the prompt, the output can be formatted

into a certain form which is easy to process.
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5 Dataset Selection and Data Processing

In this work, semantic parsing, fine-tuning a pre-trained model, and constructing prompts

for GPT-3 are purposed to solve intent classification and slot-filling tasks. After imple-

menting the architectures of the three approaches, it is essential to test the approaches

not only internally for exploring how each approach adapts to different datasets, but also

across approaches to find out how different approaches behave on the same dataset.

To this end, ATIS [11] and MASSIVE [8] are selected for evaluating the approaches 5.1.

Moreover, it is also crucial to consider the statistics of the datasets, due to the different

sensitivities of different approaches to class imbalance. For a fair comparison, the data

for all approaches should be consistent and organized to a format that can be used and

analyzed for all approaches. In each section, the dataset detail and its statistics are analyzed,

as well as the pre-processing of the dataset.

5.1 The ATIS Dataset

The ATIS (Airline Travel Information Systems) [11] dataset has been popular in the NLP

community since its first release, it serves as a standard benchmark dataset widely used

for intent classification and slot-filling tasks, which are two sub-tasks of NLU components

in a task-oriented dialog system. It consists of audio recordings and corresponding manual

transcripts about humans asking for flight information on automated airline travel inquiry

systems. However, this work is text-based and audio information is out of scope.

Figure 5.1 shows an example from ATIS. The utterance is a sentence where the user

asks the machine for flight information, and each utterance corresponds to one goal/intent

and multiple slots, the slots correspond to words in the utterance.

The ATIS data used in this work is organized by [9] into 17 unique intent categories,

129 slot types, and a vocabulary size of 943 . Some tasks have combined intents, which

leads to a total of 26 intents. Moreover, the ATIS dataset from [9] contains 4978, 500, and

893 samples for training, validation and testing respectively.

Dataset #Training #Testing
ATIS 4978 893

Alarm 390 96

Audio 290 62

Iot 764 220

Table 5.1: Number of training and testing samples in ATIS dataset and domains inMASSIVE

dataset.
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5.1 The ATIS Dataset

Figure 5.1: An example utterance from the ATIS dataset [31].

Figure 5.2: The frequency of intents for the training and test sets [31].

5.1.1 Statistics

Looking into the detail of ATIS dataset one can notice that it is in fact very unbalanced.

[31] performs a deep analysis with respect to the statistics of ATIS intents, it has mentioned

that the prior distribution of ATIS is heavily skewed, and the most frequent intent, Flight

represents about 70% of the traffic. Figure 5.2 shows the frequency of the intents in the

corpus for training and test sets.

Not only is the intent frequency strongly skewed, but the occurrences of the slot labels

are also unbalanced. Figure 5.3 displays the occurrences of some selected slots in ATIS.

For example, slot label fromloc.city_name occurs 4326 times in the training set, while slot

label transport_type only 48 times.
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5 Dataset Selection and Data Processing

Figure 5.3: The number of occurrence of some intent and slot labels in ATIS training

dataset.

Original Slot Label Simplified Slot Label

B-depart_time.start_time
I-depart_time.start_time
B-depart_time.time
I-depart_time.time
B-depart_time.period_of_day
B-depart_time.period_mod depart time
B-depart_time.end_time
I-depart_time.end_time
B-depart_time.time_relative
I-depart_time.time_relative

B-toloc.state_code
B-toloc.airport_code
B-toloc.airport_name
I-toloc.airport_name
B-toloc.city_name to location
I-toloc.city_name
B-toloc.state_name
I-toloc.state_name

Table 5.2: An example of original and simplified slot labels.
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Original Intent Label Simplified Intent Label

atis_flight#atis_airfare
atis_airline#atis_flight_no flight information
atis_aircraft#atis_flight#atis_flight_no
atis_airfare#atis_flight_time

atis_ground_service#atis_ground_fare ground information

Table 5.3: An example of original and simplified intent labels.

5.1.2 Data Processing

In the ATIS dataset, the utterances are labeled with IOB (Inside-Outside-Beginning)

tags as slot labels. The I- prefix before a tag indicates that the tag is inside a chunk.

An O tag indicates that a token belongs to no chunk. The B- prefix before a tag indi-

cates that the tag is the beginning of a chunk that immediately follows another chunk

without O tags between them. In the slot-filling task, when the token has O as its la-

bel, it indicates that this token does not belong to a slot. To make use of annotations

as ground truth to train approaches in this work and to make a fair comparison be-

tween the model outputs, it is necessary to transfer the labels into a representation

that is closer to natural language. Some IOB labels are excessively detailed, for exam-

ple, information of a return_date is further divided into return_date.date_relative,

return_date.month_name, and return_date.day_number. As the purpose of this work

is to evaluate the approaches‘ ability to extract information rather than to do a token

classification task, some labels that represent the same entity can be merged together.

Furthermore, the ATIS dataset contains tasks with multi-intent such as flight#airfare,

however, this work focuses on the task with a single intent.

To this end, in the data pre-processing step, the original slot labels are replaced by a

simplified version of labels, and multi-intent labels are replaced by newly-defined intent

labels. Some replacements are shown in table 5.2 and 5.3.

5.2 The MASSIVE dataset

MASSIVE dataset [8] is a Multilingual Amazon Slu resource package (SLURP [1]) for intent

classification, slot-filling, and Virtual assistant evaluation. It contains 1M realistic, parallel,

labeled virtual assistant utterances spanning 51 languages, 18 domains, 60 intents, and

55 slots. The authors created 50 new text corpora which represent 49 different spoken

languages. In this work, only the English text corpus, which is mapped from the original

dataset SLURP, is used. SLURP was collected for developing an in-home personal robot

assistant, its utterances are directed at a device, rather than a person, which makes it

suitable for building a task-oriented dialog system on a robot. The corpus primarily

consists of interrogatives and imperatives rather than declarative utterances.

The dataset is organized into JSON lines, like the example shown in 5.1, some important

keys of the JSON object are explained in the following:
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Listing 5.1: An example of tasks in MASSIVE dataset.

1 {

2 "id": "0",

3 "locale": "en-US",

4 "partition": "test",

5 "scenario": "alarm",

6 "intent": "alarm_set",

7 "utt": "wake me up at five am this week",

8 "annot_utt": "wake me up at [time : five am] [date : this week]",

9 "worker_id": "1"

10 }

• id maps to the original ID in the SLURP collection. Mapping back to the SLURP

en-US utterance, this utterance served as the basis for this localization.

• locale is the language and country code, in this case, English is used.

• partition is either train, dev or test and is used for training, validation, and testing

accordingly.

• scenario is the general domain of an utterance. In this work, one scenario is seen as

one domain that has its own set of intents and slots.

• intent is the domain specific intent of an utterance within a domain formatted as

{scenario}_{intent}.

• utt is the raw utterance text without annotations.

• annot_utt is the text from uttwith slot annotations formatted as [{label} : {entity}].

5.2.1 Statistics

Scenario Intents Slots

Alarm 3 13

Weather 1 9

Iot 9 14

Music 4 14

Takeaway 2 14

Table 5.4: Number of intents and slots in different scenarios.

As each scenario in MASSIVE has its own set of intents and slots, a single scenario is

seen as a specific task. The table shows some scenarios and their number of intents and
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slots. Some scenarios such as weather and news only have one intent, however, a scenario

like iot has 9 intents. Different scenarios also have different numbers of slots. Overall,

there are significant differences between certain tasks, which makes MASSIVE suitable to

evaluate the approaches’ transfer ability to different tasks.

5.2.2 Data Pre-processing

A scenario in the MASSIVE dataset defines a task domain, and therefore the pre-processing

for each scenario is performed separately. As shown in Listing 5.1, the slot annotation of

MASSIVE data is formatted as [{label} : {entity}]. In order to use it as training data for

fine-tuning a pre-trained BERT model, and constructing consistent ground truth for all

three approaches, the data is processed into the token-wise annotation. The utterance is

first split into words and then "BOS" and "EOS" tokens are added to the beginning and end

respectively. Each utterance has one intent and each token in the utterance will be assigned

a label. For the entities that are annotated with slot labels, the label will be assigned

to every word of the entity. And other not labeled words are labeled with O. "BOS" and

"EOS" tokens are labeled as "[CLS]" and "[SEP]". Furthermore, either semantic parsing

or GPT-3 prefers information in natural language, instead of directly using the original

labels of the MASSIVE dataset, they are rewritten into natural language. For example,

"alarm_set" is changed to "set alarm". An example of a data entry after pre-processing is

shown in 5.2.

Listing 5.2: An example of pre-processed data in scenario "alarm" from MASSIVE dataset.

1 {

2 "id": 3379,

3 "intent": "set alarm",

4 "text": ["BOS", "is", "my", "alarm", "set", "for", "seven", "am", "EOS"],

5 "labels": ["[CLS]", "O", "O", "O", "O", "O", "time", "time", "[SEP]"]

6 }
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In the previous chapters, the implementation of the semantic parsing approach, prompt

construction for GPT-3 model, and fine-tuning of the pre-trained BERT model is explained

in detail. Furthermore, two datasets (ATIS and MASSIVE) that are popular for natural

language understanding tasks are selected for evaluating three approaches. In this chapter,

experiments are designed to test and analyze three approaches from different perspectives.

In the first section, the experimental setups are introduced, and then the metrics that are

used for evaluation are introduced in the second section. Finally, the results from different

models under various settings are compared and analyzed.

6.1 Experimental Setup

To obtain comprehensive knowledge of how to design a better natural language under-

standing component based on the three approaches purposed in this work, it is essential

to test them from different perspectives. In this section, we introduce the data that are

selected for experiments and how it is used for each approach. Experiments are designed

for each method and comparisons between approaches are made after analyzing the results

individually.

6.1.1 Few-shot Datasets

To test the approaches under a few-shot setting, the ATIS and MASSIVE dataset introduced

in chapter 5 are used. Although they are both popular for intent classification and slot-

filling tasks, ATIS is a single-domain dataset that provides tasks concerning airline travel

information, and MASSIVE in another hand, contains tasks in multiple domains for a

virtual assistant. Because both datasets are oriented in two different general domains of

human life (airline and household), it is meaningful to explore the performance of each

approach and analyze its ability to transfer to a new domain. Furthermore, we can also

observe how an approach performs on a similar domain by using the tasks from different

domains in the MASSIVE dataset.

1. For the ATIS dataset, a few sets of simplified labels are designed to overcome the

problem that its labels are too much into detail and lead to even fewer samples per

intent and slot due to its skewed data distribution. In this chapter, one set of designed

simplified labels is used for experiments on the three approaches.

2. In the MASSIVE dataset, domain alarm, audio, iot, weather, takeaway and music

are selected to test the performance of semantic parsing approach, and the first three

are also used to test the other two approaches. Each domain focuses on a specific
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task, for example, the domain alarm contains tasks for setting an alarm, and the

domain iot is about controlling devices in the household.

6.1.2 Experiments on Semantic Parsing

Semantic parsing is a zero-shot approach that acquires no training data. We test it on

ATIS as well as on the alarm, audio, iot, music, news, takeaway and weather domains in

MASSIVE. For all experiments performed on the semantic parsing approach, the structure

of the approach as well as the designed heuristic rules are not changed.

6.1.3 Experiments on Pre-trained BERT Model

Each domain has its own set of intents and slots. For a pre-trained model like BERT, this

means a different number of intent and slot classes that need to be predicted by the model.

Thus, tasks in different domains can share the same encoder but not the same classifier.

The dimension variation of the classifier leads to the fact that it can not be directly applied

to a new domain without adapting to new intents and slots. In other words, zero-shot

testing is not feasible for fine-tuning a pre-trained BERT approach. Therefore, experiments

for fine-tuning a pre-trained BERT are focused on few-shot learning. A multi-task BERT

model that is introduced in section 2.3.1 is initialized with the pre-trained BERT model

bert-base-uncased provided by Hugging-face, the model after initialization is referred to

as BERT-v0. The following experiments are designed for fine-tuning a pre-trained BERT

model. In all training processes, we use the Adam optimizer [13] for optimizing the

parameters, and we use the greedy method to decode the output from classification layers.

Experiments on the ATIS dataset To enable the model to perform the tasks on the ATIS

dataset, we fine-tune the BERT-v0 model on the ATIS dataset with a max-epoch of three, a

learning rate of 2.99𝑒 − 05, and a batch size of 3982. The learning rate and batch size are

automatically found by PyTorch Lightning. The parameters in both encoder and classifiers

are updated in the fine-tuning process. The fine-tuned model is referred to as BERT-v1 in

the later content.

Experiments on the MASSIVE dataset To explore the model’s ability to adapt to a new

task and how a pre-training on a similar task may help the adapting process, we train the

classification layers of BERT-v0 and BERT-v1 with the domain data in the MASSIVE dataset

respectively. All models are trained with a max-epoch of 300 and with early stopping.

Experiments with few-shot learning The above-mentioned training on both datasets made

use of all the available training data, however, we want to explore the pre-trained ap-

proach‘s ability to adapt to a new task with a few examples. For this purpose, we fine-tuned

BERT-v0 and BERT-v1 on 12, 20, 30, 50, 100, 200, and 300 examples separately.

6.1.4 Experiments on GPT-3

To test how GPT-3 performs on intent classification and slot-filling tasks and how the

performance is affected by the prompt design, different prompt templates are designed to
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construct prompts for GPT-3. GPT-3 is also tested on both the ATIS dataset and domains

in the MASSIVE dataset. In all experiments, we use the model text-davinci-003 with the

temperature set to 0 and select the response greedily.

Experiments on the ATIS dataset Considering that ATIS has the most testing samples

compared to other domains and the cost of time and money testing on GPT-3 is high, we

test two settings on the ATIS dataset, GPT-3 without examples and keys information and

GPT-3 with examples and keys information. For each domain, a set of examples is selected

from the training dataset. We iterate through the intent and slot labels of that domain and

randomly choose one example for each label. After constructing the prompt, it will be

sent to GPT-3.

Experiments on the MASSIVE dataset We tested the GPT-3 approach on the same domains

as the other two approaches with different prompts on the domains alarm, audio and iot,

in order to explore how different prompts affect the performance of GPT-3, and how the

domain-specific information increases its performance.

6.2 MUC-5 Evaluation Metrics

We use the metrics for the Fifth Message Understanding Conference (MUC-5) [5] for

evaluation, which are originally designed for evaluating information extraction systems.

To evaluate each approach, the outputs are compared to the ground truth constructed

from the datasets‘ original annotations. The results are evaluated based on slots, since

each task has an intent, the intent can be seen as a specific slot. Given a specific task and

the prediction and ground truth of this task:

Correct (COR) If a slot exists in both prediction and ground truth and their values are

equivalent, the category is correct (COR).

Partial (PAR) If a slot exists in both prediction and ground truth and their values are judged

as a near match, the category is partial (PAR). It is a near match when both values contain

the same words.

Incorrect (INC) If a slot exists in both prediction and ground truth and their values do not

match, the category is incorrect (INC).

Missing (MIS) If a slot exits in the ground truth but not in the prediction, the category is

missing (MIS).

Spurious (SPU) If a slot exists in prediction but ground truth does not contain this slot,

the category is spurious (SPU).

Some intermediate metrics can be calculated using five metrics above:

𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑁𝐶 + 𝑃𝐴𝑅 + 𝐼𝑁𝐶 +𝑀𝐼𝑆 + 𝑆𝑃𝑈 (6.1)

𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 = 𝐶𝑂𝑅 + 𝑃𝐴𝑅 + 𝐼𝑁𝐶 (6.2)

𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶𝑂𝑅 + 𝑃𝐴𝑅 + 𝐼𝑁𝐶 + 𝑆𝑃𝑈 (6.3)
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Precision and recall can be calculated by

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + (𝑝𝑎𝑟𝑡𝑖𝑎𝑙 × 0.5)

𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
(6.4)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + (𝑝𝑎𝑟𝑡𝑖𝑎𝑙 × 0.5)

𝑎𝑐𝑡𝑢𝑎𝑙
(6.5)

(6.6)

In this work, the results of approaches are evaluated using accuracy and F1 score, which

are calculated by

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑂𝑅 + 𝑃𝐴𝑅

𝑡𝑜𝑡𝑎𝑙
(6.7)

𝐹1 =
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (6.8)

Furthermore, the evaluation methods can be divided into two ways, approach level

evaluation and label level evaluation. In approach level evaluation, MUC-5 evaluation

metrics are calculated based on all slots (intent and slot labels) of the evaluated approach

on each testing dataset, and an accuracy and F1 score for the approach is calculated. In

other words, each approach has one accuracy and one F1 score on each testing dataset.

However, to determine how an approach performs on specific labels, we also evaluated

some approaches on a slot level, where the accuracy and F1 scores of every label are

calculated. Both of the evaluation methods will be used in section 6.3.

6.3 Evaluation

In this section, the experimental results are shown and evaluated with the MUC-5 metrics

mentioned in section 6.2 and are analyzed from different perspectives.

6.3.1 Results of Semantic Parsing

Dataset Accuracy F1

ATIS 0.295 0.266

Alarm 0.178 0.243

Audio 0.297 0.400

Iot 0.330 0.372

Weather 0.334 0.361

Takeaway 0.108 0.133

Music 0.080 0.122

Table 6.1: Results of semantic parsing approach tasks in ATIS dataset and tasks in domains

of MASSIVE dataset.

33



6 Experiment and Evaluation

Table 6.1 shows the accuracy and F1 score of the semantic parsing approach on tasks

in different domains rounded to the third decimal. The alarm, audio, weather, iot, music

and takeaway datasets are subsets of the MASSIVE dataset, each of them containing tasks

in a different domain. The scores are calculated based on both intent classification and

slot-filling results. As we can tell from the scores, the semantic parsing approach performs

better on some domains than other domains. For some domains in the MASSIVE dataset

such as audio and weather, the results are better than for ATIS, and for other domains like

music, it performs a lot worse.

If we want to have a deeper understanding of the results, we have to take a look at the

results on each label in the domain. Table 6.2 and 6.3 show the results of some intent and

slot labels in the ATIS dataset. We can see that the semantic parsing approach performs

better on some of the label types such as flight time, from location, yet worse on others

such as ground service and relative to today. After observing the prediction of intent

and slot phrases of semantic parsing, we can easily find out that the semantic parsing

approach works better at classifying intent and slot labels that are close to the original

utterance text and struggles with abstract concepts.

For example, in the original utterance, the user may ask “Can you find me the flight

from Boston to Atlanta?”, Boston and Atlanta are recognized as location by NER, the

phrases "from Boston" and "to Atlanta" will be extracted from the utterance and will be

classified as "from location" and "to location". However, due to semantic parsing‘s lack of

ability to understand the whole sentence, it is very difficult for semantic parsing to classify

labels like relative to today.

Intent Accuracy F1

Flight time 0.867 0.464

Flight information 0.536 0.319

Airfare 0.187 0.248

City 0.018 0.018

Ground service 0.0 0.0

Table 6.2: Results of semantic parsing approach on different intents in ATIS dataset.

Slot Accuracy F

From location 0.762 0.415

To location 0.603 0.362

Airport name 0.242 0.186

Arrive time 0.0294 0.034

Relative to today 0.0 0.0

Table 6.3: Results of semantic parsing approach on different slots in ATIS dataset.

Furthermore, when we take a look at the results of different intents and slots in domain

alarm shown in Table 6.4 and 6.5, the same situation appears. The approach is much better
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Intent Accuracy F1

Query alarm 0.061 0.077

Remove alarm 0.667 0.667

Set alarm 0.443 0.486

Table 6.4: Results of intents on domain alarm in MASSIVE dataset with semantic parsing

approach.

Slot Accuracy F1

Time of day 0.375 0.273

Time 0.021 0.020

Date 0.167 0.116

Device type 0.0 0.0

Event name 0.0 0.0

Table 6.5: Results of slots on domain alarm in MASSIVE dataset with semantic parsing

approach.

at predicting the intent remove alarm than query alarm. The reason is when we want to

delete an alarm, it is natural that we use the phrase “remove the alarm”, but when we want

to query the alarm information, we usually do not use the word “query”. The approach is

bad at predicting such an abstract concept like “query”. The same conclusion applies to the

slot-filling tasks. Another example is in the domain music, "queen" should be recognized

as an "artist_name" and "barcelona" should be recognized as a "song_name", the labels and

the actual tokens in the utterance do not have a close similarity to these labels based on

plain text. In conclusion, the naming of the intent and slot labels has a great impact on

the performance. The semantic parsing approach works better at predicting labels that

are named closely to the natural language and worse at predicting the labels named after

abstract concepts.

6.3.2 Results of Fine-tuning a Pre-trained BERT Model

Dataset Accuracy F1

ATIS 0.918 0.946

Table 6.6: Results of fine-tuned BERT on tasks in ATIS.

The BERT-v1 is the model fine-tuned on the ATIS dataset based on the pre-trained BERT

model BERT-v0. Table 6.6 shows that BERT-v1 performs excellently on tasks from testing

data in ATIS with an accuracy of 0.918 and an F1 score of 0.946, since the ATIS dataset

has the most training samples compared to the domains in the MASSIVE dataset. With
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Figure 6.1: Train losses of models of domain alarm (green), audio (red) and iot (blue) in

fine-tuned on BERT-v0 (left) and BERT-v1 (right).

sufficient training samples, the fine-tuned BERT can have a decent performance on the

tasks.

To explore how well a pre-trained model adapts to a new task and how pre-training

on a similar task benefits the adaptation, Figure 6.1 shows the training loss of the models

fine-tuned on BERT-v0 and BERT-v1 in domain alarm, audio and iot. In both case, only

the parameters in the classifiers are trained. It can be seen that the models trained on

BERT-v1 have steeper training loss curves, indicating that it can adapt to a new task faster

than training directly on BERT-v0.

Figure 6.2: Results of models fine-tuned from BERT-v0 and BERT-v1 on the alarm domain

in the MASSIVE dataset.

In order to gain a deeper understanding about the difference between fine-tuning on

the model with pre-training on a similar task and without, numerous experiments are
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#Shot With Keys Accuracy F1
0 ✘ 0.109 0.099

1/41 ✔ 0.566 0.670

Table 6.7: Results of prompt Info_Extractor on tasks in ATIS dataset.

conducted on the alarm domain with training samples from 12 to 390. The result is shown

in Figure 6.2. The X-axis shows the number of examples used to fine-tune the model, and

the Y-axis shows the value of the scores for each model. We trained each model three times

and the average accuracy and F1 score is plotted using solid and dashed lines respectively.

The orange lines show the results of the models fine-tuned from the original pre-trained

BERT (BERT-v0) and the blue ones show results of models fine-tuned from the model

that is pre-trained on ATIS (BERT-v1). When only 12 samples are available for training,

pre-training on a similar task helps a lot, and the model fine-tuned on BERT-v1 performs

much better than the one without task-specific pre-training. Given more examples, the

performance of models trained from BERT-v0 improves a lot, while the ones trained on

BERT-v1 improve at a slower rate. Finally, when we use all 390 samples for fine-tuning on

both models, the model trained on BERT-v0 outperforms the one trained on BERT-v1.

With the above observation from our experiments, we can conclude that, if we have

only little data, it is beneficial to pre-train the model on data of similar tasks. However,

if sufficient data is provided for a specific task, it might be better to directly train the

model using samples from this task instead of using a pre-trained model. The pre-training

process can reduce the ability of model to adapt to a new task.

6.3.3 Results on Dynamic Prompt Construction on GPT-3

GPT-3 with different designed prompts is tested on the ATIS dataset and selected domains

in the MASSIVE dataset. Table 6.7 shows its results on ATIS dataset with the prompt

template Info_Extractor. When neither examples nor key information (possible intent

and slot labels) is provided to GPT-3, it is not able to make an accurate prediction. However,

when both one example and key information are provided in the prompt, the accuracy

and F1 score of GPT-3 increased by 0.457 and 0.571 respectively. This suggests that for the

GPT-3 model, one example can largely improve its ability in solving intent classification

and slot-filling tasks.

We further tested all the designed prompt templates on tasks in the domain alarm in

the MASSIVE dataset. The difference of the prompts are whether they select an example

for prompt construction and whether they contain information of the possible intent and

slot categories. The results for different prompts are listed in Table 6.8. Number of shots

indicate how many examples are provided for constructing a prompt for GPT-3, 1/12

means that in the domain alarm, 12 examples are provided and one of the examples is

selected to construct a prompt for GPT-3. The same concept applies to the other domains

in the following content.

We can observe that for each prompt template, adding one example selected from the

given examples can improve GPT-3’s performance. All four combinations are tested with
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Prompt Template #Shot With Keys Accuracy F1

Info_Extractor

0 ✘ 0.052 0.026

0 ✔ 0.483 0.314

1/12 ✘ 0.463 0.532

1/12 ✔ 0.669 0.776

NLU_Machine
1/12 ✘ 0.438 0.507

1/12 ✔ 0.643 0.751

Robot_Translator
0 ✘ 0.114 0.149

1/12 ✔ 0.686 0.781

Table 6.8: Results of GPT-3 with different prompts on domain alarm in MASSIVE dataset.

the Info_Extractor prompt template. Although adding only key information can already

improve the performance, the model works better when an example is provided. When

both example and key information are provided, the model reaches the best performance.

For the other two prompt templates NLU_Machine and Robot_Translator, the same results

have shown.

Table 6.9: Responses from GPT-3 with prompt template Info_Extractor.

User utterance i would like to find a flight from charlotte to las vegas that

makes a stop in st.louis

Without example \nIntent: FindFlight \nSlots: \n{\n \"From\": \"Charlotte\", \n

\"To\": \"Las Vegas\", \n \"Stop\": \"St. Louis\"\n}

With example intent:flight;from location:charlotte;to location:las ve-

gas;stop location:st. louis;

If we have a closer look at the responses GPT-3 generated, we can see that when

no example and key information are given, GPT-3 can already extract the important

information from the original utterance. However, without any knowledge about the

intent and slot labels, it is not able to predict the right intent and slot categories for the

extracted information. Furthermore, it outputs the response in free text that contains a lot

of special characters, which also increases the difficulty for finding a match in the ground

truth. With an example, however, GPT-3 tries to output the response in the format that

is shown by the given example. In other words, GPT-3 has the ability to extract correct

information from the user utterance even without an example and other extra information,

but it fails at producing a response that can be directly used in the next step. This also

explains why only one example and extra key information can help a lot at increasing its

performance.

Figure 6.10 shows the results of GPT-3 with the prompt template Robot_Translator on

the domains audio and iot. For both domains, adding an example into the prompt can

lead to better performance on the tasks. If we compare the results with both example

and key information on the domains audio and iot to the domain alarm, we can see that

GPT-3 works better on alarm and worse on audio. Hence, we can conclude that GPT-3

tackles tasks in some domains better than others.
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Domain #Shot Accuracy F1

Audio
0 0.364 0.492

1/8 0.523 0.657

Iot
0 0.557 0.652

1/14 0.645 0.720

Table 6.10: Results of GPT-3 with prompt template Robot_Translator on domain audio,

iot in MASSIVE dataset with key information.

Figure 6.3: Accuracy and F1 scores of GPT-3 with different prompt templates on domain

alarm in MASSIVE dataset.
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6 Experiment and Evaluation

Domain Semantic Parsing GPT-3 with Prompt
Accuracy F1 Accuracy F1

ATIS 0.295 0.266 0.109 0.098

Alarm 0.178 0.243 0.483 0.314

Table 6.11: Accuracy and F1 scores of semantic parsing and GPT-3 in zero-shot setting.

Domain Pre-traing (12) GPT-3 with Prompt
Accuracy F1 Accuracy F1

Alarm 0.608 0.618 0.669 0.776

Table 6.12: Accuracy and F1 scores of fine-tuning a pre-trained model and GPT-3 in few-

shot setting.

Figure 6.3 compares the accuracy and F1 scores of GPT-3 with different prompt templates

with example and key information provided. Three different prompt templates are used on

tasks in the domain alarm. An example and key information of the domain is provided for

all experiments. The results show that GPT-3 using the prompt template NLU_Extractor

has the worst performance, while GPT-3 with the prompt template Robot_Translator

has the best performance. This indicates that GPT-3 tackles the tasks better when an

appropriate prompt is designed. With this in mind, we should not ignore the importance

of prompt design when working with GPT-3.

6.3.4 Comparison of Three Approaches

From the three proposed approaches, the semantic parsing approach works without

any training examples, so it is a zero-shot approach, and GPT-3 with prompt can also

work under a zero-shot setting when no example is provided while making predictions.

Therefore, we can compare these two approaches under a zero-shot setting. Due to the

reason that semantic parsing needs to know the intent and slot labels to make a prediction,

we also provide GPT-3 the key information in the prompt to make a fair comparison.

Table 6.11 shows the results of semantic parsing and GPT-3 in a zero-shot setting. For

both ATIS dataset, we only tested GPT-3 without key information and we can see that

semantic parsing performs better compared to GPT-3 without domain-specific information.

However, in the domain alarm key information is provided, and GPT-3 outperforms

semantic parsing. We can conclude that when both approaches have same knowledge

about the tasks in a specific domain, GPT-3 works better at identifying the user intent and

filling in the slots.

When we provide one example for constructing prompt for GPT-3, the example is

selected from a set of examples. In the domain alarm, 12 examples are available for

selection. Therefore, we can compare GPT-3 with prompt with pre-trained model fine-

tuned using 12 examples. The results of both approaches are listed in Table 6.12. The key

information is provided to GPT-3 because the fine-tuned model has information about the

intent and slot classes. The results show that GPT-3 performs better at intent classification

and slot-filling tasks in the domain alarm. Although the model in the fine-tuning approach
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6.3 Evaluation

was already pre-trained on the ATIS dataset, it still performs worse on these tasks than

GPT-3.

In conclusion, each approach has its own strengths and weaknesses. Semantic parsing

does not require any training, therefore requires no training data, and for tasks in new

domain, we do not need to alter its structure. It is suitable for the type of tasks that is

defined close to natural language and can not handle abstract concepts. The semantic

parsing approach can be improved by using parsers with specific domain knowledge, so

that it can recognize the entities in a specific domain. Furthermore, if better heuristic rules

are designed for semantic parsing, the performance can also be increased.

As for the appraoch of fine-tuning a pre-trained model, the model can achieve a decent

performance when sufficient data is provided, or alternatively, pre-training the model on

a similar task can also increase the model performance. In this work, we use pre-trained

BERT as the backbone model of our approach, but we can also utilize other language

models for the task. The downside of pre-trained models is that for each new domain, the

model has to adapt to the tasks by re-structuring and training its classification layers, and

this adaptation process usually requires sufficient data.

Same as the semantic parsing approach, GPT-3 with prompt also requires no training

process, although we need to provide some information to the model so that it can generate

useful output. GPT-3 shows its power with little information, and it generates the output

that is most human-like. However, in order to generate a prompt that can maximize

the correctness of the model output, extensive experiments and testing are required,

and with only the help of few examples and a prompt, the model still can not reach the

performance of a pre-trained model trained with sufficient data. Furthermore, GPT-3

generates responses as free text, which causes difficulties when processing the data into

our required format. Another major downside is that the model is very expensive to use,

considering that GPT-3 charges per token. We want to describe the tasks in a specific

domain in detail, so that GPT-3 generates responses in the format we need, yet it increases

the token size of the prompt, therefore will result in a higher cost using GPT-3.
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7 Conclusion

This thesis proposes three approaches for solving intent classification and slot-filling tasks

in the Natural Language Understanding (NLU) component of a task-oriented dialog system.

The semantic parsing approach utilizes existing parsing methods such as part-of-speech

parsing, dependency parsing, and named-entity recognition to analyze the grammatical

structure of the user utterance and extract phrases that can represent the user intent

and slot information that can be further used to compare with the pre-defined labels

and make classifications based on the similarity between them. The second method is

to make use of a pre-trained BERT model and consider the intent classification task as a

sequence classification task and the slot-filling task as a token classification task. We add

two classification layers for both tasks and fine-tune the model on the dataset of the new

domain to adapt to new tasks. As large language models show their power on different

sub-stream tasks, we use GPT-3 with dynamically constructed prompts to solve NLU tasks

in different domains. If examples are available, we select one example that is most similar

to the given user utterance using sentence-BERT combined with cosine-similarity.

We have evaluated three approaches on the ATIS dataset and the MASSIVE dataset.

Differing from ATIS, which contains tasks in one domain, the MASSIVE dataset has a

collection of tasks in 18 different domains. We selected some of the domains to evaluate

the approaches. Experiments are conducted to explore the performance of each approach

on zero-shot and few-shot learning.

Semantic parsing, as a baseline for the zero-shot methods, does not perform well in

intent classification and slot-filling tasks. It is not feasible to enable a pre-trained model to

solve tasks in new domains without any examples due to its structural nature. However,

GPT-3 outperforms the semantic parsing approach when the intents and slots information

is provided. For tasks that have limited examples, we can utilize GPT-3 with an example

provided in the prompt and few-shot learning with a pre-trained BERT model. When we

adapt the pre-trained model directly to a new domain, it can not achieve good performance

without sufficient training data. However, the model works much better with few examples

if it is first pre-trained on a similar task. And yet, if we provide the same amount of data to

the BERT model pre-trained on a similar task and GPT-3 with the prompt, although only

one example is selected for the prompt construction for GPT-3, GPT-3 still outperforms

the fine-tuned pre-trained model.

In conclusion, we can utilize semantic parsing in tasks that are defined close to the

utterance a user may use in the command and avoid the tasks that contain a lot abstract

concepts. Fine-tuning a pre-trained method, however, should be applied to tasks where

enough annotated data is available. Alternatively, we can also pre-train the model on

similar tasks in advance so that it can adapt to new tasks with few examples. GPT-3 shows

its power with prompts that contain domain-specific information. It is important to define

the desired output format in the prompt so that GPT-3 produces responses that can be
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easily used in the down-stream components of NLU without a complicated post-processing

step. In the meantime, we also need to pay attention to the cost of using GPT-3, as it is not

free of charge.

In future work, for semantic parsing approach, we can apply parsers that have specific

domain knowledge and design better heuristic rules for extracting the intent and slot

phrases. As for fine-tuning a pre-trained model, we can utilize other language models and

use them as backbone models for fine-tuning for new tasks. To reduce the experimental

costs, we can combine prompt design with other large language models such as OPT [39]

and BLOOM [35] instead of GPT-3.
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