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ABSTRACT 
Our research addresses the problem of error correction in 
speech user interfaces. Previous work hypothesized that 
switching modality could speed up interactive correction 
of recognition errors (so-called multimodal error 
correction). We present a user study that compares, on a 
dictation task, multimodal error correction with 
conventional interactive correction, such as speaking 
again, choosing Tom a list, and keyboard input. Results 
show that multimodal correction is faster than 
conventional correction without keyboard input, but 
slower than correction by typing for users with good 
typing skills. Furthermore, while users initially prefer 
speech, they learn to avoid ineffective correction 
modalities with experience. To extrapolate results from 
this user study we developed a performance model of 
multimodal interaction that predicts input speed including 
time needed for error correction. We apply the model to 
estimate the impact of recognition technology 
improvements on correction speeds and the influence of 
recognition accuracy and correction method on the 
productivity of dictation systems. Our model is a first step 
towards formalizing multimodal (recognition-based) 
interaction. 

Keywords 
multimodal interaction, interactive error correction, 
quantitative performance model, speech and pen input, 
speech user interfaces. 

INTRODUCTION 
As speech recognition technology matures, speech user 
interfaces have begun to replace traditional interfaces. For 
example, speech systems replace live human operators in 
automated call centers, and voice input is available as an 
alternative to keyboard input in automatic dictation 
systems. Speech recognition technology, however, comes 
with inherent limitations. Our research addresses the 
problem of recognition errors due to imperfect 
recognition. Assuming that recognition remains imperfect 
despite continued progress in recognition algorithms 
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(even human recognition is imperfect), we investigate 
interactive error correction methods. Efficient and 
gracetil error correction is crucial in the design of speech 
user interfaces (as noted, for example, in [2]). 

We conducted an informal survey of interactive 
correction methods used in current speech recognition 
applications. These applications used the following four 
correction methods: repeating using contintmus speech 
(from here on respeaking), typing, choosing from a list of 
alternative words, and clarification dialogues. 
(Clarification dialogues allow the user to make 
corrections within the context of a spoken dialogue.) 
What are the drawbacks of these methods? Previous 
research shows that both correction by respeaking and by 
choosing from a list can be ineffective in continuous 
speech applications [I 71. Correction by typing assumes 
keyboard input. Keyboard input is not available in some 
applications, and it is effective only for users with good 
typing skills. Clarification dialogues are appropriate 
mostly for one category of speech user interfaces, so- 
called conversational speech applications [3]. Our work 
currently focuses on non-conversational applications. 

Previous work hypothesized that error correction could 
benefit from switching multimodal [12, 131. It is 
commonjy believed that redundant use of several 
modalities contributes to the ease of human-to-human 
communication. Multimodal human-computer interfaces 
aim to benefit from redundant use of modalities in 
human-computer interaction in similar ways. Our research 
explores the benefits of multimodal interaction in the 
context of error correction. Since words that are confUsed 
by automatic recognition systems tend to be different 
across modalities, switching between modalities for 
correction should eliminate repeated recognition errors; 
but to-date, no empirical study with real recognition 
systems has confirmed this hypothesis. 

To test this hypothesis, we have implemented multimodal 
interactive correction methods [ 10, 171. We integrated 
multimodal correction in an automatic dictatio:n system to 
build a prototype multimodal dictation system. 
Recognition output is displayed on the screen, and the 
user locates recognition errors by selecting misrecognized 
words. The user corrects by deleting, inserting, or 
replacing misrecognized words. In multimodal correction, 
there is a choice of different correction modalities: 
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repeating input using continuous speech, (verbal) spelling, 
handwriting, and editing using gestures drawn on a touch- 
sensitive display (e.g., deleting words with an X or 
scratching gesture, or changing the position of the cursor 
with a caret gesture). This paper describes a user study of 
interactive multimodal error correction and presents a 
predictive performance model of multimodal, recognition- 
based interaction. Recognition-based means that user 
input must be interpreted using an automatic recognition 
system [ 131. 
We begin by describing our empirical evaluation of 
interactive error correction on a dictation application. The 
main goal of the user study was to provide empirical 
evidence for the hypothesis that multimodal correction 
expedites error correction in speech user interfaces. The 
study shows that unimodal correction (using the same 
modality for input and correction) is ineffective, and that 
multimodal correction is effective. Furthermore, the study 
compares current interactive correction methods (with and 
without keyboard input) with multimodal correction 
methods. Finally, the study investigates which modalities 
users prefer by analyzing usage frequencies of different 
modalities. To test whether accuracy influences modality 
choice, we correlated usage frequency with modality 
accuracy. Our longitudinal analysis of usage ti-equencies 
shows that learning effects do occur. 

We then describe a simple performance model of 
multimodal interaction that we apply to error correction in 
order to extrapolate the results of the user study. 
Predictive models are particularly useful in multimodal 
interfaces, since they abstract from current recognition 
performance. Previous work proposed a quantitative 
performance model for speech-only interfaces [I 11. This 
model predicted task completion time using critical path 
analysis. The model accounts for imperfect recognition by 
modeling error correction as repetition of input. The 
authors reported a good match between model predictions 
and empirical data. To our knowledge, the model was 
never applied to multimodal interaction. 

The performance model presented in this paper predicts 
the interaction throughput of multimodal, recognition- 
based interaction. Throughput includes the time necessary 
for error correction. We apply the model to predict what 
correction accuracies are necessary to achieve certain 
correction speeds. For example, we predict what accuracy 
is necessary to beat speed of correction by typing for 
people with poor, average, and good typing skills. Using 
this model, we extrapolate the results of our user study to 
the performance of commercially available dictation 
recognizers. The model is validated using data from the 
user study. In conclusion, we discuss implications of this 
work for document creation using speech recognition, 
error correction in speech user interfaces, and future 
multimodal applications. 

EMPIRICAL EVALUATION OF A MULTIMODAL 
DICTATION SYSTEM 

This section describes our empirical evaluation of 
interactive multimodal error correction in the context of a 
prototype multimodal dictation system. The user study 
pursued three research goals: providing empirical 
evidence for the effectiveness of multimodal correction, 
comparing multimodal with current interactive correction 
methods, and investigating user preferences between 
modalities. 

Experiment Conditions and Method 
We used a prototype multimodal dictation system that 
enhances JANUS, a state-of-the-art large vocabulary 
speech recognizer [ 141, with multimodal interactive error 
correction. For handwriting and spelling recognition, we 
used specialized recognizers: Npen++ [9] and Nspell [6]. 
All recognizers were constrained to the same 20,000 word 
vocabulary. For gesture recognition, we enhanced a 
template matcher [ 151 with heuristics. More details are 
described in [ 171. 

Participants read aloud either one or more sentences, 
which were chosen from newspaper text. After reading a 
sentence, the recognition result was displayed on the 
screen. Then, participants visually located recognition 
errors, selected them by tapping on the screen, and 
corrected them using one of the available correction 
methods. Which methods are available depended on the 
experimental condition. Participants were instructed to 
correct all errors, as quickly as possible (within the 
constraints of the condition). 
Experimental conditions compared multimodal correction 
to conventional correction with and without keyboard 
input (“Keyboard&List” and “Respeak&List” condition, 
respectively). We considered correction by keyboard and 
mouse input separately in the “Keyboard&List” 
condition, differentiating participants based on their 
typing skill. Table 1 shows the experimental conditions 
by indicating for each experiment condition which of the 
different correction methods (shown in the first column) 
are available. We decided on a within-subject, repeated 
measures design to minimize the impact of the known 
high variation of recognition accuracy across users. 

Table 1: Experimental conditions, with the available 
correction methods shown as rows. 
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Fifteen participants were recruited from the local campus 
community, five in each of the categories of typing skill 
(slow, average, and fast typist). Participants included 
students and administrative staff, they were balanced in 
gender, and most participants did not have any prior 
experience with speech-recognition software. 

Before the study, participants learned to use the different 
correction modalities in a 45-60 minute long tutorial and 
practice session. After this session, all participants 
showed sufficient familiarity with the different correction 
methods on trial tasks. The participants then proceeded to 
the three experimental sessions, one for each condition. 
Three different sets of sentences were randomly assigned 
to the experimental sessions using a 3x3 Latin Square, to 
avoid order effects. After completing the experimental 
sessions, participants filled out a post-experimental 
questionnaire. The participants were asked which 
modality they perceived to be most efficient, and which 
modality they would prefer if all modalities had equal 
accuracy. 

Data Collection and Evaluation Measures 
During experimental sessions, we collected data in two 
ways. First, the prototype multimodal dictation system 
created a time-stamped record of all spoken, written, and 
typed user interaction. This record was later manually 
annotated with the correct system response for each 
interaction, to assess recognition accuracies. For analysis 
of modality choice patterns, the record also contains for 
each recognition error the sequence of modalities used, 
until successful correction. All sessions were videotaped - 
the second method of data collection. 

We measured performance at the level of a single input 
modality using the following three measures: input rate 
(i.e., how many words can a user enter per minute), 
system response time (i.e., how much time does automatic 
recognition require), and recognition accuracies (i.e., the 
probability of recognizing a word correctly). To 
distinguish between initial input and input occuring 
during correction of recognition errors, we use the term 
correction accuracy whenever we discuss recognition 
accuracy on correction input. In other words, the 
correction accuracy is the probability of success for the 
current correction attempt. 

To assess performance at the task-level, we defined two 
measures. Correction speed is the average number of 
errors that can be successfully corrected per minute, 
including multiple correction attempts when necessary. 
For example, a correction speed of 6 cpm (corrections per 
minute) means that a user spends on the average 10 
seconds to correct each misrecognized word. System 
throughput is the average number of words that can be 
sucesstilly entered per minute, including the time 
necessary for the correction of recognition errors. 

Results 
Research Question I: Why is multimodal correction more 

efective than unimodal correction? 

Answer: To confirm the hypothesis that unimodal 
correction (by repeating input in the same modality) is 
less accurate than multimodal correction, we calculated 
the correction accuracy for consecutive correction 
attempts in the same modality. Note that the counter for 
the correction attempt is reset aRer each switch of 
modality, even if the same recognition error is being 
corrected. For example, if a user corrected a recognition 
error in three attempts, using speech for the first two 
attempts, and handwriting for the final attempt, this final 
attempt is assigned to attempt category “l”, being the first 
attempt after a switch of modality. 

Figure 1 shows correction accuracies assuming that the 
original input was in speech. If users repeat input in 
speech, correction accuracy is much lower than if users 
switch to a different modality (40% for speech, 75% and 
80% for handwriting and spelling). If multiple correction 
attempts are necessary, correction accuracy in successive 
attempts remains high if the user switches modality after 
each attempt. In terms of Figure 1, this means staying 
within category “1”. An analysis of variance confirms that 
corrections in the same modality are significantly more 
difficult to recognize (F(2,6)=36.2, pCO.01). 
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Figure 1: Deterioration of accuracy of repeated 
correction attempts in the same modality 

Research Question 2: How does multimodal correction 
compare with current interactive correction methods? 

Answer: Table 2 shows the correction speed in corrections 
per minute (in short cpm) for conventional keyboard-free 
correction (“Respeak&List”), correction by keyboard and 
mouse (“Keyboard&List”), and multimodal correction. 
Multimodal correction is faster than conventional 
keyboard-less correction by respeaking and choosing 
from alternatives (confirmed by post-hoc comparisons). 
The comparison to correction by keyboard and mouse 
input depends on the user’s typing skill. We measured a 
range of correction speeds in the “Keyboard&List” 
condition, which corresponds to different typing skills. 
(The average typing rates of our participants on plain text 
were 23, 35, and 40 wpm for the slow, average, and fast 
typists, respectively). While multimodal correction is 
about as fast as correction by typing for users with 
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average typing skills, it is slower for users with good 
typing skills. 

Table 2 also shows a range of speeds for multimodal 
correction, which corresponds to different variations of 
multimodal correction. For experienced users, we 
measured 6.8 cpm, which is almost as fast as correction 
by typing for users with good typing skills. Speed of 
multimodal correction increases with experience because 
users learn to avoid ineffective correction methods. 

Correction Method 

Respeak & List 

Keyboard & List 

Correction Speed [cpm] 

2.3 

5.9 - 7.3 

Multimodal 4.5 - 6.8 

Table 2: Speed of conventional and multimodal 
correction 

Research Question 3: Which modality do users prefer? 

Answer: We analyzed the development of user 
preferences in the course of the experiment by estimating 
modality usage frequencies every forty correction 
interactions (which corresponds to one time unit in Figure 
2 below) and by determining the correlation between 
usage frequency and correction accuracy. A positive 
correlation indicates that users prefer more accurate 
modalities. 

Figure 2 shows how modality choice changed in the 
course of the experiment for one typical user. Corrections 
by handwriting were the most accurate modality for this 
user. This user clearly learns to prefer handwriting over 
the less accurate modalities of speech and choice from a 
list. In general, across all users, the correlation between 
usage frequency and correction accuracy becomes 
significantly more positive with experience (F(2,4)=7.25, 
pcO.05) i.e., users learn to prefer more accurate 
modalities. 
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Figure 2: Usage frequencies of different modalities for 
a typical user. The time axis represents the duration of 
the experiment (-1 hour) 

The initial bias towards speech is consistent with data 
6om the post-experimental questionnaire, in which 
participants indicated that they would prefer speech if it 
had the same accuracy as other modalities. 

PERFORMANCE MODEL OF MULTIMODAL 
RECOGNITION-BASED INTERACTION 

In speech-based, and more generally in multimodal 
interfaces, the performance of the recognition systems has 
a huge impact on overall interface performance. To 
extrapolate the results of our user study of interactive 
error correction to future recognition performance, we 
developed a simple performance model of multimodal 
interaction that predicts interaction throughput as a 
function of recognition performance. We estimated the 
basic model parameters based on data from our user study 
and applied the model to multimodal error correction. 

The Performance Model 
Our performance model of recognition-based multimodal 
human-computer interaction predicts interaction 
throughput. We chose interaction throughput as the 
performance variable because a rational user can be 
expected to prefer methods that minimize effort, and time 
is the most important factor determining user effort Since 
our definition of throughput includes the time necessary 
to correct any recognition errors, this measure combines 
time factors and recognition accuracy into a single 
performance measure. The following paragraphs describe 
the model in the context of error correction in dictation 
applications to derive predictions for the correction speed; 
but it can be generalized to other situations as well. 

The model uses four basic parameters: recognition 
accuracy, input rate, recognition speed, and overhead 
time. The recognition accuracy WA(m) is defined as the 
probability of recognizing a word (or more generally, an 
input item) correctly using modality m. (In the context of 
error correction, we use the term correction accuracy 
CA(m).) The input time T,,&m) is the average time to 
input a word in modality m and is measured in seconds 
per word. We denote its inverse, the input rate (or speed), 
as Vi,,&m) (e.g., speaking and handwriting rate). The 
speed of recognition is captured in the real-time factor 
R(m). It indicates how many times longer than real-time 
automatic recognition in modality m takes. For example, 
R=l means recognition finishes at the same time as user 
input, without any delay. Lastly, all other times necessary 
to complete an interaction in modality m are summarized 
in the overhead time T ove,h&rn), which is measured in 
seconds per correction attempt. The overhead includes the 
time to plan or select an appropriate interaction method 
and the time to initiate an interaction, such as moving the 
hand to the screen to write or gesture on it. Hence, the 
overhead time depends both on modality and interface 
implementation. 

We model a recognition-based multimodal interaction by 
the following steps: the user plans the interaction, chooses 
a modality, provides the necessary input, waits for the 
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system to interpret the input, and finally decides whether 
correction is necessary. 

How much time does such a multimodal interaction 
require? The steps of planning, choosing the modality, 
and the preparation of the actual input correspond to the 
overhead time. Then, user input in modality m and its 
automatic interpretation takes R(m) times &,,(m) 
seconds. We therefore model a single interaction with the 
following simple linear additive relationship: 

Equation 1: Basic Decomposition of Time per 
interaction into Overhead, Input, and System 
Response Time 

Based on this estimate for the time for one correction 
attempt, the correction speed is the quotient of 60 seconds 
and the total time to correct an error. Since error 
correction attempts occur sequentially, the average total 
time is the product of the number of attempts and the time 
per attempt. Denoting the average number of corrections 
attempts until success in modality m as 
correction speed can therefore be estimated as: 

N(m), the 

60sec 

Equation 2: Factorization of Correction Speed into 
Time per Interaction and Interaction Attempts 

Assuming a constant recognition accuracy across repeated 
correction attempts (a simplifying assumption, as Figure 1 
showed), the average number of interaction attempts until 
success can be developed into a geometric series, and the 
expected average number of correction attempts can be 
calculated as N(m)=I/CA(m). 
To apply the model, some of its parameters are replaced 
by standard estimates, while other parameters correspond 
to the independent variables of the problem under 
question. For example, to predict the correction speed as a 
function of correction accuracy, we replace input rates by 
standard estimates, set the overhead times and real-time 
factors to certain values, and use correction accuracy as 
independent variable. 

Speech Spelling Handwriting 

Input Rate VIR,,Ut 47 (5) 26 (6) 18 (4) 
Iwpml 

CA [%] 36 (23) 80 (17) 86 (6) 

Realtime Factor R 2.6 1.5 1.3 

T Overhead 4.3 (0.7) 3.5 (1.1) 
[sec./correction] c”;t: ) 

Table 3: Model parameters for multimodal error 
correction. The widths of 95% confidence intervals are 
shown in parentheses. 

How can the model parameters be estimated? Recognition 
accuracy and speed are standard performance parameters 
for any recognition system and easily measured. Modality 
input rates have to be measured once; for standard input 
modalities (such as handwriting or typing), they can be 
found in the literature. Finally, overhead times depend on 
interface implementation and modality. 

We divided the data from our fifteen participants into a 
training set (to estimate model parameters, cf. Table 3) 
consisting of nine participants and a test set consisting of 
six participants, two in each category of typing skill. 
Table 3 shows estimates measured on the training set for 
input rate (in words per minute), correction accuracies CA 
(in %), realtime factors, and overhead times (in seconds 
per correction). Some of these estimates will be used for 
predictions in following subsections. 

Some readers may know that current spelling and 
handwriting recognizers report accuracies of 90% and 
more on standard benchmark tasks, raising the question 
why we measured much lower speeds for multimodal 
correction in our study? The performance Iof current 
recognizers is lower on correction input than on standard 
benchmarks because corrections are more difficult to 
recognize. More details can be found in [ 171. 

Application to interactive Multimodal Error Correction 
This section applies our model to the following three 
questions about interactive error correction in a 
multimodal dictation system: 

1) How does correction speed depend on rlecognition 
accuracy and modalities, and how does this affect the 
speed of multimodal versus unimodal correction? 

2) What recognition accuracy is necessary to bleat typing 
in correction speed? 

3) What is the total system throughput of a multimodal 
dictation system as a function of dictation accuracy 
and error correction? 

Correction Speed with Imperfect Recognition 
Correction speed depends on the performance of available 
recognizers and on the modality. To predict correction 
speed as a function of recognition performance and 
modality m, TAttempt (m) in Equation 2 is replaced by 
Equation 1, and we used estimates for input rates as 
shown in Table 3. We then assumed recognition in real- 
time for all modalities (R=l) in anticipation of faster 
computers. Finally, to normalize for implementation 
specific differences in the overhead time across 
modalities (as shown in Table 3), we set T o,&ead =3.O 
seconds for all modalities, which is more optimistic than 
the measured values. 

Figure 3 shows that at best, with 100% recognition 
accuracy, correction by respeaking achileves 24 
corrections per minute (cpm), and correction by 
handwriting 15 cpm. This compares favorably to 
correction by typing for users with good typing skills 
(>12 cpm). 
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Figure 3: Predicted Correction Speed for Repeating in 
Continuous Speech, Spelling, and Handwriting 

Furthermore, we can use Figure 3 to predict under what 
conditions unimodal correction by speech could be as 
efficient as multimodal correction. Since speech is the 
fastest modality for text input, speech would also be the 
most effective correction modality in a dictation system, 
if recognition was accurate enough. For example, 
multimodal corrections by spelling are 80% accurate with 
current recognizers (cf. Table 3). Figure 3 predicts that 
corrections by speech would be faster if they were more 
than 60% accurate, across repeated correction attempts. 
While our recognizer achieved only 36% accuracy on 
speech corrections (cf. Table 3), adapting the speech 
recognizer on correction input can significantly increase 
correction accuracy [ 161. 
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Figure 4: Repair accuracy to beat typing in correction 
speed 

Comparing Multimodal with Typing Correction 
To compare multimodal correction and correction by 
typkL we answer the following question: Which 

correction accuracy is necessary to beat typing in 
correction speed, across different typing skills? 

This question can be easily answered using our model by 
comparing the speed of multimodal correction as a 
function of correction accuracy with the speed of 
correction by typing, as shown in Figure 4. 

For example, fast non-secretarial typists can correct up to 
15 errors per minute using keyboard and choice from the 
N-best list (as measured in our study). To reach this 
correction speed, accuracy for corrections by repeating in 
continuous speech would have to be recognized at more 
than 65% accuracy. Corrections by spelling would have to 
be 85% accurate, and corrections by handwriting almost 
100% accurate. Hence multimodal correction would beat 
correction by typing even for users with good typing 
skills if correction accuracy could be further improved. 

Throughput of Dictation Systems 
Moving beyond the issue of error correction, this section 
discusses implications on the overall text production 
process. To assess the potential productivity gain of 
multimodal input methods, we first apply the model to 
predict system throughput as a function of dictation 
accuracy and error correction, and then compare the 
system throughput of three text production methods: a 
multimodal dictation system (i.e., first dictate text, then 
correct multimodally without any keyboard input), a 
conventional dictation system (i.e., first dictate, then 
correct using keyboard and choosing from alternatives) 
and a standard text editor (i.e., type the whole text). Note 
that our usage of the term throughput is different from 
some commercial vendors of dictation systems who 
exclude the time necessary for correction. 

Our performance model can be applied to predict the 
throughput of dictation systems as follows. Text 
production with a dictation system consists of three steps: 
dictation, automatic interpretation of spoken input, and 
correction of recognition errors. How much time do these 
steps require? A user with speaking rate Vmp,,,(dictate) (in 
wpm) dictates wordN= V,~,,(dictate) * 1 minute words in 
one minute. Then, the speech recognizer needs 
T,=R(m)*Imin to interpret the dictation input. During 
automatic interpretation of the dictation input at accuracy 
WA(dictate), on the average errorN=wordN*(l- 
WA(dictate)) recognition errors occur. The correction of 
these recognition errors using correction method m 
requires T2=errorN*Tcc,,red (m) seconds, where Tcorrecr (m) 
is the inverse of the correction speed VcO,.mcl (m) (as 
derived in Equation 2). The total time to input wordN 
words including correction time is thus T= T, + Tz, 
leading to a simple formula for the throughput as function 
of correction method and dictation accuracy. 

Figure 5 shows the system throughput for different text 
production methods. We extrapolate results from our user 
study, which were achieved with a dictation accuracy of 
75%, to current commercial dictation recognizers that 
achieve 90% accuracy in real-time. Commercial 
recognizers achieve higher accuracies by adapting the 
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speech recognizer to the user’s voice. We decided not to 
adapt our recognizer to each participant to keep the length 
of experimental sessions within acceptable limits. 

r--- 
Text Editor 

Conventional 
Dictation System 

‘Multimodal Dictation 
System 

I 
0 10 

/ I 
20 30 40 50 60 

Dictation System Throughput [wpm] 
__~ ___-. ~~~... 

Figure 5: Predicted throughput for different text 
production methods, across typing skills, for 90% 
dictation accuracy. 

Since typing speed obviously has a large impact on this 
comparison, the results are tabulated across different 
typing skills. For the multimodal dictation system, “poor” 
refers to novice users and “good” refers to experienced 
users. Since the experiment did not cover very slow 
typists, results for the slow category are based upon 
predictions from the performance model. As can be seen, 
a multimodal dictation system compares favorably to fast 
(non-secretarial) typing of 40 wpm - without requiring 
any keyboard input. For users with good typing skills, a 
conventional dictation system is still the most efficient 
text production method. 

Performance Model Validation 
We validated our performance model by comparing 
model predictions with results of our empirical 
evaluation. As measure of the goodness of fit for our 
model, we use the average absolute error of model 
predictions, as suggested elsewhere [7]. 

(Gow” typists) 

Keyboard & List 6.2 
(average typists) 

Keyboard & List 7.3 
(“fast” typists) 

7.0 13% 

7.2 -1% 

I I 

Table 4: Validation correction speed predictions 

Table 4 compares the correction speed predictions with 
the measured values, averaged across the appropriate 
subsets of the test set. The average absolute error is 17% 
for multimodal correction (N=12) and 12% for correction 
using keyboard and list (N=6, two test participants in each 

of the three categories of typing skill). These absolute 
errors are within reasonable range for such empirical 
models - despite the simplifying assumpti,ons of the 
model as presented here. Predictions of dictation system 
throughput (input speed including error correction) match 
empirical data equally well (cf. [ 171). 

4. DISCUSSION 
We first raise several concerns about the external validity 
of our study and show how model predictions alleviate 
them. We then discuss implications of this research on 
dictation and other (multimodal) speech recognition 
applications. 

Validity of Results 
As key result of the user study we found that accuracy 
decreases in repeated correction attempts unless modality 
is switched. This observation appears to generalize across 
modalities, and across state-of-the-art recognition systems 
[17]. The magnitude of this effect, and thus whether 
multimodal correction is faster than unimodal correction, 
depends on the recognition system used. For current 
recognition systems, our study showed that there is a gain 
in using multimodal correction. But if accuracy was 
significantly improved (by using different recognition 
algorithms on correction input, cf. [ 16]), unimodal 
correction by respeaking could outperform multimodal 
correction. Model predictions help to decid.e whether 
multimodal correction is beneficial. 

A second external validity concern is the influence of 
implementation details. We argue that they do not change 
our main results. Furthermore, effects of implementation 
modifications can be estimated using our performance 
model. For example, halving the overhead time (i.e., the 
time spent on locating errors in recognition output and on 
starting a correction) for each modality would increase the 
speed of multimodal correction to the level of fast 
unskilled typing - without any further improvement in 
recognition accuracy! Overhead time could be 
significantly reduced, for instance, by automatically 
highlighting recognition errors. 

Finally, our study did not control for how users switch 
between dictation and error correction in the overall 
process of text production. While this may have a 
significant impact on the absolute text production speeds, 
it does not affect the comparison of different correction 
methods - the focus of our study. 

Implications for Dictation Systems 
Related work suggested that automatic speech tecognition 
technology could significantly increase productivity on 
dictation tasks [4, 51. However, formal evaluations of 
dictation systems reported either only small productivity 
increases [l], or lack of user acceptance despite 
significant productivity increases [S]. 

Our results suggest that not only high recognition 
accuracy, but also adequate error correction is crucial to 
ensure high text production speeds in dictation systems. 
Furthermore, the productivity gain of dictation systems 
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may be smaller than widely assumed. First, most potential 
users of dictation systems have good typing skills, and our 
results showed that for skilled typists, the productivity 
gain of dictation systems is rather modest. Second, studies 
suggest that for creation of documents, not input speed, 
but the skill required to compose text is the main limiting 
factor [4]. 

Implications for OfheF Speech Recognition Applications 
Our study explored the trade-off between speed and 
accuracy of different modalities only for text input. The 
most efftcient input modality depends not only on input 
speed and accuracy, but also on the task. For example, for 
entry of numerical data, handwriting digits is about as fast 
as speech. We believe that the flexibility to change 
modality depending on the task is a great advantage of 
future multimodal input technologies. 

Furthermore, applications other than dictation may limit 
which alternative modalities are available. However, error 
correction even benefits from just one alternative 
modality. If speech is the only modality available (e.g., in 
telephone applications), the speech user interface designer 
should consider switching between different speech 
modalities, such as continuous, discrete, and spelled 
speech. 

CONCLUSIONS 
This paper provides useful insights for designers of 
speech (and multimodal) user interfaces. Our study 
showed that multimodal correction is faster than 
conventional correction without keyboard input. 
Furthermore, we showed that recognition accuracy has a 
significant influence on user choice between modalities: 
with practice, users learn to avoid ineffective modalities 
in favor of more effective modalities. Our research 
suggests that multimodal input methods are particularly 
attractive for applications that do not allow fast keyboard 
input (e.g., small mobile devices), and for users with poor 
typing skills. 

The performance model of multimodal human-computer 
interaction presented in this paper is a fust step towards 
formalizing multimodal interaction. We showed how 
predictions from such a model help answer important 
design decisions in speech user interfaces, effectively 
complementing results from empirical evaluations. Future 
work may generalize the model to provide a general 
framework for multimodal interaction. 
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