
MODELING AND EFFICIENT DECODING OF LARGE VOCABULARYCONVERSATIONAL SPEECHMichael Finke, J�urgen Fritsch, Detlef Koll and Alex Waibel(�nkem,fritsch+,koll,ahw)@cs.cmu.eduInteractive Systems Inc. Pittsburgh (USA)ABSTRACTCapturing the large variability of conversational speechin the framework of purely phone based speech recog-nizers is virtually impossible. It has been shown ear-lier that suprasegmental features such as speaking rate,duration and syllabic, syntactic and semantic structureare important predictors of pronunciation variation. Inorder to allow for a tighter coupling of these predictorsof pronunciation, duration and acoustic modeling a newrecognition toolkit has been developed. The phonetictranscription of speech has been generalized to an at-tribute based representation, thus enabling the integra-tion of suprasegmental, non-phonetic features. A pronun-ciation model is trained to augment the attribute tran-scription to mark possible pronunciation e�ects which arethen taken into account by the acoustic model induc-tion algorithm. A �nite state machine single-pre�x-tree,one-pass, time-synchronous decoder is presented that ef-�ciently decodes highly spontaneous speech within thisnew representational framework.1. INTRODUCTIONMost speech recognition systems rely on dictionaries thatcontain few alternative pronunciations for most words. Innatural speech, however, words seldom adhere to their ci-tation forms. The failure of ASR systems to capture thisimportant source of variability is potentially a signi�cantsource for recognition errors, particularly in spontaneous,conversational speech. The availability of phoneticallytranscribed corpora led to work on automatic inferenceof pronunciation variation. Unfortunately, increasing thenumber of variants per dictionary entry based on a pro-nunciation model means increasing the confusability be-tween dictionary entries, and thus often leads to an actualperformance decrease. In [3] we have introduced speak-ing mode as means to reduce confusability by probabilis-tically weighting alternative pronunciations depending onthe speaking style. Pronunciation modeling and acousticmodeling were introduced as being dependent on a widerrange of observables ranging from speaking rate and du-rations to syllabic, syntactic and semantic structure. Allof these contributing factors were subsumed in the notionof speaking mode [7].In this paper we present a new speech recognition toolkitthat was speci�cally designed to allow for this more exi-ble modeling of conversational speech. The notion of con-text is broadened from its purely phonetic de�nition to acontext that incorporates all sorts of features and predic-tors: dialect, gender, word or syllable position, durations,speaking rate, fundamental frequencies, HMM state etc..

This a�ects all levels of modeling within the recognitionengine, from the way words are represented in the dictio-nary, through pronunciation modeling, duration model-ing to acoustic modeling. In the second part of the paperwe will introduce strategies to e�ciently decode conversa-tional speech within the mode dependent modeling frame-work. A one-pass, time synchronous decoder is describedand evaluated on Switchboard, a human-to-human tele-phone corpus.2. MODELING CONVERSATIONALSPEECHPronunciation di�erences represent one important sourceof variability in spontaneous, conversational speech thatis not well accounted for by current recognition systems.The speaking mode dependent modeling framework pro-posed earlier [7, 3] has shown signi�cant gains in terms ofword accuracy through a more detailed modeling of thesurface form of the pronunciation.2.1. Pitfalls of Phonetic RepresentionJust as the phonetic representation of careful speech is aschematization of articulatory and acoustic events, a pho-netic transcription of sloppy speech must be a gross sim-pli�cation: pronunciation models that implement purelyphonological mappings generate phonetic transcriptionswhich are underspeci�ed in terms of durational and spec-tral properties. Thus, reduced variants as predicted by apronunciation model end up being expected to be pho-netically homophonous (e.g. the fast variant of \sup-port" being pronounced as /s/p/o/r/t/ phonetically ho-mophonous with \sport"). But, for such homophony tobe created, not only would the unstressed vowels have tobe deleted, but the durations of the remaining phoneswould have to take exactly the same values that theyhave in words not derived via fast speech vowel reduction.Similarily, fast speech intervocalic voicing in a word like\faces" cannot be precisely represented as /f/ey/z/ih/z/phonetically homophonous with \phases", unless both thevoice value of the fricative as well as the durational rela-tionship between the stressed vowel and the fricative havechanged.2.2. From Phones to Attribute InstancesInstead of starting from a purely phonetic representa-tion where a word is transcribed as a sequence of phonesour recognition toolkit is based on attributes. Startingpoint is a set of attributes each of which can be eitherbinary, discrete (i.e. multi-valued), or continuous valued.The basic set of attributes used to build a speech recog-nizer are articulatory features (e.g. vowel, high, nasal,



reduced), stress, word position (e.g. word begin/end, syl-lable boundary), word class (e.g. pause, function word)and HMM state (e.g. begin/middle/end state). A word wis transcribed as a sequence of instances (�0�1 : : : �k) whichare bundles of instantiated attributes (i.e. attribute-valuepairs). The �lled pause \um" for example is transcribedby a single instance � consisting of truth values for the fol-lowing binary attributes (pause, nasal, voiced, labial...).2.3. Pronunciation ModelingThe instance based representation allows for a more care-ful modeling of pronunciation e�ects as observed in sloppyspeech. Instead of predicting the expected phonetic sur-face form based on a purely phonetic context we aug-ment the canonical instance-based transcription proba-bilistically. The pronunciation model predicts instancesfor a set of attributes: reduced, deleted, nasalized, shifted,duration, speaking rate etc.. That means that instead ofmapping from one phone sequence to another as describedin 2.1. the pronunciation model is trained to predict pro-nunciation e�ects/phenomena:p(�0kj : : : �k�1[�k]�k+1 : : :)The pronunciation variants are derived by augmenting theinitial transcription by the predicted instances�0�1 : : : �k 7! (�0 � �00)(�1 � �01) : : : (�k � �0k)and they are weighted by the probabilityp(�00�01 : : : �0k) = 1Z kY�=0 p(�0�j : : : ���1[��]��+1 : : :)where Z is a normalizing constant.Prediciting pronunciation variation by means of augment-ing the phonetic transcription by expected pronunciatione�ects as described above avoids possibly homophonousrepresentation of variants [3]. The original transcriptionis preserved and it is left to the duration and acousticmodel building process to exploit the augmented annota-tion.2.4. Acoustic ModelingDecision trees are grown to induce a set of context depen-dent duration and acoustic models. The induction algo-rithm allows for questions with respect to all attributesde�ned in the transcription. Thus, starting from the aug-mented transcription context dependent modeling meansthat the acoustic models derived depend on the phoneticcontext as well as the pronunciation e�ects and all speak-ing mode related attributes. This leads to a much tightercoupling of pronunciation modeling and acoustic modelingbecause model induction takes the pronunciation predic-tors into account as well as acoustic evidence.3. FINITE STATE MACHINE DECODERThe primary goal when designing the LVCSR decoder wasto build a toolkit as exible as possible to do research onconversational speech as described above and at the sametime allow for e�cient decoding runs. For the sake of co-herence of training, testing and rescoring results the samedecoder was supposed to take care of �nite state gram-mar decoding and forced alignment of training transcripts,large vocabulary statistical grammar decoding and latticerescoring. In the following we present a single-pre�x-tree

time-synchronous one-pass decoder which is based on ab-stract �nite state machines to represent the underlyinggrammar to be recognized.3.1. Single-Pre�x-Tree One-Pass DecoderTo achieve reasonable e�ciency in a one-pass decoder thedictionary has to be represented by a pronunciation pre�xtree [5]. The two problems due to this representationare, �rst, if the tree is reentrant then only the single besthistory is considered at word transitions at each time t andsecond, the application of the grammar score is delayedsince the identity of the word is only known at the leavesof the tree.Our approach of dealing with the �rst problem is to have apriority heap to represent alternative linguistic theories ineach node of the pre�x tree as described in [1]. The heapmaintains all contexts whose probabilities are within acertain threshold thus avoiding following the single bestlocal history only. The threshold and the heap policy havethe bene�t of allowing us to employ di�erent more or lessaggressive search techniques by e�ectively controlling hy-pothesis merging. In contrast to the tree copying processas employed by other recognizers the heap approach ismore dynamic and scalable.3.2. Finite State Language Model InterfaceThe language model is presented to the decoder by meansof an abstract �nite state machine representation. Theexact nature of the underlying grammar remains trans-parent to the recognizer. The only means to interact witha respective language model is through the following setof functions. Let FSM be a �nite state machine basedlanguage model:FSM.initial() Returns the initial state of the FSM.FSM.arcs(state) Returns all arcs departing from agiven state. An arc consists of the input label (recog-nized word), the output label, the cost and the nextstate. Finite state machines are allowed to be nonde-terministic, i.e. there are possibly two arcs with thesame input label.FSM.cost(state) Returns the exit cost for a given stateto signal whether a state is a �nal state or not.This abstraction of the language model interface makesmerging of linguistic theories a straight forward and wellde�ned task to the decoder: two theories fall into the samecongruence class of histories and thus can be merged if thestate indices match. The �nite state machine is supposedto return which theories can be merged. The advantageof this division of labor is that the decoder can withoutany additional implementation e�ort decode grammars ofany order.In order to deal with �ller words, i.e. words that arenot modeled by a particular FSM grammar (these aretypically pauses such as silence and noises), the decodervirtually adds a self loop with a given cost term to eachgrammar state. As a result any number of �ller words canbe accepted/recognized at each state of the �nite statemachine.The toolkit provides a set of di�erent instantiations of the�nite state machine interfaces which are used in di�erentcontexts of training, testing or rescoring a recognizer:� Finite State Grammar Decoding: The most immedi-ate application of the FSM interface idea is to de-�ne a �nite state grammar explicitly. Besides its



use in command-and-control applications we employthis feature in the course of training the recognizer.In [2] we have shown that when dealing with unre-liable transcripts of the training data a signi�cantgain in word accuracy can be achieved by train-ing from probabilistic transcription graphs instead ofthe raw transcripts. The toolkit allows for decod-ing of right recursive rule grammars by simulatingan underlying heap to deal with recursion. The tran-scription graphs of the Flexible Transcription Align-ment (FTA) paradigm are expressed in the decoderin terms of a probabilistic rule grammar. Thus,forced alignment of the training data is basically donethrough decoding these utterance grammars.� N-gram Decoding: Statistical n-gram language mod-els are not explicitly represented as a �nite state ma-chine. Instead a �nite state machine wrapper is builtaround n-gram models. The state index codes thehistory such that FSM.arcs(state) can retrieve all thelanguage model scores required from the underlyingn-gram tables. This implies that the FSM is not min-imized and the state space is the vocabulary to thepower of the order of the n-gram model.� Lattice Rescoring: Lattices are �nite state machines,too. So rescoring a word graph using a di�erent setof acoustic models and a di�erent language model isfeasible by means of decoding along lattices and byon-the-y composition of �nite state machines.3.3. Finite State Machine LookaheadThe incorporation of the grammar probabilities into thesearch process should be done as early as possible so thattighter pruning thresholds can be used for decoding [6].Within the �nite state machine abstraction the lookaheadtechniques of [6] can be generalized to any kind of FSMbased language model. For each state the decoder needsto derive - on demand - a cost tree which reports for ev-ery node of the pre�x tree what the best language modelscore for all words with a given pre�x is going to be. For atrigram based FSM the lookahead tree will consequentlybe a trigram lookahead, for fourgrams a fourgram looka-head and for �nite state grammars the lookahead will beprojection of all words allowed at a certain grammar state.In order to compute �nite state machine lookahead treese�ciently on demand several techniques needed to becombined:� Lookahead trees once computed are saved in an agingcache to avoid recomputing the tree for subsequentframes.� To reduce the size of the cache and the number ofsteps to compute the tree we precompute from thepre�x tree a new data structure: the cost tree. Thecost tree represents the cost structure in a condensedway and turns the rather expensive recursive pro-cedure of �nding the best score in the tree into aniterative algorithm.� Each heap element or hypothesis or tree copy hasthe current FSM lookahead score attached. Whenthe hypothesis is expanded to the next node and therespective lookahead tree has been removed from thecache in the meantime the tree will not be recom-puted. Instead we propagate the lookahead proba-bility of the pre�x (\lazy cache" evaluation).

3.4. Crossword ModelingThe acoustic models we build are polyphonic within-wordmodels but triphone models across word boundaries. Toincorporate crossword modeling in a single-pre�x-tree de-coder we have to deal with context dependent root andleaf nodes. Instead of having context dependent copiesof the pre�x tree each root node is represented as a setof models, one for each possible phonetic context. Thehypotheses of these models are merged at the transitionto the within word units (fan-in). As compact means ofrepresenting the fan-in of root nodes and the fan-out ofleaf nodes we introduced the notion of a multiplexer. Amultiplexer is a dual map that maps instances � to the in-dex of a unique hidden markov model which is supposedto be the model to be used in the context of �:mpx(�) : � 7! i 2 f0; 1; : : : Nmpxgmpx[i] : i 7! m 2 fm0;m1; : : :mNmpxgwhere m0;m1 : : :mNmpx are unique models. The set ofmultiplexer models can be precomputed based on theacoustic modeling decision tree and the dictionary of therecognizer.For modeling converstational speech the concept of mul-tiplexers became particularly important since the aug-mented attribute representation of words leads inevitablyto an explosion of the number of di�erent crossword con-texts. Since multiplexers map to unique model indicesthey basically implement a compression of the fan-in/outand a scheme to address the context dependent model bythe context instance �.
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:(d)Figure 1. (a) Pre�x search tree consisting ofroots, nodes, leaves and single phone word nodes[stubs]. The heap structure of a root node (b),a leaf node (c), and a stub (d): state=�nitestate machine grammar state; mpx=multiplexer;MPX=multiplexer of multiplexers; cost=FSMlookahead score; score=total best score of hypoth-esis (acoustic plus expected FSM cost).The resulting pre�x tree used by the decoder consists ofthe following types of nodes� Root Node: A root node represents the �rst attributeinstance of words in terms of the respective mul-



tiplexer. The heap policy is to merge only thosehypotheses that have the same history or linguis-tic theory and whose �nal instances �a and �b mapto the same context dependent word initial model,i.e. mpx(�a) = mpx(�b). This means that the heapis used to keep track of di�erent contexts, the FSMstate (representing the linguistic context) as well asacoustic contexts.� Internal Node: In word internal nodes only those hy-potheses are collapsed that are found to be in thesame �nite state machine state.� Word/Leaf Node: For every word there is a leaf node.A multiplexer describes the fan-out. Each heap el-ement represents the complete fan-out for a givengrammar state.� Single-Phone/Instance Node: Words consisting ofone phone only are represented by a multiplexer ofmultiplexers. Depending on the left context of theword this multiplexer returns a multiplexer repre-senting the right-context dependent fan-out of thisword. The heap policy is the same as for root nodes,and each heap element represents the complete fan-out as for leaf nodes.Figure 1 shows the di�erent heap architectures for eachof the pre�x tree's node types.3.5. PruningIn addition to the acoustic and the word end beam forpruning the acoustics we use two heap related controls:the maximum number of heap elements can be boundedand there is a beam to prune hypotheses within a heapagainst each other. The number of �nite state machinestates expanded at each time t can be constrained as well(topN threshold).3.6. Dynamic Frame Skipping (DFS)Acoustic model evaluation is sped up by means of gaus-sian selection through Bucket Box Intersection [4] and bydynamic frame skipping (DFS): The underlying idea hereis to reevaluate acoustic models only provided the acous-tic vector changed signi�cantly from time t to time t+ 1.A threshold on the euclidean distance is de�ned to trig-ger reevaluation of the acoustics. To avoid skipping toomany consecutive frames we allow only for one skip at atime, i.e. after skipping one frame the next one must beevaluated. 4. SUMMARYWe have presented a new recognition toolkit designedspeci�cally for dealing with large vocabulary spontaneousspeech. Based on a generalized representation of the pho-netic transcription we recast the mode dependent pro-nunciation modeling approach introduced in [3]. The ar-chitecture of a new �nite state machine based one-passdecoder, the heap organization, lookahead infrastructureand crossword handling were described and motivated.To assess the performance of the decoder under tight real-time constraints we started from a Switchboard recog-nizer trained on human-to-human telephone speech. Theacoustic frontend computes 42 dimensional feature vectorsconsisting of 13 mel-frequency cepstral coe�cients pluslog power and their �rst and second derivatives. Cep-stral mean and variance normalization as well as vocaltract length normalization are used to compensate for
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