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Abstract

In this work, we propose a modular combination of two pop-
ular applications of neural networks to large-vocabulary con-
tinuous speech recognition. First, a deep neural network is
trained to extract bottleneck features from frames of mel scale
filterbank coefficients. In a similar way as is usually done for
GMM/HMM systems, this network is then applied as a non-
linear discriminative feature-space transformation for a hybrid
setup where acoustic modeling is performed by a deep belief
network. This effectively results in a very large network, where
the layers of the bottleneck network are fixed and applied to suc-
cessive windows of feature frames in a time-delay fashion. We
show that bottleneck features improve the recognition perfor-
mance of DBN/HMM hybrids, and that the modular combina-
tion enables the acoustic model to benefit from a larger tempo-
ral context. Our architecture is evaluated on a recently released
and challenging Tagalog corpus containing conversational tele-
phone speech.
Index Terms: Acoustic Modeling, Deep Belief Networks,
Deep Bottleneck Features, Large Vocabulary Speech Recogni-
tion

1. Introduction

Recently, multiple works have demonstrated that the perfor-
mance of automatic speech recognition systems can be heavily
improved by using deep neural networks (DNNs) for acoustic
modeling [1], [2]. The key advantages over much earlier ap-
proaches [3] to this hybrid setup combining neural networks and
hidden Markov models are improved learning algorithms that
can leverage the high modeling capacity of deep networks [4]
and the usage of a large number of context-dependent phonetic
target states during network training.

Work is still done in determining which speech features are
most useful when training neural network acoustic models. For
generative models like restricted Boltzmann machines, it has
been argued that raw mel scale spectral coefficients are more
suitable than further preprocessed features with reduced covari-
ances like MFCCs [5]. In practice, though, it appears that deep
networks can been trained with similar performance on a vari-
ety of acoustic data, including windows of features reduced with
linear discriminant analysis or speaker-adapted features [6].

For the standard approach to ASR, in which Gaussian mix-
tures are used for acoustic modeling, a large amount of research
regarding input feature engineering has already been done. In
particular, neural networks have been employed for feature ex-
traction in the form of tandem features [7] or bottleneck fea-
tures [8]. There, the activations of either the output layer or
a narrow hidden layer, respectively, are used as input features

after the corresponding neural network has been trained to esti-
mate phonetic target states from windows of acoustic data.

In this work, we want to investigate whether bottleneck fea-
tures are useful for acoustic modeling with deep networks as
well. As in recognition systems using Gaussian mixtures, we
extract bottleneck features from several adjacent windows of
speech features. This way, the estimation of phoneme states is
effectively performed by a combination of two deep neural net-
works, where the activations of the first network’s small hidden
layer from different time-stamps are the input for the second
one.

2. Related Work

The motivation for the proposed architecture is two-fold.
For one, the modular combination of separately trained sub-
networks into bigger networks is a well-established design prin-
ciple when building large classifiers. Second, bottleneck fea-
tures can be regarded as a probabilistic and discriminative di-
mensionality reduction technique that is known to work well
with GMM/HMM system, and they might be used to improve
neural network acoustic models, too.

The idea of using sub-components of simple neural net-
works to build networks with higher complexity for difficult
speech recognition has been extensively explored in the past.
Waibel proposed methods for modular construction of networks
for phoneme recognition almost 25 years ago, and incorporated
the hidden units of networks trained to discriminate between
few classes into a new network that was then trained to detect
a superset of the original classes [9]. This architecture included
time-delay units to account for variability in the temporal do-
main of speech signals, in a similar way to what is commonly
known as convolutional neural networks today.

More recent applications of similar techniques to large-
vocabulary speech recognition include hierarchical combina-
tions of tandem features [10] as well as bottleneck features [11]
to design more powerful preprocessors of acoustic data for
GMM/HMM systems. However, as of yet, no work has been
done on adopting those ideas for hybrid DNN/HMM systems
used in LVCSR tasks.

From a feature engineering point of view, other, non-
probabilistic dimensionality reduction techniques have been
evaluated for DNN acoustic modeling. Mohamed et al. per-
formed linear discriminant analysis (LDA) on frames of MFCC
features, followed by vocal-tract length normalization (VTLN)
and speaker-adaptation using a maximum likelihood linear re-
gression performed in feature space (fMLLR) [12]. They
reported no improvement by training a network on LDA-
transformed features on the TIMIT benchmark for phone recog-
nition. With speaker-adapted features, significant gains of a



similar magnitude as for GMM-based systems could be ob-
tained. Corresponding results were obtained by Seide et al. on
a large-vocabulary conversational speech recognition task [6].
In particular, they found that neither heteroscedastic LDA nor
VTLN improved the recognition accuracy of their CD-DNN-
HMM architecture, but they achieved gains by applying an
fMLLR-like transform for adaptation.

In contrast to those works, we propose the usage of deep
bottleneck features obtained from log mel scale filterbank co-
efficients instead of performing an LDA transform on standard
input features. This combination of two deep neural networks
improves recognition performance and enables the network to
leverage an increased temporal context of speech features.

3. Deep Bottleneck Features

For extracting bottleneck features from standard speech fea-
tures, we use the deep bottleneck architecture as described in
our earlier work [13]. This is an extension of standard bottle-
neck features commonly used in automatic speech recognition,
in which a neural network containing a narrow hidden layer is
trained to predict phone states [8]. The activations obtained in
the small hidden bottleneck layer are then used as input features
for a standard GMM-based recognition system. Since the num-
ber of hidden units in the narrow layer are usually much smaller
than the dimensionality of the network input, this approach can
be viewed as a probabilistic and discriminative dimensionality
reduction.

In [13], a deep neural network is constructed by placing
a stack of pre-trained denoising auto-encoders in front of the
bottleneck. Denoising auto-encoders try to reconstruct the orig-
inal version of input data corrupted with random noise, which
enables them to learn over-dimensional representations without
degrading to trivial solutions for their parameters [14]. This
is suitable for bottleneck extraction networks, where the layers
preceding the bottleneck are usually much wider than the net-
work input.

The general training procedure can be summarized as fol-
lows. First, a stack of denoising auto-encoders is unsupervised
pre-trained on frames of stacked log mel scale coefficients, fol-
lowing the layer-wise training procedure initially proposed by
Vincent et al [14]. The encoding part of each layer is then used
to initialize a deep neural network, and randomly initialized lay-
ers are added on top for the bottleneck, an additional non-linear
transformation and the network output. Finally, supervised fine-
tuning is performed on the whole network using the phone states
assigned to the input frames.

4. Deep Belief Network Acoustic Modeling

4.1. Restricted Boltzmann Machines

In this work, we use deep belief networks (DBNs), a partic-
ular type of deep neural networks, for acoustic modeling. A
DBN consists of multiple stacked restricted Boltzmann ma-
chines (RBMs), each being pre-trained in an unsupervised man-
ner on the actual input features or the hidden representation of
the previous one [4]. RBMs are bipartite graphical models in
which hidden units learn a representation of visible units. In the
standard configuration, both visible and hidden units are binary
units that are sampled from a Bernoulli distribution. The prob-
ability of being active is computed using weighted connections
to the hidden and visible units, respectively.

RBMs are energy-based models, and each configuration of

visible units v and h is assigned an energy term E:
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where wij is the weight assigned to the connection between a
visible unit vi and hj , and ci and bj are their bias terms. For
modeling real-valued data, which is the usual case for acoustic
features, the binary visible units can be replaced with Gaussian
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with � representing the variance of the normal distribution from
which the visible units are sampled.

Unsupervised learning of a model is done by maximizing
the log-likelihood for known configurations (i.e., the training
data) as determined by the energy term. The contrastive diver-
gence algorithm provides a fast approximation of this objective
by computing the difference of correlations between two con-
figurations obtained by alternating Gibbs sampling [16]. For
further details about training RBMs, the interested reader is re-
ferred to [17].

After pre-training a stack of RBMs, the weights and biases
of the hidden units can be used to initialize the hidden layers
of a deep belief neural network. When used for discriminative
training, an additional classification layer is connected to the
last hidden layer, and the resulting network is fine-tuned with
standard backpropagation.

4.2. Acoustic Modeling

When employing neural networks as acoustic models in com-
bination with hidden Markov models, they are used to compute
a posteriori emission probabilities of phone states [3]. If the
network is trained to estimate probabilities p(qt|xt) of states qt
given observations as input feature vectors xt using a cross-
entropy criterion, the emission probabilities can be obtained
with Bayes’ rule:

p(xt|qt) =
p(qt|xt)p(xt)

p(qt)

where p(qt) denotes the prior probability of a phone state,
which is estimated using the available training data. During
decoding, the most likely sequence of states is computed by
the HMM. Since the observation x is independent of the state
sequence, its probability p(xt) can be ignored.

4.3. Modeling Bottleneck Features

In this work, we use deep belief networks to model a window of
bottleneck features, extracted by applying the respective neural
network to adjacent windows of acoustic features as illustrated
in Fig. 1. This extraction scheme is related to the frame shifting
done with individual layers in time-delay neural networks [9]
and forms the basis of many hierarchical or convolutional ar-
chitectures. The weights of the bottleneck network are fixed
during DBN training, so that each network is trained in isola-
tion. In practice, this means that acoustic model training can
be accelerated if training examples are generated only once by
computing bottleneck features for all available training data.

In our setup, bottleneck features could be regarded as bi-
nary features, since the units in the bottleneck layer use a sig-
moid activation function. Here, we choose to model them as
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Figure 1: Proposed architecture for acoustic modeling, illustrating a bottleneck extraction network consisting of 4 hidden layers and a
deep belief network estimating class probabilities with 3 hidden layers.The first network is computed at 5 positions over windows of 5
acoustic feature vectors, resulting in a window size of 9 feature vectors for the acoustic model.

real-valued data by using their actual activation value without
applying the sigmoid non-linearity. This serves to purposes:
first, the same DBN architecture can be used on log mel scale
features as well as BNFs, which helps in comparing the result-
ing recognition performances. Second, this allows for easy in-
tegration of further enhancements like fMLLR training or linear
bottlenecks [18] that all provide real-valued features.

5. Experimental Setup

5.1. Corpus and Baseline System Description

We trained our systems on a Tagalog dataset which was recently
released as the IARPA Babel Program Tagalog language collec-
tion babel106-v0.2f [19]. It contains 79 hours of conversational
telephone speech, from which 69 are used for training and 10
for testing the recognition systems.

For the GMM/HMM baseline system, we used MFCCs
computed from 30 log mel scale filterbank coefficients, which
were in turn extracted from audio data by applying a hamming
window with a length of 20 ms and a frame shift of 10 ms. 13
MFCCs were concatenated with 10 contextual samples, form-
ing feature vectors containing 143 elements. After performing
per-speaker cepstral mean and variance normalization, the final
feature vector consisted of 42 elements obtained by applying
LDA. During ML-training, 4000 context-dependent states with
an average of 53 Gaussian components per state were used.

5.2. Deep Bottleneck Features Training

The neural network for extracting deep bottleneck features (DB-
NFs) was trained as described in [13]. 30 filterbank coefficients
were obtained as described above, normalized on a per-speaker
level and concatenated with past and future samples to feature
frames consisting of 330 elements. Five auto-encoder layers
containing 1000 units each were stacked and pre-trained indi-
vidually, and a bottleneck layer with 42 units as well as one ad-
ditional hidden layer and a classification layer were added. The
network was then trained to predict context-independent mono-
phone states. A random subset containing 5% of the available
training examples was used as a held-out validation set to per-
form early stopping.

The GMM/HMM systems trained on bottleneck features

used the phonetic decision tree from the MFCC baseline and
therefore ended up with the same number of tied states. As for
the baseline, features extracted from 11 adjacent positions were
reduced to 42 dimensions with LDA. Speaker-adaptive training
was performed using fMLLR. The DBNF system was used to
generate new alignments for training the deep belief network
acoustic models.

5.3. Acoustic Model Training

For the DBN acoustic models, RBMs were pre-trained layer-
wise and unsupervised with the contrastive divergence algo-
rithm, following the recommendations in [17]. Input data was
given by 40 log mel filterbank coefficients (lMEL) or 42 bot-
tleneck features concatenated to varying window sizes. In the
first layer, a RBM with Gaussian visible units was trained for
10 epochs using stochastic gradient descent with mini-batches
containing 128 examples. The learning rate was linearly de-
cayed over the total training time from 5 · 10�4 to 1 · 10�4, and
the gradients obtained were smooth using a momentum term of
0.5. For the other layers, standard RBMs with binary visible
units were trained for 5 epochs with learning rates scaled by a
factor of 10.

All RBMs were trained with a sparsity constraint proposed
by Nair and Hinton [20], which was found to improve frame-
level classification as well as final recognition performance.
The gradients obtained using contrast divergence were aug-
mented with gradients from a cross-entropy sparsity cost, which
compares an exponentially decaying average of mean activa-
tions of the hidden units to a small target value.

Finally, supervised training was performed for 25 epochs
with a batch size of 128, with a linearly decaying learning rate
with decreased from 0.1 to 0.001 for the first 20 epochs. As for
pre-training, a momentum term of 0.5 was used.

The network architecture, the hyper-parameters described
above as well as the final decoding parameters were optimized
on log mel scale data. We settled with 5 stacked RBMs contain-
ing 2000 units each. The number of context-dependent target
states for supervised training set to the number of tied states in
the respective baseline systems. Pre-training and fine-tuning of
all neural network models was implemented with the Theano
library [21].



Acoustic Model Features Window WER

GMM MFCC 11 69.7
DBNF 21 59.6
DBNF+fMLLR 21 56.6

DBN lMEL 11 58.1
21 54.8
31 54.7
41 55.1

DBNF 21 53.0
31 52.0
41 52.6

Table 1: Recognition performance for the different systems de-
scribed. The window column contains the effective number of
feature vectors accessible to the acoustic model.

6. Results

Table 1 lists the recognition performances in terms of word error
rate (WER) for the baseline system with and without deep bot-
tleneck features as well as for DBN/HMM systems with varying
features and effective window sizes. Regarding the performance
of the baseline system, it should be noted that those systems are
still among the early system builds for this fairly recent corpus.
It can be seen that DBNFs yield high gains in accuracy, low-
ering the baseline WER to 59.6% (-14.5% relative). Applying
fMLLR training produces further improvements (-5% relative).

The hybrid DBN/HMM combination outperforms the
speaker-adaptive bottleneck feature setup, resulting in relative
improvements of up to 21.5% (54.7% WER) over the MFCC
baseline. It can be seen that a window of at least 21 features
is required to obtained good recognition accuracy. Further en-
largement of the window produces only minuscule gains, and
with 41 feature vectors performance is being degraded.

When using bottleneck features for training the neural net-
work acoustic models, improvements over log mel scale input
are obtained. The best result of 52.0% WER on a window of 31
feature vectors marks a relative improvement of nearly 5% over
the best lMEL setup and a 25% improvement over the baseline
system.

The results also show that the network trained on bottleneck
features benefits from an increased temporal context in that in-
creasing the window size from 21 to 31 has a notable effect
on recognition performance (-2.3% relative), which stands in
contrast to the DBNs trained on log mel data where only di-
minishing improvements are obtained. However, increasing the
number of input feature vectors to 41 results in slightly worse
performance for both systems.

7. Conclusions

With the results obtained above, we have demonstrated that bot-
tleneck features are useful input features for DBN/HMM speech
recognition setups. It could be shown that the modular combi-
nation proposed enables the acoustic model to use an increased
temporal context of acoustic features more efficiently than an
identical network trained directly on the input features.

The performance improvements achieved by using deep
bottleneck features for the hybrid DBN/HMM systems are sig-
nificant, though not as large as for the GMM/HMM baseline
system. However, deep neural networks have a much higher
modeling capacity then GMMs, and it is to be expected that a
good part of the modeling performed in the bottleneck network

can be learned in a standalone DBN as well. Nevertheless, we
regard our approach to combining neural networks for acoustic
modeling as promising and the general principles of modular-
ity as an important paradigm that is applicable to deep neural
networks as it is to shallow ones.

For the specific architecture proposed, more experiments
may be desirable in order to obtain greater insight into the in-
terplay between feature extraction and acoustic modeling. Fur-
thermore, future work will deal with integrating DBNFs and
DBN training into a single model, so that joint fine-tuning of
the whole network is possible after its individual components
have been optimized. It will be interesting to investigate in how
to perform efficient speaker-adaptive training on the bottleneck
feature level as well.
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