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I. INTRODUCTION

With the appearance of low-cost commercial large-vo-
cabulary dictation software for personal computers, speech
recognition has truly come of age. Spoken language appli-
cations are transferred ever more rapidly into practical use
and are beginning to affect our everyday lives. With these
successes it is all too natural that there is a growing interest
in expanding the reach of speech and language systems to
international markets and in bringing these technologies to
consumers worldwide.
Unfortunately, such expansion is still associated with

considerable effort. Modern speech and language systems
increasingly employ automatic learning algorithms. While
these algorithms reduce the painstaking development work,
they do require large data resources such as texts, voice
recordings, pronunciation lexicons, morphological decom-
position information, and parsers. At present, adequate
language resources have only been accumulated for a
relatively small number of languages, particularly the more
dominant languages of the world.
In the following sections, we will first discuss differences

between languages and the resulting challenges for speech
recognition.We introduce approaches to efficiently deal with
the enormous task of even covering a small percentage of
the word’s languages by building speech recognition systems
for multiple languages through model combination, boot-
strapping, and adaptation techniques. Foreign accents, which
present their very own challenge to speech recognition en-
gines for all languages, are covered in Section IV. Then,
we will present an approach that allows speech recognition
with virtually unlimited dictionary sizes, which is important
for languages that are highly inflected or allow the genera-
tion of long compound nouns. The challenges of multilin-
gual speech translation will be reviewed in the final section
and conclude our overview of multilinguality in speech and
spoken language systems.

0018–9219/00$10.00 © 2000 IEEE

PROCEEDINGS OF THE IEEE, VOL. 88, NO. 8, AUGUST 2000 1297



II. LANGUAGE DIFFERENCES

In this section, we will highlight some of the differences
between languages and the resulting challenges for speech
recognition. Language differences that affect meaning, in-
terpretation, and reference and the problems they present for
speech understanding applications will be addressed in a sec-
tion about multilingual speech translation.

A. Scripts and Fonts
Many different character types are used in the world’s

languages (see Fig. 1). Writing systems fall into two major
categories: ideographic and phonologic. In ideographic
scripts, the characters reflect the meaning rather than the
pronunciation of a word. Examples for ideographic scripts
are the Chinese Hanzi and the Japanese Kanji. Phonological
scripts can be further divided into syllable-based scripts, like
Japanese Kana or Korean Hangul, and alphabetic scripts,
which are used for most Indo-European languages, such
as Greek script for Greek, or Latin script for English and
German. In syllable-based scripts, each grapheme reflects
one syllable, whereas in alphabetic scripts, graphemes
correspond roughly to one phoneme.
Phonologic scripts are often easier to handle than ideo-

graphic scripts in the speech recognition framework, as
in many cases rule-based grapheme-to-phoneme tools can
be used to generate the pronunciation dictionary needed
to guide recognition, while this is usually not possible for
ideographic scripts. However, among the languages using
alphabetic scripts, the grapheme-to-phoneme relationship
varies considerably. It ranges from a nearly one-to-one
relationship, such as for Slavic languages like Russian and
Serbian as well as some Romance languages like Spanish,
up to languages like English and Gaelic that require com-
plex rules and have many exceptions. Furthermore, in some
languages, the written script reflects only a part of the
spoken phonemes. In Arabic, for example, only consonants
are written out; vowels have to be filled in by scanning the
context and understanding the meaning.
Usually, alphabetic scripts do not have more than 30

different characters. In this case, 8-bit character codes are
sufficient to store all characters of this script. For ideographic
scripts, however, 16-bit codes are required, since thousands
of unique characters occur in written text, as in Chinese
Hanzi and Japanese Kanji. For these languages, multibyte
characters have to be used. Another issue, especially in the
case of multilingual text processing, is the direction in which
text is written. Languages like Arabic are written from the
right to the left, Indo-European languages are written from
left to right, and for some languages, the preferred direction
is top to bottom.

B. Segmentation
English has a natural segmentation into words that can

conveniently be used as dictionary units for speech recogni-
tion. The words are long enough to differ from each other in
a sufficient number of phonemes, but short enough to be able
to cover most material with a reasonable number of different

Fig. 1. Scripts for languages: Arabic, Bulgarian, Catalan, Chinese,
Croatian, Czech, English, Greek, Hebrew, Hindi, Italien, Japanese,
Korean, Rumanian, Russian, Serbian, and Thai.

word forms that occur frequently. This is important for the
statistical analysis required by the automatic learning pro-
cesses that modern speech recognition systems rely on. But
other languages lack an adequate segmentation. In Japanese
and Chinese, whole sentences are written in strings of char-
acters without any spacing. In order to determine appropriate
dictionary units, the transcribed speech data have to be seg-
mented manually or by morphological analysis programs.
Another group of languages, including Turkish and Korean,
does have some segmentation within a sentence, but their
morphology provides for agglutination and suffixing. The in-
flection, derivation, and other relationships betweenwords in
a sentence are expressed by concatenating multiple suffixes
to the word stem. This results in rapid growth of the number
of word forms occurring in a given text. As a consequence,
poor recognition results are achieved when using a certain
set of word forms as dictionary entries for speech recogni-
tion, and many new word forms are encountered in unseen
speech material. The following example illustrates the mor-
phological structure of the Turkish language (hyphens have
been added to mark morphology; see [26]):
Turkish: Osman lı-laş-tır-ama-yabil-ecek-ler-imiz-

den-miş-siniz
English: behaving as if you were of those whomwemight

consider not converting into Ottoman.

C. Morphology
For agglutinative and highly inflected languages, splitting

up the words into several morphemes provides a first solution
to curb the rapid vocabulary growth and reduce the out-of-vo-
cabulary (OOV) rate for speech recognition. This, however,
reduces the effective reach of the language model, which can
partly be counteracted by using higher order -gram lan-
guage models. In general, a lower OOV rate does not always
reflect a better recognition performance, since the smaller
units also suffer from a higher acoustic confusability.
Another possibility to reduce the OOV rate is to allow

a virtually unlimited recognition dictionary. This technique
will be discussed in detail in Section V.

D. Prosodic Structure
Across the world’s languages, the prosodic structure of

words varies considerably [7]. Many of all languages belong
to the group of tonal languages, in which the lexical items are
distinguished by contrasts in pitch contour or pitch level on a
single syllable. Simple tonal systems have only two different
classes (high versus low pitch level); others have four our
five tones, like Mandarin Chinese and Thai, or even more,
like Cantonese, with six tones.
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The tone variations can affect either the semantics of a
word or its grammatical function. Mandarin is an example of
a language in which tone changes the meaning. In the East
African language Twi, for example, tone variations are used
to signal variations in tense (grammar).
In pitch accent languages like Japanese, pitch contrasts

are drawn not between syllables but between polysyllabic
words. In stress languages, individual syllables in a polysyl-
labic word are stressed. In fixed stress languages, the stress
pattern always occur in the same position within a word, like
in the Czech and the Finnish languages, where the first syl-
lable is always stressed, or in Turkish, where it is the last
syllable within a word. Fixed stress languages are easier to
model than lexical stress languages like English andGerman,
where the stress position varies across words.

III. MULTILINGUAL SPEECH RECOGNITION

Multilingual speech recognition is required for tasks that
use several languages in one speech recognition application.
A very basic approach is to integrate several monolingual
recognizers with a front end for language identification.
Since storage requirements put a limit on this approach, we
propose to combine individual recognizers into one multilin-
gual engine, which can handle several different languages at
a time. This concept requires a combined acoustic model that
represents the sounds of all the languages involved. In this
section, we present several approaches that we developed
in the framework of the multilingual speech recognition
project GlobalPhone.

A. Portability
A number of recognition systems developed initially

for one language have been successfully extended to sev-
eral languages, including systems developed by IBM [6],
Dragon [2], Philips [8], LIMSI [22], CMU [27], Karlsruhe
[29], [31], [32], MIT [17], and many more. The extension
of English systems to such varied languages as German,
French, Italian, Spanish, Dutch, Greek, and Mandarin Chi-
nese illustrates that speech technology generalizes across
languages, provided large transcribed speech data bases are
available. Results show that similar modeling assumptions
hold for most languages, but there are some exceptions due
to language differences highlighted above.
In general, however, the assumption that large speech

data bases are available for a given language does not hold
for several reasons. About 400 of the world’s languages are
spoken by at least 100 000 native speakers. Which of these
languages are of interest for speech recognition applications
can change very quickly with the political and economic
situation. Since the collection of large data bases requires a
significant amount of time and considerable resources, it is
difficult to provide data bases on demand and impractical
and wasteful to preemptively try to collect them for all lan-
guages. Finally, for combinatorial reasons, it is not possible
to collect enough large data bases to solve the problem of
nonnative speech recognition. As a result, our research must
focus on the most effective and parsimonious ways to adapt

Table 1 LVCSR Systems in Ten Different Languages.
Word-Based Error Rates for Mandarin and Korean are Given in
Characters, for Japanese in Hiragana

existing recognition engines to new tasks and new languages
with only very limited data.

B. Speech Recognition in Multiple Languages
The multilingual speech recognition project GlobalPhone

at the Interactive Systems Labs [29]–[33] investigates
large-vocabulary continuous speech recognition (LVCSR)
systems in many languages. Data used for our investigations
currently consist of read speech data for the languages
Arabic, Chinese (Mandarin and Shanghai dialects), Croa-
tian, Czech, English, French, German, Japanese, Korean,
Portuguese, Russian, Spanish, Swedish, Tamil, and Turkish.
Put together with the English WSJ and French BREF
databases, this covers nine of the 12 most widespread
languages of the world. In each of the languages, about 15
hours of read speech was collected, spoken by 100 native
speakers per language [29].
Based on these data, we developed monolingual LVCSR

systems in ten languages using the Janus Recognition
Toolkit described below. For each language, the acoustic
model of the baseline recognizer consists of a fully con-
tinuous three-state hidden Markov model (HMM) system
with 3000 triphone models. A mixture of 32 Gaussians
models each HMM state. The preprocessing is based on 13
Mel-scale cepstral coefficients with first- and second-order
derivatives, power, and zero crossing rates. After cepstral
mean subtraction, a linear discriminate analysis reduces the
input vector to 32 dimensions.
In Table 1, we present the word error rates (ERs), vocabu-

lary sizes (vocab), and trigram perplexities (PPs) for the ten
monolingual recognizers. Though the core engines are the
same across languages, differences in the recognition per-
formance are not only due to inherent language-specific dif-
ficulties. They strongly depend on differences in quality and
quantity of the data used, and on the expertise of the language
experts. Moreover, the concept of a word is difficult to de-
fine for some languages (Chinese, Japanese, and Korean), as
discussed above, making the comparison of word error rates
awkward. In our opinion, it is therefore misleading to infer
language difficulties from the given word error rates.
In order to give amore reliable measure of the acoustic dif-

ficulties of the ten languages, Table 1 presents the phoneme
error rates, based on a phoneme recognizer without any
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phonotactic constraints. The results indicate significant
differences in acoustic confusability between languages,
ranging from 33.8–46.4% phoneme error rate. The Japanese
language seems to be one of the easier languages with
respect to acoustic confusability. This can be explained by
its mora structure, and the resulting low phoneme trigram
perplexity. Among the “easier” languages, we also find
French, Korean, and Croatian. The low phoneme error
rate for French stems from the frequent usage of a set of
monophonemic words that correspond to the same phoneme.
For example, the phoneme / / can stand for ai, aie, aies, ait,
aient, hais, hait, haie, haies, es, or est [22]. It is important
to note, however, that precisely this property also increases
word error rate, as all these words become indistinguishable
on acoustic grounds. The good phone recognition results for
the Croatian language reflect the near one-to-one relation-
ship between graphemes and phonemes. In contrast to that,
English seems to be the most difficult task, which is a result
of the well-known weak grapheme-to-phoneme relation,
as well as reductions and strong allophonic variations.
Other “hard” tasks are the Mandarin language, German, and
Turkish. The Mandarin phoneme accuracy in this experi-
ment is low because we chose a tone-dependent phoneme
set with 141 rather than 48 phonemes. For German, frequent
consonant clusters result in higher confusion rates. Overall,
however, one should treat comparisons across languages
cautiously, as individual results also depend considerably
on the condition and availability of appropriate training data
and on the general maturity of development in any given
language’s recognizer.

C. Acoustic Model Combination

For the integration of monolingual speech recognizers into
one global multilingual engine, we propose the combination
of acoustic models. Here we share acoustic models for sim-
ilar sounds across languages. Those similarities can be de-
rived from international phonemic inventories like Sampa or
IPA, which classify sounds based on phonetic knowledge,
by data-driven methods, or by a combination of both. For
this paper, we investigated a combined procedure for multi-
lingual context-dependent acoustic modeling. Based on the
phonemic inventory of several monolingual systems, we can
define a combined phoneme set. Sounds of different lan-
guages that are represented by the same IPA symbol share
one phonetic unit. Combining five languages in this manner
reduces the size of the phoneme inventory by 41%; nine lan-
guages yield a reduction of about 50%. Half of the phonetic
units consist of phonemes only belonging to one language.
For monolingual systems, modeling wider contexts

has been shown to increase recognition performance
significantly. Extending context-dependent models to a
multilingual setting requires algorithms that can automat-
ically construct them. In a multilingual system, we build
context-dependent models by initially assigning one model
to each phonetic unit and training this model by sharing the
data of all languages belonging to this phonetic unit. We
then use a divisive clustering algorithm that creates context

querying decision trees. As selection criterion for dividing
a cluster into subclusters, we use the maximum entropy
gain on the mixture weight distributions. This clustering
approach provided significant improvements across different
tasks and languages [9].
We investigated two variations on building the decision

trees: either all training data are shared without using lan-
guage information or the information about to which lan-
guage the data belongs is provided to the algorithm. In the
latter case, adding questions about the language or language
group to which a phoneme belongs enhances the set of con-
text questions for the decision tree clustering. The decision
of whether language information should be included with
the phonetic context information is therefore performed on
a case-by-case basis and depends only on the training data.
When recognizing data from a language that is part of

the training set, our results show that acoustic model com-
bination achieves better results if the language information
is preserved [29], [32]. This observation is consistent with
results from other studies [6], [21]. However, blind data
shared models perform better if the recognition experiments
are performed on languages that are not in the training
set, which can be explained by an augmented language
robustness achieved through sharing all information across
languages.

D. Language Adaptation

Currently, one of the major time and cost factors for de-
veloping LVCSR systems for new languages is the need for
large amounts of transcribed audio data for training accurate
acoustic models. To accommodate potential variations in the
amount of training data available for the target language, we
address three topics of research:
1) cross-language transfer: no data;
2) language adaptation: very limited data;
3) bootstrapping: large amounts of data.
The term cross-language transfer refers to the technique

of using a recognition system from one language on a new
language without having ever seen any training data in the
new language. Research in this area investigates whether
cross-language transfer between two languages of the same
family performs better than across family borders [5] and
whether the number of languages used for training the
original acoustic transfer models influences the performance
on the target language [18], [31]. Results indicate a relation
between language similarity and cross-language perfor-
mance [5], [4]. Furthermore, our own work as well as that
of others [4] has clearly shown that multilingual transfer
models outperform monolingual ones [32].
In a language adaptation technique, an existing recog-

nizer is adapted to the new target language using very limited
training data. Ongoing research [36], [21], [29] concentrates
on two issues: first, the amount of adaptation data needed
to get reasonable results, and second, finding suitable ini-
tial acoustic models. As expected, language adaptation per-
formance is strongly related to the amount of data used for
adaptation. The results in [36] demonstrate that the number
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of different speakers used for training is more critical than
the number of utterances. In [29], we investigated the issue
of finding suitable initial models, comparing the effective-
ness of multilingual acoustic models to monolingual models.
Again, it could be shown in our own work (and confirmed by
[21]) that multilingual models outperform monolingual ones
[29].
The key idea in a bootstrapping approach is to initialize the

acoustic models of the target language recognizer by using
seed models that have previously been developed for other
languages. After this initialization step, the resulting system
is completely rebuilt using large amounts of training data
from the target language. We have applied this approach in
[27] to bootstrap a German recognizer from English. Work in
[17] and [36] confirms that cross-language seed models per-
form better than flat starts or random models. In more recent
work, we could demonstrated the advantages of multilingual
phonemic inventories and multilingual phoneme models as
seed models [30].
We exploited the LVCSR performance of multilingual

acoustic model combination by porting a multilingual
recognition engine to new target languages comparing
cross-language transfer, language adaptation, and bootstrap-
ping. Our results indicate that language adaptation clearly
outperforms bootstrapping and cross-language transfer.
Bootstrapping performs better than cross-language transfer,
even if only a very small amount of training data (about 10
min) is available.
Assuming that only a small amount of adaptation data is

given, the performance on a new target language is mainly
impaired by a considerable mismatch between the models
built to match phoneme contexts observed during training on
multiple languages and the actual phoneme contexts occur-
ring in the new target language. Therefore, the high gain in
performance achieved by language adaptation results from
the specialization of these wide context models to the new
target language [33]. Our results emphasize the importance
of even a small amount of data for acoustic model adaptation
and context specialization.

IV. NONNATIVE SPEECH IN MULTILINGUAL SYSTEMS

Though multilingual systems handling a number of major
languages broaden the reach of speech recognition tech-
nology to consumers around the world, it is to be expected
that many users are not native speakers of the input language
they have chosen to use. Not all languages can be covered by
a multilingual system, so speakers of unavailable languages
would need to use a second language. Even if the native
language of a speaker is available as input language, he/she
may prefer or need to use a second language. This can be the
case for professionals in specialized fields who are not ac-
customed to using their native language at work, or for users
who simply wish to use more than one language. Nonnative
speech is encountered in travel and business situations, for
travelers and visitors to foreign countries, or in business or
technical collaboration across national boundaries. Last but

not least, the recognition of nonnative speech is required for
educational applications like language tutoring.
Nonnative spoken input can be a major challenge for

speech recognition. Pronunciation, disfluencies, lexical
choice, use of filler words, syntactic structure, and prag-
matic goals can deviate considerably from the patterns that
are found in native speech.
In this section, we focus on the problem of foreign-ac-

cented speech, looking at both nonnative pronunciation
(phoneme realization typical of a specific speaker group)
and pronunciation errors (phonotactic errors and other
speech errors associated with the articulation of an un-
familiar phoneme sequence). We then describe several
approaches to acoustic modeling for nonnative speech.
Finally, we touch on the higher level issues of word and
structural choice, discussing the effects of nonnative usage
on language modeling and natural language understanding.

A. Characteristics of Foreign-Accented Speech
Human listeners can adapt to accented speech. Most

native speakers of English living in the United States, for
example, can understand Spanish-accented English without
difficulty, perhaps subconsciously performing a phonemic
mapping. Even young children are able to imitate foreign
accents, showing an ability to detect and identify common
phonemic substitutions present in accented speech. Since
many of the features found in speech vary considerably
between native speakers, it is difficult to identify a boundary
beyond which such variations are perceived as foreign
accent. What are some of the dimensions along which native
and nonnative pronunciation can be distinguished?
1) Phoneme Realization: Since stress patterns and du-

rations play only a minor role in most speech recognition
systems, the most important difference between nonnative
pronunciation and native pronunciation is in phoneme re-
alization. Phonemes in a language that is not native to the
speaker (the target language) can be placed into one of two
categories: phonemes for which there is an obvious counter-
part in the speaker’s native language (the source language),
and phonemes for which there is not. The perception that a
source-language counterpart for a target-language phone ex-
ists is often based on acoustic similarity but can also be in-
fluenced by orthography; a speaker may tend to substitute a
phone that is quite dissimilar to the target phone acoustically
but is represented by the same symbol in text.
When there is an obvious counterpart in the speaker’s

native language, phoneme realization errors can sometimes
be attributed to linguistic transfer, although many studies
have indicated that this is the case less frequently than it may
seem (see [3], for example). Transfer effects in pronuncia-
tion can range from slight deviations in place or manner of
articulation to exact substitution of a native language phone
for a target language phone; in some cases, the speaker does
not even perceive a difference between the source and target
language phones. Even when speakers of the same native
language consistently substitute a specific source language
phoneme for a specific target language phoneme, variation
among those speakers’ articulations of the source language
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phoneme can be significant, meaning that a seemingly
straightforward mapping can be quite complex to model.
Nonexact substitutions are even more difficult to model, as
individual speakers’ realizations can fall anywhere between
the source and target phone and may exhibit features that
are not present in either the source or target phone.
When there is no obvious counterpart for a target phone in

the source language, the speaker must approximate it as best
he can. This can result in a realization that is unsystematic
both within one speaker’s speech and across speakers.
2) Articulation of Phonemes in Context: If the only de-

viation in the nonnative speaker’s pronunciation is in the re-
alization of individual allophones, high-quality recognition
can often be achieved with speaker adaptation [34]. How-
ever, many nonnative speakers differ from native speakers in
the way phonemes are articulated in certain contexts. Native
speakers of German speaking English, for example, may tend
to devoice consonants at the end of a word in places where
a native English speaker would not. As many speakers are
unaware of allophonic variation in their own native speech,
generating the correct allophones in context in the target lan-
guage can be very difficult. In a recognition system in which
phonetic contexts have already been clustered based on allo-
phonic variations observed in native speech, codebook adap-
tation will not perform optimally as the contexts cannot be
adapted separately.
3) Phonotactic Constraints: A third source of errors in

target language production lies in the phonotactic constraints
of the source language. Different languages allow different
sequences of phonemes, and attempts to pronounce phoneme
sequences to which one is not accustomed can fail. Many
of the phoneme combinations that appear in English are dif-
ficult for native speakers of other languages, and although
it is possible to learn to pronounce them, it is common to
make use of other strategies. Insertion of vowels (known as
epenthesis) is one way to make a consonant clusters easier
to articulate; Japanese speakers may pronounce try [T OW
R AY], which is very confusing for a native English lis-
tener. Epenthesis is not limited to cluster-internal position:
source language constraints on consonants in word-initial or
word-final position may cause speakers to insert vowels in
those positions, as in the Japanese-accented [B AE G G U
W] (bag) or Spanish-accented [EH S K UW L] (school).
Even when a phoneme sequence is pronounceable, and

is realized correctly in careful speech, the timing with
which articulation of sequential phonemes is initiated, a
largely subconscious process, can be incorrect and cause
such phenomena as phoneme inversion in conversational
speech. Words like the German “sprichst,” for example, can
be problematic for English speakers, some of which tend to
invert the final two consonants.

B. Acoustic Modeling for Nonnative Speech
Oneway to increase the robustness of a recognition system

with respect to foreign accent is to develop accent-specific
or accent-tolerant acoustic models. The former may be de-
sirable when the source-target language pair is known and
sufficient training data are available. The latter may be more

appropriate when the system must handle a variety of dif-
ferent foreign accents.
1) Nonnative Models: If the source-target language pair

is fixed, and enough nonnative training data are available,
models representing nonnative pronunciation can be explic-
itly trained. This approach is most appropriate for a system
designed to accurately recognize the speech of a specific non-
native speaker group. This is essentially a bootstrapping ap-
proach, and brings with it the advantages (accuracy) and dis-
advantages (data requirements) discussed in Section III-B.
2) Bilingual Models: An alternate way to allow pronun-

ciation that is typical of a particular nonnative speaker group
is to include models from both the source and target lan-
guages in the acoustic model set. If the speaker’s articula-
tion of an /r/, for example, is much closer to a phoneme in
the source language than the intended target phone, allowing
the system to recognize the source phone may result in im-
proved overall accuracy. With a bilingual acoustic model set,
two sets of models are trained separately on different data.
Target-language models can be taken from an existing target-
language system. Source-language acoustic models can be
taken from an existing source-language system, as in [20],
or can be trained with data from heavily accented speakers,
as in [28]. Criteria must then be defined for allowing tran-
sitions between target and source language models, and en-
suring that model sets are compatible.
3) Model Merging: When source and target language

models from compatible systems are available, it has been
observed that “merging” the models can significantly im-
prove recognition of nonnative speech [37]. Witt and Young
have reported that by combining Gaussian mixtures from
corresponding source and target language models into a
new model with twice as many mixture components, an
increase in performance can be achieved that is greater
than that given by creating new models composed of linear
combinations of source and target model components.
4) Dictionary Modification: A straightforward way to

allow for nonnative errors is to include common phonemic
substitutions in the pronunciation dictionary. This approach
can be implemented in off-the-shelf recognition packages,
which may not be otherwise easily modified. Auberg et
al.report success in modifying the IBM ViaVoice system
to create an application that teaches users to discriminate,
identify, and produce sounds that are recognized as being
problematic for Japanese learners of English [1]. Dictionary
modification can also be used to model systematic phonemic
shifts among speakers of different varieties of the same
language, as discussed in [19]. This strategy can be used
when no acoustic training material for the source language is
available but basic pronunciation mappings can be derived.

C. Beyond Accent: Addressing Nonnative Usage
Although modeling nonnative pronunciation in the

acoustic model can help to increase recognition accuracy on
nonnative speech, idiosyncrasies in nonnative speech do not
stop with pronunciation; nonnative usage at the lexical and
phrasal levels will need to be modeled to achieve accurate
recognition of nonnative speech. In this section, we report
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Table 2 Trigram Perplexity for Nonnative vs. Native Speakers

Table 3 Disfluencies for Nonnative Speakers2

on a series of experiments comparing linguistic features of
native and nonnative spontaneous and read speech.
1) Perplexity and Frequent Trigrams: Although it is

difficult to make a judgment about grammaticality non-
native conversational speech (even native conversational
speech is often ungrammatical), measuring the perplexity
and common phrases of a transcribed spoken corpus can
help to quantify the ways in which nonnative speech is
unique. For a test corpus of tourist queries posed in English
by native speakers of English, Japanese, and Chinese,1
the trigram perplexities for the two nonnative speaker
groups were significantly lower than those for the native
speakers (Table 2). The trigram hit rates were similar, but
the set of most frequently used trigrams was quite different,
suggesting that while nonnative speakers are using phrases
that are indeed common in native speech, they are not the
ones the native speakers would use in a particular semantic
and pragmatic context. This has implications not only for
language modeling but also for parsing and translation, for
which query formats favored by nonnative speakers will
need to be represented.
2) Disfluencies in Spontaneous Speech: It has been ob-

served that native speech contains many instances of aban-
doned words, stutters, restarts, filler words, and other disflu-
encies, someofwhich occur systematically enough towarrant
incorporation in the languagemodel ([35], for example). Dis-
fluenciesoftenoccurwhenthespeakerissearchingfortheright
word or expression or is pronouncing a word that is difficult
to articulate. In our study, such situations arosemore often for
the nonnative speakers than for the native speakers, and exam-
ination of their disfluencies showed a high incidence of both
incompletewords and fillerwords, althoughmuchmore so for
the Japanese than the Chinese speakers (Table 3).

V. DYNAMIC LEXICAL ADAPTATION

The quality of a speech recognizer is heavily influenced by
the correspondence of the recognition dictionary used and the
actual vocabulary of the utterances to be recognized. If a high
1Nonnative speakers tested at the novice-to-intermediate level; all

had studied English for more than eight years but had been in an Eng-
lish-speaking environment for less than one year. The data base is discussed
in greater detail in [23].
2A stumble is a completed fragment, usually due to difficulty

in articulation or visual decoding ( many env environ
environmentalists oppose the law ) as opposed to an abandoned
fragment ( many env many researchers oppose the law ).

percentage of the words to be recognized are not included in
the dictionary, a large number of misrecognitions are trig-
gered. This especially applies to open domains like dicta-
tion systems or the automatic transcription of broadcast news
where the recognition dictionary cannot be constrained to a
predefined vocabulary. Instead, an unlimited vocabulary is
required. If the language to be recognized has a large number
of inflections and composita, like German, Serbo-Croatian,
and Turkish, for example, the vocabulary grows even faster
and the problem of new and unknown or out-of-vocabulary
words worsens.
This section first introduces some morphological proper-

ties of languages and also possible solutions to the problem
of out-of-vocabulary words. Finally, we introduce methods
to improve the reliability and performance of speech recog-
nition systems for continuous speech on large vocabularies
by overcoming the limitation of the recognition dictionary to
a certain size . Even though the recognition vocabulary is
still finite, the methods presented here allow for a virtually
much larger vocabulary by dynamically adapting the dictio-
nary to the speech data at hand [15]. Based on the idea of vo-
cabulary adaptation, a multipass strategy called HDLA is de-
veloped, and results on Serbo-Croatian, German, and Turkish
broadcast news data are presented [12].

A. Morphological Properties of Languages
As described in Section II, two major groups of languages

can be distinguished when comparing their morphological
properties: those like English that show an exceptionally
simple morphological structure, and morphologically rich
languages like German, Serbo-Croatian, and Turkish.
Whereas English only has a small variety of different in-
flection endings both for verbs and nouns, highly inflected
languages have a very large number of distinct verb con-
jugations and noun declinations. Taking the German word
“kommen” (“to come”) as an example, the differencebetween
the two language groups becomes clear: whereas in English
the present-tense conjugation of this verb consists of just two
distinct endings, the number is twice as large for German,
where there exists a different ending for almost every person
in the singular and the plural. Table 4 illustrates the differ-
ences between German and English for this example.
Additionally, the German language has an uncountable

number of compound words. Formation of these composita
is possible not only for nouns but also for verbs. Several
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Table 4 Examples of Inflection Endings for German Verbs

Fig. 2. Vocabulary growth for several languages.

prefixes can be attached to every verb, each time creating a
new word. The same applies to noun composita. Nouns can
be concatenated to long noun chains, every chain creating a
word with a new meaning. Naturally, these characteristics
of morphologically rich languages lead to a much faster
vocabulary growth over the same amount of training data
than morphologically simple languages like English. Fig. 2
shows a comparison of the vocabulary growth for Chinese,
Serbo-Croatian, Japanese, Portuguese, Russian, Spanish,
Turkish, German, and English on broadcast news transcripts
and newspaper articles.
A consequence of a very fast vocabulary growth is the

resulting large out-of-vocabulary rate for a given dictionary
size. For a task like broadcast news, the out-of-vocabulary
rate for English using a dictionary with 60 000 words is less
than 1%. Much higher rates are encountered for languages
like German, Serbo-Croatian, or Turkish: a broadcast
news recognizer for the Serbo-Croatian language with a
comparable dictionary size shows an out-of-vocabulary rate
of about 8%. As each out-of-vocabulary word causes one
or more recognition errors, high out-of-vocabulary rates
significantly worsen recognition performance.

B. Approaches to the Out-Of-Vocabulary Problem

One possibility to counteract both a fast vocabulary growth
and high out-of-vocabulary rates is the usage of base units
other than words for the recognition process. To this end,
syllable-based as well as morpheme-based decompositions
of words have been used as recognition units. Instead of a
dictionary of words, the underlying recognition lexicon con-
sists of subword units. The coverage of such a dictionary by
subword units is significantly better than the coverage of a
dictionary of the same size composed of conventional words.
However, recognizers built on top of these units suffer a se-
vere degradation in the performance measured at the word
level, because many now hypothesized morpheme sequences
do not map to legal words. To make matters worse, short
morphemes (suffices, prefixes) are alsomore confusable than
long words. As an alternative approach, the idea of a dy-
namic expansion of the recognition dictionary has been in-
vestigated. Words are still considered as the dictionary units
for recognition. But instead of having a static dictionary of
those words, a dynamic dictionary is introduced, which has
the same fixed size as the static dictionary but is tailored
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on-the-fly to each utterance. Since the recognizer uses a dif-
ferent customized dictionary for every single utterance, the
total size of the recognition dictionary is virtually unlimited.

C. Dynamic Lexical Adaptation
HDLA is a technique for dynamically adapting the dic-

tionary of a speech recognizer [13]. It still treats the size of a
dictionary as finite but allows for a larger number of “virtual”
words to be recognized. This is done by abandoning the no-
tion of a fixed static dictionary. Instead, we exchange vocabu-
lary entries from the recognition dictionary, dynamically, de-
pending on the actual speech input. A two-pass recognition
procedure is the basis for this vocabulary adaptation strategy.
The first pass provides the necessary information needed to
exchange the vocabulary entries of a general baseline dictio-
nary by words similar to the actually uttered or hypothesized
words. The second performs another recognition run on the
adapted vocabulary that has a lower out-of-vocabulary rate,
resulting in a lower word error rate. The dictionary used for
both recognition runs has a fixed size, but the individual vo-
cabulary entries are exchanged. Through this approach, the
lexicon is adapted to the actual speech utterance and an op-
timal vocabulary is created for each recognition subtask. Si-
multaneously, any size limitations of the dictionary imposed
by implementational issues or computing resources are over-
come and speech recognition on a virtually unlimited vocab-
ulary is possible.
For the selection of the vocabulary entries incorporated

into the recognition dictionary for the second recognition
run, knowledge about morphological and phonetic affinity
of actually uttered and hypothesized words is incorporated
into the adaptation procedure. The expectation is that a dy-
namically adapted recognition dictionary, constituting an ut-
terance-specific vocabulary for the speech segment to be rec-
ognized, reduces the number of out-of-vocabulary words and
thereby improves recognition performance. Especially when
transcribing broadcast news, this should keep the out-of-vo-
cabulary rate limited and thus improve the word error rate.
1) The HDLA Algorithm: The algorithm below describes

the steps of the HDLA:

1. A first recognition run on a gen-
eral domain-specific recognition dic-
tionary generates word lattices and an
utterance-specific vocabulary list.
2. This vocabulary list is then used
to look up all similar words in a
large background lexicon that con-
tains words from large available text
corpora.
3. All similar words are then in-
corporated into the original recogni-
tion vocabulary by replacing the least
relevant words that did not show up
in the lattice, so that the dictio-
nary size of the recognizer does not
change.

4. In an automatic procedure, a new
dictionary and language model are
created and used to perform a second
recognition run.

Fig. 3 illustrates HDLA applied to German broadcast
news. Applied to Serbo-Croatian and German broadcast
news data, it yields significant improvements in both
out-of-vocabulary and word error rate.
2) Different Selection Criteria: Various criteria for se-

lecting entries for the adapted vocabulary can be applied [16].
Fig. 4 summarizes the ideas and methods that have been used
to generate customized dictionaries.
1) Selection from large dictionaries based on morpholog-
ical similarity: For the morphology-based approach,
twowords are considered similar if they share the same
word stem and only differ in their inflections (morpho-
logical similarity). Similarity is determined linguisti-
cally by morphemic rules.

2) Selection from large dictionaries based on ortho-
graphic of phonetic similarity: To estimate phonetic
similarity, we introduced various distance mea-
sures that are based either on the letter sequence of
words (grapheme-based) or their phoneme sequence
(phoneme-based) [14]. For the phoneme-based ap-
proach, three different methods of calculating the
phonetic distance were used: the equality of two
phonemes, the Hamming distance with respect to a
binary vector of acoustic features, or the acoustic con-
fusability of phonemes. In this approach, compounds
can also be taken into consideration when determining
word distances.

3) Creation of artificial large dictionaries and selection
based on phonetic similarity: If no large data base is
available for a given task or language, language-spe-
cific morphological rules for generating inflections
can be applied to create an artificial fallback lexicon.
We then compute the phonetic distance between its
entries and the entries of the vocabulary list from the
first recognition run. Candidates beneath a certain
threshold are included in the adapted dictionary.

4) Web-based retrieval for dictionary creation: Last not
least, information retrieval on the Web has been ap-
plied to retrieve texts that are similar to the hypoth-
esized output in order to create suitable customized
dictionaries. Two approaches have been evaluated: the
first employs a search engine to retrieve similar texts;
the second uses the topicality of a news show to re-
trieve similar texts.

Based on these methods, we have implemented several al-
gorithms to select the customized vocabulary for the second
recognition.
3) Results: Depending on the special characteristics of

a language to which HDLA is applied, different procedures
lead to optimal performance. Table 5 summarizes the results
achieved by applying the HDLA algorithm to Serbo-Croa-
tian, German, and Turkish recognition. Note that the aim of
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Fig. 3. HDLA framework.

Fig. 4. Selection criteria.

these experiments is to establish relative improvements. Ab-
solute error rates are higher than comparable systems in Eng-

lish in part due to the limited language resources available in
these languages.
The recognition experiments for both Serbo-Croatian and

German show that the reduction in out-of-vocabulary rate
leads to significant reduction in word error rate (Table 6).
Applying the HDLA procedure to Serbo-Croatian broadcast
news, the percentage of newwords decreases from originally
8.7% to 4.0%. This results in a reduction in word error rate
from 29.5% to 25.4%.
For German, a 57% reduction in the number of unknown

words from 4.4% to 1.9% can be achieved. The baseline
recognition result of 24.7% word error rate can be improved
to 23.1% (Table 7).

D. HDLA Conclusion

Speech recognition systems for conversational speech
have to be able to handle very large vocabularies, as spon-
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Table 5 OOV Rates for Serbo-Croatian, German, and Turkish Data

Table 6 Serbo-Croatian Recognition Results Based on Adapted Vocabularies

Table 7 German Recognition Based on Adapted Vocabularies

taneous speech input cannot be restricted to a predefined
vocabulary or domain. Therefore, unforeseen words can
always occur and cannot be included in a static recognition
dictionary. Each of these out-of-vocabulary words will
automatically lead to one or more recognition errors and
thus worsen recognition performance significantly. As an
indefinite expansion of the size of the actual recognition
dictionary is not possible, other ways have to be found to
reduce the out-of-vocabulary rate of a speech recognizer.
The HDLA approach presented above is a successful method
for this purpose.
When looking at the resulting number of out-of-vocab-

ulary words and recognition performance, it is interesting
to see that different methods and selection criteria are
better suited for different languages. While either grapheme
or phoneme based distances turn out to be optimal for
Serbo-Croatian, German (excluding compounds) appears
to improve optimally using a morphology-based approach.
Errors due to compound nouns (common in German), by
contrast, can be improved using a phoneme-distance based
distance selection. These results demonstrate that it is
helpful to consider the special characteristics of a language
when trying to find useful selection criteria for the lexical
adaptation procedure.
In our effort to control unmanageable vocabulary growth

in heavily inflected languages, HDLA was shown to be an
effective means for reducing the rate of out-of-vocabulary
words. Using a two-pass recognition strategy for German and
Serbo-Croatian broadcast news transcription, a significant
reduction of up to 57% could be achieved in the out-of-vo-
cabulary rate, resulting in word error rate reduction by up to
14%.

VI. MULTILINGUAL SPEECH TRANSLATION

Perhaps the most challenging task for multilingual speech
and language processing is the automatic translation of spon-
taneous speech. Possible applications include international
e-commerce, help desks, mobile translation systems for trav-
elers, automatic generation of television subtitles, and the
translation of telephone conversations.
In the following, we will highlight some of the challenges

in speech translation, and review present current approaches
and solutions. A brief overview of the C-STAR speech trans-
lation consortium and the Janus speech translation system
will also be given.

A. Challenges
Many of the known problems of bilingual text translation,

such as dealing with lexical ambiguity, anaphora, and id-
iomatic expressions, occur also in multilingual speech trans-
lation. A number of problems, however, are specific to the
translation of spoken language and to the requirements of
providing speech translation for multiple languages.
1) Translating Spoken Language: Many of the problems

in automatic speech translation are introduced while trans-
forming the input speech to tokens that can be used for trans-
lation.3 The most obvious of these problems are recogni-
tion errors. Since dialogues usually contain spontaneously
spoken utterances that are less well formed than those found
in read speech, word error rates around 10%–40% are still to

3Translating from a string that is similar to the orthographic transliteration
of the speech is not the only option: it is also conceivable to run a translation
engine on a recognized phoneme string.
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be expected. This implies that there is at least one recogni-
tion error in every other utterance. Ignoring recognition er-
rors, grammar coverage for the translation of completely cor-
rectly recognized utterances is typically between 70% and
90%. If the speech translation process were approached as
speech recognition with subsequent text translation, the er-
rors introduced by the individual steps would accumulate to
overall unacceptable end-to-end performance.
Another set of difficulties is introduced by the fact that

spoken language in dialogues differs considerably from
written language. Ungrammatical utterances (“I mean
would you?”), colloquial expressions, isolated fragments
(“To Boston at ten.”), and the lack of punctuation cause
traditional text translation engines to fail. Since spoken
utterances are less carefully planned, they can even be
self-contradicting, as in the following example from our
user studies:

Participants in a spoken dialogue are more likely to refer
to common experience than an author who does not know his
readers. This introduces additional levels of ambiguity. How-
ever, spoken dialogues contain many clues that are missing
in written language, such as prosody, timing, and references
to the current visual context. To efficiently translate speech,
this information has to be integrated.
Finally, the situations in which speech translation can

be used impose constraints on the translation time and on
the amount of data available for disambiguation: usually,
an utterance by one speaker has to be translated before the
other speaker’s turn. Therefore, near real-time processing
is important, and only data from earlier utterances can be
used for disambiguation. If the setup allows no text output
(telephone), the target language output has to be intelligible
when spoken by a text-to-speech program (short sentences,
prosodic hints).
2) Translating Speech in Multiple Languages: For mul-

tilingual speech recognition, a single multilingual engine (as
described in Section III) or a set of monolingual recognizers
can be used. For adding a new language to the system, the ef-
fort is limited to providing a recognizer for that language. For
the translation phase, however, each language pair has to be
considered. If any components in the translation system de-
pend on both source and target language, the effort for adding
a new language increases with the number of languages al-
ready in the system. Later in this section, we will show that
there is a tradeoff between the effort to add languages and
the ease of expanding a system to new tasks.
Due to the structural differences between language

groups, appropriate analysis and generation algorithms
differ between languages. The Japanese language, for in-
stance, does not have blank spaces in the written form, which
makes the definition of a dictionary unit for recognizer and
parser difficult. The Japanese

(Heyawoyoyakushitainodesuga), is an unbroken string of
characters approximately equivalent to “I would like to re-
serve a room, but…” Studies have suggested that rule-based
(e.g., [41]) and statistical (e.g., [42]) algorithms can be used
to automatically extract units from unsegmented text that
are appropriate for both recognition and semantic parsing,
but determining the segmentation that leads to optimal
translation accuracy remains a challenge. The problem of
base unit determination is not limited to languages without
spaces in written text. Turkish and Korean, as described in
Section II, are agglutinative and must be segmented further
than they are in their written form for speech recognition
and translation. Some languages, for example, Spanish,
are written with relatively short words but require exten-
sive morphological analysis. For other languages, such as
English, the few inflected forms can be enumerated in the
analysis grammar. For target language generation, languages
with extensive agreement requirements (Spanish, German)
require additional attention over languages where cases
requiring agreement are rare.
Another problematic aspect of dealing with multiple lan-

guages lies in the cultural differences. In some languages,
for instance, it is considered impolite to say “no,” and na-
tive speakers will rather say things such as “that may be dif-
ficult” or just switch the topic. In a machine-interpreted di-
alog, the implication may not be clear to the English speaker
unless the system finds a way to point it out. In the other
direction, translating a flat “no” into Japanese may be con-
sidered as very impolite. Other cultural differences include
task- and language-dependent expressions. The “queen sized
bed,” while ubiquitous in American hotels, is a concept that
does not exist in Germany and France, where beds come in
the equivalent of twin and king-size only. In Germany, there
is a room-rate called “Halbpension,” which includes break-
fast and dinner, but there is no adequate equivalent in English.
In such cases, a translation system may have to insert brief
explanatory sentences in order to be understood.
Many ambiguities that exist on a semantic level are not

perceived as such by the speaker of the source language, but
the missing disambiguation information can cause trouble
when generating a target language that requires it. One ex-
ample for this is numbers in Japanese. Consider translating
the one-word utterance “two” into Japanese: two as in “two
long objects” is “ni-hon,” while two as in “two flat objects”
is “ni-mai” and two as in “two people” becomes “futari.” A
similar example is the explicit mention of the subject in Eng-
lish, which may be missing in a normal Japanese utterance.
Further information that is often missing when translating di-
alogues is the gender of the speaker and listener as well as the
social relationship between them.
For some language pairs, however, maintaining the level of

ambiguity present in the source language can help to avoid
clumsy, confusing, or (when the ambiguity is incorrectly re-
solved) inaccurate translations.

B. Multilingual Speech Translation Approaches
Given the problems outlined in the previous section,

speech translation may seem an impossible task. A look at
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possible scenarios, however, indicates that while a “universal
speech translator” may be beyond our current reach, speech
translation in some very useful limited domains is feasible.
The most important group of scenarios involves goal-ori-
ented dialogues such as shopping, getting information, and
scheduling events.
The assumption that the translation domain is constrained

to such a scenario leads to several simplifications of the
speech translation task: there will be less ambiguity within
one task, and the conversation will be more polite and less
colloquial; ill-formed spontaneously spoken utterances
can be interpreted, exploiting the semantic constraints of
the domain despite syntactic deficiencies of the spoken
utterance. Finally, the relationship between the participants
is usually clear from the scenario (salesperson–customer).
Proper names will be used more cautiously and may even
be spelled. Utterances in such dialogues can be classified by
their “domain action,” that is, by their achievement toward
the dialogue goal (for instance giving information about
a flight). Moreover, task-dependent idiomatic expressions
abound in such dialogues. Therefore, semantic representa-
tions become an important tool for the translation of goal
driven conversations.
1) Interaction Between Recognition and Parsing: A

common bottleneck in speech translation systems lies
between the speech recognition output and the translation or
analysis step. A number of methods are used to reduce the
accumulation of errors at this point. Parsers used for speech
translation are designed to accommodate repetitions, hesita-
tions, and speech recognition errors by skipping input words
or by parsing word graphs that include alternatives to the
most likely recognition hypothesis. Some unknown words
(unexpected proper nouns not known to the recognizer) can
be represented by their phonetic transcription. Unless the
speaker asks for the exact spelling, it is often irrelevant in
spoken dialogue translation.4 When parts of the utterance
cannot be translated, it can be helpful to skip them and
provide a translation for the remaining parts of the utterance.
Another approach for a close integration of recognition and
analysis is to have the recognition engine use the robust
analysis grammars to restrict the recognition search space.
In this case, the parsing grammars have to provide for all
ungrammaticalities. For utterances that are not covered by
the parsing grammar, the next most likely interpretation will
be recognized; to avoid this problem, confidence measures
must be introduced.
2) Semantic Representations and Interlingua: Many sys-

tems perform a syntactic or syntactic/semantic analysis to ex-
tract a source-language-dependent representation, perform a
transfer step from the source-language representation to the
target-language representation, and then generate the target
language. The number of transfer rules is usually propor-
tional to the number of input languages times the number of
output languages.
4Proper nouns that are common enough in many countries that they have

received language-dependent spellings (e.g., München, Munich) should be
represented explicitly.

Fig. 5. Interlingua.

An interlingua is a target- and source-language-indepen-
dent representation of the content of an utterance. For multi-
lingual translation systems, an interlingua makes it possible
to add translation between a new language and all existing
languages by simply providing translation from the new lan-
guage to the interlingua and from the interlingua to that lan-
guage.
Ideally, we would like an interlingua that is unambiguous,

at least with respect to the current task. Therefore, natural
languages are not very suitable as interlingua. Moreover,
goal-oriented tasks contain many idiomatic expressions
that should not be translated literally. Mapping them on
a language-independent semantic interlingua avoids mis-
leading awkward translations. Special parsers have been
developed to extract semantic interlingua structures from
recognition output. They work with semantic grammars that
can be written by native speakers without linguistic training
(Fig. 5).
By translating from the source language to a language-in-

dependent semantic interlingua and back into the source
language, we also obtain a new feature: paraphrasing.
Through the paraphrase, the user can see whether the
interlingua structure that was extracted from the (possibly
ambiguous) input corresponds to the intended meaning
without actually looking at the interlingua.
For many tasks, semantic interlingua structures can also be

transformed into data base queries to obtain information for
the task at hand or to resolve ambiguities or conflicts in trans-
lating the current utterance (next Friday is the 13th, Kyoto is
in Tokyo, there is no train from New York to Frankfurt, etc.).
While systems that are based on semantic representations

are easier to expand to new languages, porting to new tasks
with new semantic concepts but similar syntactic forms
is more expensive. For goal-driven dialogues, however,
the number of semantic concepts is comparatively small
and reusable grammar components (specific phrases for
requesting information, e.g., times and dates, places, ad-
dresses, currencies and amounts, etc.) can be used to limit
the effort.
Since an interlingua should contain all information nec-

essary to generate all target languages, much of the disam-
biguation work has to be done in the analysis step of such
systems. Once a language-independent interlingua represen-
tation has been established, the disambiguation work has to
be done only once for every new source language.
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3) Incomplete Information: Extracting a complete se-
mantic interlingua structure from a single utterance is not
always possible. Consider the following example:

While it is clear from the task that the question is about
how many people will be travelling, it is not clear from the
answer alone. Missing information can be extracted from
multiple sources (dialogue, prosody, data bases, default
assumptions) and added to the interlingua representation.
Since there is often a source language dependent default for
missing values (such as the speaker as subject in a Japanese
sentence), a default can also be provided by the analysis step.
It is, however, a good idea to add confidence measures and
to mark information that was not in the original utterance.
This way, it is possible to retain ambiguities where resolving
them is not required for the target language rather than
risking a possibly wrong interpretation of the input. As a
last resort, the user of a speech translation system can be
asked to disambiguate in critical cases (“eleven fifty five”
1155 or $11.55 or 11:55am).
4) Statistical Translation: Another well-known ap-

proach to enhance portability and to reduce the impact of
multiple language pairs on the development effort is to use
statistical translation approaches. For these systems to work
in a multilingual environment, a bilingual corpus for the
task in question has to be available for each language pair.
Alternatively, a multilingual corpus for all languages can
be used. This corpus should contain sufficient amounts of
original, task-dependent examples for each source language.
Statistical methods and semantic interlingua can be used
together by training statistical systems to segment the input
utterance into domain actions and concepts.

C. C-STAR and Janus
The Consortium for Speech Translation Advanced

Research (C-STAR) was founded in 1991 as a forum for re-
search groups focusing on speech translation to collaborate
and meet the challenges of multilingual speech translation.
C-STAR-I began with four members and demonstrated in
1992/1993 the feasibility of speech translation using a rather
limited prototype for German, English, and Japanese. At the
end of the second phase of C-STAR in July 1999, the con-
sortium, now expanded to 20 partner and affiliate members,
demonstrated a much more powerful joint arrangement to
translate between German, English, Japanese, Italian, Ko-
rean, and French on a travel planning domain. Each member
in the consortium built a speech recognition system for its
own language and provided for translation from their native
language either into multiple other languages or to and from
a common interlingua, called the interchange format (IF).
To perform multilingual translation, several systems running
at the individual sites are connected through the Internet and
create a distributed translation engine. The loose form of the
consortium allows each member to do its own research with
very little overhead, at the same time avoiding redundant

development and making optimal use of the local resources
in all member countries. The resulting distributed system
allows for worldwide cross-language experiments that none
of the partners would have been able to perform on its own. 5
1) C-STAR-II Interchange Format : While using English

words to describe concepts, the C-STAR-II interlingua is de-
signed to work for all six C-STAR languages. Some target-
language-dependent requirements were found during the de-
velopment of the translation systems, leading to amendments
in the IF.
A C-STAR-II IF consists of five components: speaker tag,

speech act, concepts, arguments, and argument values. In the
case of the travel domain, the speaker tags are “a:” for travel
agent and “c:” for customer. Since the IF was designed for
translation in goal-driven dialogues, the speech acts represent
the intent of the utterance with respect to the dialogue goal: “I
want to book the cheap room,” therefore, is a request to book
the room (request-action), while in a different con-
text, it could be considered as simply giving information. The
most common speech acts in the C-STAR-II interlingua are:
give-information, request-information, re-
quest-action, greeting, and closing.
The concepts are used to specify the domain-specific

intent of the utterance. In the sentence “I want to book
the cheap room,” the additional concepts are “reserva-
tion,” “price,” and “room.” Speech acts and concepts
together create the domain action, in this case re-
quest-action+reservation+room. Specifications
beyond that level are made by argument-value pairs, in
our example “price cheap” and “who I.” The total IF
representation for this utterance would therefore be c:
request-action+reservation+room (who=I,
price=cheap).
Due to the distributed nature of the IF development, most

of the discussions had to be done by e-mail, favoring solu-
tions that are simple and easy to communicate. While the
current IF works very well for the travel task, substantial en-
hancements are planned for the next C-STAR interlingua in
order to improve portability to new tasks. Planned extensions
center around the current separation between concepts and
arguments and the representation of optional information.
2) The Janus System: The Janus speech translation

system as used in the 1999 C-STAR experiment [39] pro-
vides a modular platform for combining and comparing
multiple translation approaches. In the default setup, the
Janus recognition toolkit (JRTk) is used for German or Eng-
lish speech recognition. The SOUP parser, using manually
written, modular semantic grammars, parses the recognition
output. The grammar for each language is modularized into
one subgrammar per subdomain, such as hotel reservations
and booking flights. Rules for actions that are required for
multiple scenarios, such as requesting names and telephone
numbers, are put into a cross-domain grammar. Common
components such as time expressions reside in a shared
grammar that acts as a library of nonterminals accessible
5More information on C-STAR can be found on the consortium’s web

page: http://www.c-star.org.
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to all other grammars. This structure makes the grammars
more consistent and easier to maintain and it facilitates
porting to new domains. The parser output is mapped to the
C-STAR IF by means of a Perl script to maintain a high level
of reusability of parsing grammars with respect to changes
in the IF. From the IF, the system can generate English,
Japanese, German, Korean, French, Italian, and Spanish
output. Janus also supports a multiengine approach that
permits combination of a number of alternate approaches
for translation, including an example-based approach (PAN-
GLOSS) [25] and a statistical hidden understanding model
(SALT) [24] to automatically extract and label utterance
segments corresponding to IF speech acts, concepts, and
arguments.
3) Language Portability of Speech Translation Sys-

tems: Porting speech translation systems to new languages
has become a considerable concern, when considering the
large number of world languages. Adding new languages
to the Janus speech translation system for any given task
requires the several steps. First, a speech recognizer has
to be built. It can be efficiently bootstrapped either from a
recognizer for that language from a different task or from a
multilingual speech recognizer, as described in Section III.
In either case, at least 50 000–100 000 words of text data
in the domain are required as a development data base for
language modeling and translation.
Since the interchange format is language independent, the

next task is to write semantic grammar rules that cover likely
expressions for the core part of the interchange format. These
rules then have to be expanded to cover all likely ways to ex-
press every concept covered by the interchange format. This
is done by analyzing user data and developing grammar rules
that cover the development data in a way that is likely to
generalize to unseen data, while at the same time avoiding
overgeneralization. This part of the grammar development
requires practice and skill. In order to get reasonable flexi-
bility, large grammars have to be coded.
The effort in developing a semantic parsing grammar

clearly depends on the number of concepts in the domain.
For the scheduling task, the main concepts are centered
around suggesting a time, accepting a time, and rejecting
a time. This resulted in compact parsing grammars that
could be developed by a single person in a few months. The
travel domain with its many subdomains is considerably
more complex. Careful modularization and reuse of existing
structures allow development of a grammar with reasonable
coverage for this task by one person in about 12–18 months.
To add a new output language, the only new requirement
is a generation grammar for the new language. Since it is
sufficient to come up with a single way to express each
concept, the effort for developing generation grammars
is smaller than the effort for parsing grammars. When
adding Japanese output to a system that already contained a
fairly large generation grammar for English, we found that
starting out by manually translating the core English rules
to Japanese and then refining the grammars reduces the
development time considerably. However, characteristics of
certain languages (noun/verb agreement, as in German) can

require the use of more complex generation systems. One
person could develop a grammar with moderate coverage
for the travel domain in approximately six months.
Several dialog models have been tried within the frame-

work of our C-STAR systems. The currently most successful
model is using the a priori likelihood of dialog-acts (directly
integrated into SOUP’s transition probabilities), as well as
the likelihood of dialog-acts given the dialog-acts of the pro-
ceeding utterance (of the other speaker).
4) Evaluation Procedures and Results: To get realistic

data to evaluate and improve speech translation systems, user
studies are required. The data from each study were used first
to evaluate the system, then for error analysis, and finally for
development. The subjects were also given a questionnaire
on user interface issues, which was evaluated to improve
HCI aspects of the system. The subjects involved in all user
studies had little or no previous exposure to speech recogni-
tion or speech translation. They were seated in a moderately
noisy office and asked to play the role of a traveler booking
a trip to Germany or, in the case of the latest user study, to
Japan. The travel agents (researchers from our group) were
placed in a different office. The only means of communica-
tion between the “client” and the “agent” were by way of our
speech-to-speech translation system translating fromEnglish
via IF back to English, a multimodal interface allowing for
handwriting recognition and sharingWeb pages, and a muted
NetMeeting video conference (no audio). During the entire
duration of the user study, the subjects were observed and
videotaped by a researcher. Instructions on how to best use
the system and interventions in case of problems were kept
to a minimum.
Sentence-based Janus MT evaluations are run as

end-to-end evaluations of translation output from speech
input. Bilingual graders compare the source language input
and target language output for each sentence. The grades as-
signed are OK, bad, and perfect. OK translations contain
all the information from the source language sentence with
no extra misleading information. Perfect translations
meet this criterion and are, in addition, fluent sentences in
the target language.
Table 8 reports the results of a recent evaluation. The eval-

uation was conducted on a set of 132 utterances (all previ-
ously unseen by the system developers). Each utterance con-
tains one or more sentences. The data were taken from our
latest user study of subjects trying to book a trip to Japan.
Experiment 1 in Table 8 shows the quality of the speech

recognition output measured by the same criteria as the
output of the translation engine: OK for retaining all relevant
meaning and Perfect for being fluent. For about 22%
of all utterances, some important change of meaning had
occurred due to a recognition error in the best matching
hypothesis. Preliminary experiments using word graphs
rather than first best hypotheses indicate that for about half
of these utterances even a small word graph contains a
hypothesis of the correct meaning.
Experiments 2 and 3 give the performance of the system

for paraphrasing back into English from transcribed text (Ex-
periment 2) and speech recognition output (Experiment 3).
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Table 8 Translation Grades for English-to-English, English-to-Japanese, and English-to-German
using the Soup Parser

An error analysis showed that only 8% of all utterances did
not get a correct translation because of speech recognition er-
rors. Another 20% of all utterances did not get correct trans-
lations because of coverage limitations of the interchange
format or grammars. Experiments 4 and 5 give the perfor-
mance for English-to-Japanese translation from transcribed
English input (Experiment 4) and recognized English input
(Experiment 5). The slightly better result in comparison to
English-to-English paraphrase reflects the subjective nature
of the grading process more than the actual performance.
The results for translation into German (Experiments 6 and
7) mostly reflect the extremely short development time for
the German generation grammars (7 weeks at the time of the
evaluation).

VII. CONCLUSION

In this paper, we have reviewed several strategies for the
development of multilingual speech recognition and under-
standing systems. While most modern systems are trained
on large speech data bases, careful design and long devel-
opment times are still required to achieve good performance
in multilingual spoken language systems. In this paper, we
have described several difficulties of multilinguality and of-
fered solutions to:
1) the problem of portability across languages;
2) the problem of foreign accented speech;
3) the problem of morphology, or lexicon size and con-
fusability;

4) multilingual spoken language and translation systems.
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