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ABSTRACT

In spoken dialogue systerns, hyperarticulation occur
as an effect to recover previous recognition errors. It
is commonly obscrved that in particular real users ap-
ply similar recovery strategies as in hurnan-human in-
teractions. Previous studies have shown that current

speech reeognizer cannot handle hyperarticulated specch.

As an effect of higher word error rates at hyperartic-
ulated speech, humansg try to reinforce this speaking
style which result in even more recognition errors.
In this paper, we present approaches to build robust
acoustic models for hyvperarticulated specch. The key
point is that the changes of acoustic features at hyper-
articulation is a phone dependent effect. The idea is
to use the likelihood criterion to decide, which phones
should be treated separately. This can be done by in-
corporating dynamic questions about hyperarticula-
tion into the clustering stage. Based on such phonetic
decision tree, we can generate appropriate acoustic
models. With this method, we achieved a word error
reduction about 9% relative at hyperarticulation.

1. INTRODUCTION

The usability of spoken dialogue and dictation sys-
terns strongly depends on the fact that a user can feed
any information into the system faster using speech
technology instead of typing. One critical issuc in
building intelligent human computer interfaces is fail-
ure tolerance. However current state of the art speech
recognizer will always exhibit some errors. In case of
recognition errors, a user will switch to other modal-
ities (handwriting, gestures, typing) or just try to re-
peat the misrecognized phrase. As a consequence,
the advantages of speech interfaces will be greatly ro-
duced through the time needed for error correction
[9].

To develop user friendly speech interfaces, it is
important to cxamine, how users react to recogni-
tion cerrors. When humans use recognition technol-
ogy it is commonly observed, that they follow simi-

lar recovery strategies as in interaction with humans.
These strategies are typically attempts at speaking
more clearly and accented in an effort to disambiguate
the original mistake. Oviatt et. al presented in [6]
a user study in which the reactions on word errors
wore examined. They observed that the duration of
utterances increase, both specch segments and num-
ber and duration of pauses. Word repetitions were
spoken more clearly than in the original spoken ut-
terance. The question that arises is if such an user
reaction helps the gystem to find the correct word
hypothesis. In [8] we demonstrated that the recogni-
tion rates arc worse at hyperarticulation contrary to
the users intention. In particular, we observed that
higher F0 values at hyperarticulation are correlated
to worse recognition results.

In principle, the problems at hyperarticulation can
be attributed to different components of a speech rec-
ognizer, namely the pronunciation models, duration
maodels, and last but not least the acoustic models. In
this paper, we focus to reduce the mismatch between
the acoustic models and the speech patterns that oc-
cur at hyperarticulation. One key point is that the
changes of acoustic features at hyperarticulation is a
phone dependent effect. For example, the phone du-
ration is increased by 44% for plosives, but only 16%
for vowels. However, standard adaptation techniques
docsn’t make usc of such knowledge. We therefore
constructed phonctic context trees which make ox-
plicit use of questions ahout hyperarticulation.

In the first section we describe our experimen-
tal setup, our database with normal and hyperartic-
ulated speech, and our bascline recognition system
that we used. We will give some details about our
procedure to collect hyperarticulated speech in a spo-
ken dialogue system scenario. After that we roport
about constructing hyvperarticulated models and an-
alvze phone dependent hyperarticulated effects.



2. EXPERIMENTAL SETUP

2.1. The data

We have collected a English datahase with normal
and hyperarticulated isolated speech. In order to in-
duce hyperarticulated speech realisticly we analyzed
typical errors of our current LVCSR system at first
and gencerated a list of frequent confusions. The record-
ing scenario consists of two sessions. In the first scs-
gion data were recorded with normal speaking style.
We gelected 30 word pairs for each speaker. Each
word pair consists of a word and the corresponding
confusable word (as per error analysis). We presented
the 2 x 50 words independent of cach other in the first
gection without any ingtructions. In the second ses-
sion, we tried to induce hyperarticulated speech. We
simulated recognition errors and presented phrases
like “Word A was confused with Word B. Pleasc
repeat Word A” up to three times for cach word pair.
The decision if the system accepts or rejects the input
was chosen randomly but similar to real error rates.
To avoid monotonous spoken utterances from bored
subjects we sct the probability for two attempts to
20% and for three attempts to 10% only. Since we
assumed that opposite features are used to disam-
bignate two words 4 vs. B and B vs. A, respectively
wo presented cach word pair in reverse order also, For
cach speaker we collected 100 normally spoken words
in the first session and approximately 120 hyperartic-
ulated words in the second session with this strategy.
In total, we've got recordings from 45 subjects. For
testing purposcs, 11 speaker were excluded.

2.2. The Speech Recognition Engine

The Recognizer used for this experiments was build
using our JANUS-IIT Speech Recognition Toolkit. The
baseline system is a 30k vocabulary semi continu-
ous speech recognizer. For speech extraction, we de-
rive 13 MEL-scaled cepstral cocflicients (MEFCC) with
first and second order derivatives normalized with
cepstral mean subtraction. The vector dirmension is
reduced to 20 by performing an linear discriminant
analysis. For the acoustic model, we use 800 context-
dependent sub-quintphones build in a two-stage de-
cision tree based clustering approach. The acoustic
modelg are trained with around 52 hours of sponta-
neous and read speech. Vocal tract length normal-
ization is applied during training and decoding. Cep-
stral mean subtraction is used to compensate channel
differences. The performance of the recognizer is cur-
rently at 15.6% word ervor rate with a 10k vocabulary
on a continuous speech test set.

3. CONSTRUCTING ACOUSTIC MODELS
FOR HYPERARTICULATED SPEECH

In a first run we used the system described above to
gencrate bascline results. As we can sce in table 1,
the performance is quite poor. To reduce the chan-
nel and speaking style ' mismatch we adapted the
acoustic models using MLLR with 233 classes. In all
this experiments, we used the same size of adaptation
data for normal as for hyperarticulated speech. After
the adaptation, the word error rate dropped down to
23.9% for normal speech and 33.9% for hyperarticu-
lated speech. That means, that there is still a per-
formance gap of more than 40% at hyperarticulated
gpeech. In a sccond cxperiment, we examined to ox-
tenuate the speaking rate rmisrnatch between continu-
ous and isolated speech by training phone dependent
transition models. As shown in table 1, there were
only small improvements for normal isolated speech,
but indced a significant crror reduction for hyperar-
ticulated speech.

Speaking Style
normal | hyper

systern

haseline 33.8% | 45.0%
adapt acoustic modely 23.8% | 33.9%
train transition models || 23.0% | 29.8%

Table 1: initial experiments for normal and hyperar-
ticulated speech (results in word ciror rates)

3.1. Phone dependent effects

In preliminary experiments, we tried to train sepa-
rate acoustic models for hyperarticulated specch, The
problem that occurred was that the acoustic charac-
teristics change only for certain phones at hyperar-
ticulation. Now, if we train separate acoustic models
for normal and hyperarticulated speech but only cer-
tain speech states arc affected by hyperarticulation,
this result in a insufficient data sharing across the
models. This is even true for adaptation techniques
like MLLR. and MAPD since the regression tree base
usually on how close are the acoustic components of
the original models and how much adaptation data
is available. As a consequence of this, the splitting
of the speech states in a normal and hyperarticulated
part base on how much data are available but not
if the acoustic characteristics differ for this speech
state. But what we want is to scparate the models

'The original system was trained with continuous speech,
but we use here isolated speech.



if the acoustic characteristics differ at hyperarticu-
lation and not only if enough data is available. To
demonstrate that hyperarticulation is indeed a phone
dependent effect, we compared some acoustic features
for both normal and hyperarticulated speech.

e Formant Analysis

The formant values were extracted by comput-
ing the roots of the predictor polynomials from
the speech signal. The first two formants of the
vowels AA, TH, and UW are shown in table 2.
We did a t-test at level & = 0.05 to see if there
are significant differences at hyperarticulation.
This was the case only for the vowel UW.

vowel | formant | Speaking Style t-test
normal | hyper | at alpha=0.05
AA F1 840 868 differ not
AA F2 1797 1914 differ not
IH F1 676 645 differ not
IH F2 2179 2173 differ not
Uw F1 476 591 differ
UW F2 1867 2117 differ

Table 2: formant frequencies (Hz) for vowels AA, TH,
Uuw

e Phone Duration Analysis

The larger gains for hyperarticulated speech ob-
tained by training transition models (see table
1) indicated already that the phone durations
change at this speaking mode. The phone du-
rations were estimated by a forced alignment
with the adapted acoustic models. In particu-
lar, the phone durations for the voiced plosives
/B/, /D/, and /G/ are increased by more than
40 %. On the other hand, the durations of vow-
els changed not very much.

phone class average phone duration
normal | hyper | relative
all phones 86 msec | 110 msec | 28%
vowels 101 msec | 117 msec 16%
consonants | 100 msec | 132 msec | 32%
plosives 79 msec | 114 msec 44%
fricatives 124 msec | 156 msec | 26%
nasal 95 msec | 127 msec 33%
glottal 148 msec | 181 msec 22%
Table 3: average phone duration at normal and

hyperarticulated speech

3.2. Integrating Hyperarticulation into Deci-
sion Trees

In the last section, we have seen some clues that not
all phones are affected by hyperarticulation. In or-
der to train appropriate models we have to find out
which phones or speech states should be treated sep-
arately. Instead of using formant or duration val-
ues as a splitting criterion, we use the likelihood to
decide if a speech state is affected by hyperarticula-
tion. This can be done by incorporating dynamic
questions about hyperarticulation into the cluster-
ing stage. This allows us to model this speaking
mode in a common framework [2]. When building the
phonetic decision tree to generate context dependent
models, we now use additional questions concerning
hyperarticulation. As a consequence, we split auto-
matically these models into a normal and hyperartic-
ulated part, only if there are really different acoustic
features given the current context.

-1=REDUCED -1=SONORANT

Figure 1: excerpt from the decision tree for /Z/

Fig 1 shows the results of the clustering proce-
dure where such questions were used. Questions like
“-1=7" will ask about the left context, “0=?" about
the identity and so on. Left/right branches corre-
spond no/yes answers. In this new decision tree, 15%
of all nodes are now depend from the speaking mode.
This confirm also that only certain speech states are
affected by hyperarticulation.

| phone class | hyperarticulated questions |

vowels 3.5%
consonants 20.8%
- nasals 23.8%
- plosives 21.6%
- fricatives 24.6%
- approximants 9.8%

Table 4: splits relating to manner of articulation

In table 4 we analyzed which phones are mainly
separated. It seems, that the acoustic space of vowels



doesn’t change in a error recovery mode in contrast
to the consonants. Only 3.5% of the vowel models
depend on the hyperarticulated speaking mode, but
more than 20% of the consonants.

phone class ‘ hyperarticulated questions ‘

hilabial 8.0%
labiodental 0.0%
alveolar 24.3%
retroflex 0.0%
velar 41.7%

Table 5: splits relating to place of articulation

The distribution of hyperarticulation dependen-
cies according to the place of articulation is shown
in table 5. Mainly alveolar and velar sounds exhibit
acoustic changes at this speaking mode.

questions Speaking Style error
normal \ hyper || increasc

context 23.0% | 29.8% || 29.6%

spoaking mode || 23.3% | 27.1% || 16.3%

Table 6: decision tree experiments (results in word
error rates)

We build a context dependent systern with this
new decision free by standard viterbi training. We
nsed the same number of parameters as we used for
the bascline system. Compared to the standard tree,
the error rate has decreased from 29.8% to 27.1%
at hyperarticulation with only a small performance
degradation of 0.3% at normal speech. The perfor-
mance gap between both speaking modes is now only
16.3% rclative.

4. CONCLUSIONS

To build spoken dialogue systems for real world ap-
plications, it is necessary to model, how users react to
recognition errors. Hyperarticulation cause a perfor-
mance degradation of more than 30% relative. Only
certain phones (mainly nasals and fricatives) are af-
fected by hyperarticulation. By extending phonetic
context decision trees with dynamic questions about
hyperarticulation we achieved a word crror reduction
of 9% rclative.
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