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ABSTRACT

In this paperwe reportrecentdevelopmentson themeet-
ing transcriptiontask, a large vocabulary conversational
speechrecognitiontask. Previous experimentsshowed
this is a very challengingtask,with about50%word er-
ror rate(WER) usingexisting recognizers.Thedifficulty
mostlycomesfrom highly disfluent/conversationalnature
of meetings,and lack of domainspecific training data.
For the first problem,our SWB(Switchboard)system—
aconversationaltelephonespeechrecognizer— wasused
to recognizewide-bandmeetingdata; for the latter, we
leveragedthelargeamountof BroadcastNews (BN) data
to build a robust system. This paperwill especiallyfo-
cuson two experimentsin the BN systemdevelopment:
modelcombinationandHMM topology/durationmodel-
ing. Model combinationcan be doneat variousstages
of recognition:post-processingschemessuchasROVER
canleadto significantimprovements;to reducecomputa-
tion we tried modelcombinationat acousticscorelevel.
We will alsoshow theimportanceof temporalconstraints
in decoding,presentsomeHMM topology/durationmod-
eling experiments. Finally, the meetingbrowsersystem
andmeetingroomsetupwill bereviewed.

1. INTRODUCTION

Meetings,seminars,lecturesanddiscussionsrepresentver-
bal formsof informationexchangethatfrequentlyneedto
beretrievedandreviewedlateron. Human-producedmin-
utestypically provide a meansfor suchretrieval, but are
costlyto produceandtendto bedistortedby thepersonal
biasof the minute takeror reporter. To allow for rapid
accessto themainpointsandpositionsin humanconver-
sationaldiscussionsandpresentationswe aredeveloping
a meetingbrowser which records,transcribesand com-
pileshighlightsfrom a meetingor discussioninto a con-
densedsummary. This task facilitatesresearchin both
speechrecognitionandautomaticsummarization/ infor-
mationextraction,aswell asdiscoursemodeling,because
of thehighly interactivenatureof meetings.
Amongall possiblemeetingscenarios,we especiallytar-
getedtwo different types: researchgroup meetingsand

discussion-typeTV news shows, wherea host and sev-
eral guestshold a discussionof currentevents. We col-
lectedseveralinternalgroupmeetings,recordedwith lapel
andsomestand-microphones,aswell as27 hoursof TV
news shows (18hoursof Newshour, 9 hoursof Crossfire)
recordeddirectly from a TV set.
Our previousexperiments[8], mostlyon thegroupmeet-
ing data,showedit’ squitechallenging:weachievedabout
50%WER with ourWSJ(Wall StreetJournal)systemand
ESST(EnglishSpontaneousSchedulingTask)system,even
afteriterativeunsupervisedadaptation.Thedifficulty mostly
comesfrom:

� speakingstylemismatch:conversational,highlydis-
fluent,cross-talk

� microphonemismatchandlack of domain-specific
trainingdata

In this paper, we first describean experimentusing the
SWB systemon thesamedata(Section2), to addressthe
speakingstylemismatch.Section3 presentsthedevelop-
mentof ourBN system,whichwehopecanprovidethere-
quiredrobustnessfor themeetingtask.Along thewaywe
will cover two interestingexperimentsin greaterdetail:
model/systemcombinationandHMM topology/duration
modeling.Finally, themeetingbrowserinterfaceandmeet-
ing roomsetupwill bebriefly reviewed.

2. EXPERIMENTS WITH SWB SYSTEM

As notedabove, to accountfor the mismatchin speak-
ing style, we usedour SWB (Switchboard)system,one
of the bestperformingsystemsin the1997Hub5Evalu-
ation. An interestingpoint is thatby doingso,we intro-
ducedanothertypeof mismatch:SWBis trainedon8KHz
telephonespeech,while themeetingdatais 16KHzwide-
bandspeech.Thusno onewould risk a predictionabout
theoutcomewhenwestartedout.
We downsampledmeetingdatato 8KHz, underthe risk
of losing information containedin the higher frequency
band,thenfed it to theSWB recognizer. To our surprise,
the result was an after-adaptationWER of 40%. This
wasbetterthanboth the WSJandthe ESSTsystem(Ta-
ble 1). (Thevocabulary andlanguagemodelareunmod-



ified SWB models,with about15k words,OOV rate is
3%.)

# AdaptIterations 0 1 2
ESST1 67.4 57.5 55.2
WSJ1 54.8 49.6 49.9
SWB 47.0 42.3 41.6

Table1: WER(%)onthegroupmeetingdata

We attributethis successto thematchingof speechstyle.
Theconversationalspeechstyleis modeledin severalcom-
ponentsof the SWB system: acousticmodel, language
model and especiallypronunciationlexicon. The latter
modeledfrequentpronunciationvariants& commoncon-
tractionsprobabilistically[9]. On average,it hasabout2
pronunciationvariantsperword;andall frequent“phrases”
like “KIND OF”, “SORT OF”, “AND A” arerepresented
ascompoundwords,in orderboth to give themaccurate
pronunciationsand to benefit from having longer base-
formsin decoding.

While it maynotbeeasyto singleout thecomponentthat
contributedmost,wetriedasimpleexperimentto port the
lexicon to WSJsystemandachievedsomesuccess.

3. BN SYSTEM DEVELOPMENT

TV news shows (suchasNewshourandCrossfire),while
conversationalin style,alsobearsomeresemblancetobroad-
castnews data,bothin termsof wide topic coverage,and
higherrecordingquality. Experimentswith existing rec-
ognizers(WSJ/SWB)didn’t give us a satisfactoryresult
on this data.We decidedto leveragethe largeamountof
trainingdataavailablein theHub4task,to build a robust
recognizerfor themeetingtask.

BootstrappingfromtheWSJsystem,wefollowedthe“stan-
dard” Janustraining steps,andtraineda relatively small
VTL-normalizedtriphonesystem. It’ s roughly a semi-
tied system,with 6000distributionssharing3000 code-
books,with eachcodebookhaving 24/32Gaussians.We
tried severalfrontends:standardcepstrum,mel-spectrum,
anda slight variationof cepstrum.They all endup with
a 42-dimensionalfeatureafter applyingLDA. A simple
word trigram languagemodelis usedthroughoutthe ex-
periments.We alsocomputea confidencescorebasedon
acousticstability of the hypothesizedword (by counting
how many timesit shows up whenrescoringlattice with
variouslanguageweightsandword insertionpenalties).
The resultsreportedhereare first passnumbers(unless
otherwisestated)ontheHub41996developmentPE(par-
titionedevaluation)set,with a 20k vocabulary (OOV rate
2.1%).

1previousresults,cf. [8]

3.1. Model Combination

Consistentwith resultsin Hub4evaluation,WER canbe
significantlyimprovedby combiningdifferentsystemsus-
ing ROVER ([10]). In our case,WER is reducedfrom
35.0%to 32.0%,about9% relative gain, by combining
4 systemsretrainedwith different frontendsmentioned
above. Moreamazingly, in the“oracle” case,i.e. if wecan
combinethe 4 differenthypothesisoptimally, the WER
droppedto 23.4%. This is very attractive, while at the
sametimeseemsquiteachievablesinceonlya4-waychoice
is involvedateachwordposition.
Theobviousstartingpointwasto improvethevotingscheme.
ROVER is ableto dosimplemajority voting,or useside-
information like a confidencescorefor eachword. Our
bestresultwasobtainedbyusingaverageconfidencescores.
We canalsoenvision moreelaborateschemessuchasus-
ing N-besthypothesisfrom eachsystemto populatethe
votingpool.
Combiningsystemsat thepost-processingstage(theway
ROVER does)canbecostlysinceweneedto run4 decod-
ing/rescoringpasses.A desirablegoal is to have a single
systemand to run a single decodingpass. To this end
we trieda simplemodelcombinationapproach.Sincethe
4 systemsonly differ in their frontends(and of course,
acousticmodels),andJanushasbuilt-in supportfor com-
bining acousticscoresfrom multiple streams,we com-
bined acousticscoresfrom differentsystemsin a linear
fashion:
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where- . is theweightfor thei-th stream.Sincethescores
arein the log domain,this is essentiallythe sameasthe
log-linearmodelcombinationapproachin [1].
In the experimentbelow we combined2 systems,with
WER of 32.3%and34.2%respectively. Themodelcom-
binationapproachgives31.3%,while ROVER with confi-
dencemeasurementgives30.8%,outof theperfect-ROVER
WER of 24.9%(Table2).

System WER(%)
scB 32.3
MSPEC 34.2
ROVER(Oracle) 24.8
ROVER with CM 30.8
2-streamcombination 31.3

Table 2: Model Combination Experiment. scB and
MSPECdenotes2 acousticmodelswith different fron-
tends. Weights for eachmodel are empirically deter-
mined. CM standsfor ConfidenceMeasurement.WER
is measuredona subsetof dev96pedata.

Thusmodelcombinationat theacousticscorelevel didn’t
outperformROVER– modelcombinationatthepost-processing
phase.We feel there’s muchmoreto explore: what’s the



exact natureof the between-systemdifferences(arethey
really different or is it just somerandomnoise due to
perturbation),how to effectively combinethem, etc. In
theliterature,Hazen[2] suggestedthataggregationcanbe
usedto improve classifiers;Peskin[3] noted“jiggling” in
adaptationcanalsosmoothout differentmodels;alsoan-
othercommonobservationwith ROVER is that themore
diverseparticipatingsystemsare, the morewin ROVER
canprovide. We believe an in-depthanalysisis essential
to a correctunderstandingof somespeechtechniquesand
canleadto betterandmorerobustsystems,sincethis issue
is widespreadin recognizerdevelopmentandevaluation.

3.2. HMM Topology & Duration Modeling

Anotherinterestingepisodein BN systemdevelopmentis
aboutHMM topology. Sofar 3-stateleft to right topology
is themostcommonlyusedfor aphoneme,with eachstate
having a forwardtransitionandaself-loop.For somerea-
sonour initial topologyallows very fast skipping: it can
transit to the next phonemedirectly from the beginning
state(or themiddlestate).After switchingbackto a more
conservativetopology,whichonlyallowsskippingtheend
state,theWER wentdown 2%absolute.This is theresult
after retraining.Without retraining,i.e. simply decoding
usingtheoriginalacousticmodelbut with the“corrected”
topology, westill get1.5%absolutegain(Table3).

System WER (%)
Old Topo 34.3
New Topo(retrained) 32.1
New Topo(without retraining) 32.7
Minimum DurationModeling 31.8

Table3: TopologyExperiments

Ourexplanationfor theaboveresultsis thatamorerestric-
tive topologyenforcesa certaintrajectorythata phoneme
mustgo through,without which decodingcould become
too flexible and easily confused. But becausetraining
(forcedalignment)is guidedby referencetexts, thusmore
restrictive,wedidn’t have asmuchproblemin trainingas
we would in decoding.Nonthelessthis posedaninterest-
ing dilemma: why did the unmatchedtestingsetupturn
out betterthanthematchedcase?Theold topologybasi-
cally subsumesthe“correct” topology, thusit hashigher
training set likelihood thanthe “correct” counterpart.It
seemsthat there’re someimportantfactorslargely unac-
countedfor in thetraditionalframework.
While we currentlydon’t know how to pursuethe topol-
ogyargumentfurther, wesuspectdurationmightbea fac-
tor there: it can alsoprovide someguidanceduring de-
coding(for asmoothed,morereasonablehypothesis).Af-
ter reviewing someof theearlierdurationmodelingwork
([4, 5,6]), wedecidedto takeaslightlydifferentapproach.
Insteadof assigningprobabilitiesto all possibledurations
of a context dependentphoneme,i.e. modellingwith a

multinomial distribution, we choseto simply enforcea
minimum/maximumduration constraint. This prevents
theoccuranceof extremelyshortor long phonemescom-
monly seenin recognitionerrors,andhasseveral advan-
tages:� avoids the scalingproblemof combiningduration

scorewith acousticscore

� allowseasyincorporationof thedurationalconstraint
into decoding:a phonemecanonly exit after con-
suminga minimumnumberof frames,andit must
exit whenthemaximumdurationis reached.

� simplifiesmodels: only 2 numbersareneededfor
eachtriphone: minimum/maximumduration. The
hopeis to capture80% of the possiblegain with
20%of theeffort.

As a first step,we usedonly the minimumdurationcon-
straint. In the trainingphasewe went throughthe entire
trainingcorpusto gatherdurationinformationfor eachtri-
phone.Thena decisiontreewasgrown to clusterall tri-
phones,sothatfor eachleafnodewecanrobustlyestimate
a distinctminimumduration.Theminimumdurationof a
leafnodeis takenasthen-thpercentagecutoff pointof its
durationdistribution/histogram(with n typically being3
or 5). At decodingtime theminimumdurationconstraint
is enforcedby usingdifferenttopologies.
Preliminaryexperimentsdidn’t postasmuchgain aswe
hadhopedfor. We hada total of 0.3%absolutegainover
the“correct” topologyby doingminimumdurationmod-
eling. In thefuturewecantry moreelaborateschemes,for
example,making durationmodelsdependenton speech
rate.

3.3. Partitioning Strategy

All experimentsaboveareconductedunderthepartitioned
evaluation(PE) scenario:speakeradaptationandVTLN
warpingfactorestimationareall doneon a perutterance
basis,which is clearly suboptimal.This is only because
wedon’t haveatool todealwith continuousspeechstream.
Following the Hub4 trend, we implementedthe LIMSI
stylepartitioningscheme[7]: first classifyincomingdata
into speech/music/silencecategory, throw away the non-
speechdata;doaninitial segmentation,with parameterset
to over-generatingsegments;assumingeachsegmentasa
clusterby its own, estimatea Gaussianmixturemodelfor
eachcluster;theniteratively (viterbi) reestimateandclus-
ter thesemixture models,until the likelihood penalized
by numberof clustersandnumberof segmentsno longer
increases.Theresultis a segmentationwith “speaker”la-
beling.
Unlike its ad hoc counterparts,the LIMSI approachis
quite elegant in that it usesa coupleof global parame-
tersto controlthewholeprocess.Eachof themhasaclear
interpretation.Thispartitioningschemeworksprettywell
for the Newshourdata(over 90%in termsof clusterpu-
rity andbest-clustercoverageof a speaker).We plan to



migrateto UE (unpartitionedevaluation)stylerecognition
in thenearfuture.

3.4. Results on TV News Show

DecodingthoseTV news show datawith theBN system
gave us much betterWER comparedto existing recog-
nizersfrom otherdomain(WSJ/SWB),as shown in Ta-
ble4. Ourobservationis thatNewshourdatais fairly well
behaved while Crossfire,as its namesuggests,involved
moreheateddiscussion,crosstalk,andshorterturns. The
resultfor meetingdataremainsprettyhigh,with WER in
the40%to 50%range.

Show type WER(1stpass) WER afteradaptation
Newshour 26.9 26.3
Crossfire 36.0 34.6

Table4: DecodingtheNews Show datawith theBN Sys-
tem(same20K vocab,BN languagemodelasbefore)

4. MEETING BROWSER & MEETING ROOM

To assistefficient reviewing andbrowsingmeetings,rec-
ognizeroutputis fedto anautomaticsummarizerbasedon
Maximal Marginal Relevance(MMR) criteria, and then
streamedinto themeetingbrowsersystem[11]. Themeet-
ing browserinterfacecandisplaymeetingtranscriptions,
time-alignedto correspondingaudioandvideodata.The
usercanchooseto search,browse,or annotatethemeet-
ing.
Otherthanoffline browsing,we’re alsodevelopinganon-
line meetingroom demo,whererealtime(or closeto re-
altime)speechrecognition,speakeridentification,people
tracking,peopleidentification,face/gazetracking,etc.are
put togetherto makea live meetingscenario,so thatwe
know the numberof participants,who they are, who’s
talking (to whom), etc. We hopeby extractingandfus-
ing additionalcueswe canbettercapture/understandthe
meetingdynamicsandstructuralinformation.

5. CONCLUSION

Both resultson groupmeetingdataand discussion-type
news show datahave shown significantimprovementsin
automaticmeetingtranscription.We’ve reportedprelimi-
naryexperimentsonmodelcombinationandHMM dura-
tion/topology modeling. As notedbefore,there’re much
moreto beexploredin thefuture.
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