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ABSTRACT

In recent work, we proposed thational all-pass transform
(RAPT) as the basis of a speaker adaptation scheme intended f
use with a large vocabulary speech recognition system. # wa
shown that RAPT-based adaptation reduces to a linear tiansf

mation of cepstral means, much like the better known maximum

likelihood linear regression (MLLR). In a set of speech igue

tion experiments conducted on the Switchboard Corpus, we ob

tained a word error rate (WER) of 37.9% using RAPT adapta-
tion, a significant improvement over the 39.5% WER achieved
with MLLR. In the present work, we propose thi@e-log all-pass
transform (SLAPT) as a replacement for the RAPT. Our findings
indicate the SLAPT is just as effective as the RAPT at redycin

WER when used as the basis for a variety of speaker compensa

tion schemes, but in addition conduces to far more tractedne-
putation of transformed cepstral sequences, and the egiimat
optimal transform parameters.

1. INTRODUCTION

In prior work we proposed theational all-passtransform (RAPT)
as the basis for a variety of practical speaker compensatioames
intended to reduce the word error rate of a large vocabulaggsh

}@ira.uka.de

in the cepstral domain; the latter property allows the RABDe
used as a direct replacement for MLLR in speaker-adaptéedra
(SAT) [8]. The principaldisadvantage of the RAPT as presented
heretofore, is the complexity of the expressions that mesiMalu-
ated in calculating transformed cepstral sequences aretHarm-
ing parameter optimization with respect to a maximum liketid
(ML) criterion. In the present work, we remedy this deficigxy
proposing a new functional form for the all-pass transfadohbed
the sine-log all-pass transform (SLAPT). The SLAPT retains the
very desirable cepstral domain linearity of the RAPT, ansliins-
ilar in other regards, but in addition is much more tractablen
used for the calculation of transformed cepstral sequescddviL
parameter estimation. Unlike the RAPT, the SLAPT does ne¢ ha
a rational form. Luckily, however, this is not a drawback the

‘speaker compensation application which comprises ourf ahie

terest.

2. RATIONAL ALL-PASSTRANSFORMS: A REVIEW

Let us begin by reviewing earlier work on the application tf a
pass transforms to speaker compensation. Consider a vesl, e
cepstral sequencgn] and its associated-transformC(z), here

recognition system. In [6] we considered the use of the RAPT expressed as

to transform a set of cepstral features to better match akspea
independent (SI) model, as is typically done in vocal tracgth
normalization [2]. In [5] we made use of the RAPT to transform

the cepstral means of a SI model, as is currently done in most

speaker adaptation schemes [4]. We extended this speaker ad
tation approach in [8] to handle the case of multiple regogss
classes; our findings there indicated that RAPT-based atiapt
was at least as effective as the better-known maximum fikeki
linear regression (MLLR) [4] for moderate amounts of unsupe
vised enrollment data, but far superior when used with 10 sec
less of enrollment.

As reported in the aforementioned work, the principal advan
tages of the RAPT in formulating speaker compensation sekem
are its extremely parsimonious parameterization, andriesltity

The first author would like to express his gratitude to Andréan-
dreou, William Byrne, Pablo Iglesias, Frederick Jelinekd aSteven
Zelditch for reading an earlier version of this work, and fjooviding many
helpful comments and suggestions. All authors would likehiank the
Center for Language and Speech Processing at the Johnsriddphiver-
sity for making available the computer resources requicedanduct the
experiments described in this work.
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With this definitionc[n] can be recovered fror@'(z) through the
contour integral
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forall n = 0,+1,+2,.... In what follows, we shall consider
Equations (1-2) as comprising th@nsform pair c«C.

Consider now a conformal map, which we hope to use as a
mechanism for calculating a normalized cepstral sequériimm
the initial sequence. The bilinear transform (BLT) [1] is a con-
formal map well-suited to this application; it can be expezbas
Q(2) = (2 — a)/(1 — az) wherea is real and|o| < 1. It
is also possible to formulate more general conformal magshwh



subsume the bilinear transform, as indicated by
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where and~ are complex quantities, such tha{, |y| < 1. We
shall refer to such functions aational all-pass transforms due to
the rational form of (3). The most salient characteristitthese
maps are:

Q™) =1 @)
) =Q( ") (5)

Equality (4) is indeed the reason that conformal maps sud¢B)as
are generally referred to asl-pass systems in the digital signal
processing literature [9, Section 5.5].

Using an RAPT, we should like to transform a cepstral se-

where

g™ [0], forn=0,m>0
0, forn>0,m=0
(q(m)[n] + q(’")[—n]> , forn,m >0

are the components of theansformation matrix A = {anm};
see [783.3].

(11)

Anm =

3. SINE-LOG ALL-PASS TRANSFORMS

In this section we consider a different type of all-pass sfarm
that shares many of the characteristics of the RAPT, butripleir
in form and thus more amenable to numerical computationuket
begin by defining thaine-log all-pass transform (SLAPT) as

guence: in some desireable manner. Hence, let us define the com-where

position ' = C o @ and associate witld’ a transformed cep-
stral sequenceé, such that«C. It is straightforward to demon-
strate [7,§2.3] that the coefficients af are given by
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The linearity of the cepstral transformation effected byoafor-
mal map is apparent from (6); this linearity is a direct restfithe
analyticity of @ on the contour of integration, in this case, the unit
circle.

We can exploit the aforementioned analyticity further bynie
ing the transform paig«> Q. For example, it is straightforward to
show that the simple BLT admits the series representation

éln] = 27 gy

(6)
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from which the coefficientg of the series expansion are available
by inspection. It is also possible to obtain series expanssior B
and G appearing in (3); see [7, Appendix C]. Upon defining the
transform pairsi<> A, b+ B, andg+G, the final sequence for
the more general RAPT is readily obtained from

g=axbxg @)

wherex is the convolution operator. The analyticity @™ can be
exploited to form a transform paif™ Q™ for everym > 0.

In general, the sequenceS™ will have infinite extent for both
positive and negative values af As Q™ = Q x Q™ ', the
several sequenceg™ for all m > 1 can be calculated based
solely on knowledge af"’ via the recursion

q(m) = q(mil) * q(1) (8)

Moreover, the desired transformed cepstra can be calcufiadm
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As c is even, it is uniquely specified by its causal portion. Let
us follow [9, Chapter 12] and definegas the causal portion @f
which implies that can be obtained from

Z[n] = Z nm T[m)]

(10

Q(z) = z exp F(2) 12)
K
F(Z)ZZQka(Z) forai,... ,ax € R, (13)
k=1
Fy(z) = jmsin (? log z) (14)

andK is the number of free parameters in the transform. The des-

ignation sine-log is due to the functional form Bf. Observe that
Fy () is single-valued even thoudhbg 2 is multiple-valued [7,
§3.5]. Moreover, applying the well-known relatiein z = (e’* —

~3%) /2 to (14) provides
Vs k _k
5 (=)

which is a more tractable form for computation. Note tfhgs
defined in (12) satisfies (4-5).

In order to calculate the coefficients of a transformed aapst
sequence in the manner described in Section 2, it is firstssacg
to calculate the coefficientsin the Laurent series expansion@f
this we do as follows: FoF’ as in (13) set

Fy(z) = (15)

G(z) =exp F(z) (16)

and letg denote the coefficients of the Laurent series expansion of

G valid in an annular region including the unit circle. Then

gln] = ZLm Y{G(z)zf("ﬂ) dz

where the contour of integration is the unit circle. The naltu
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exponential admits the series expansién= »">_, = for all
z € C, so that
= F™(2)
?) = ZO m!

forall z € C\{0}. As explained in [7§3.5] substituting the latter
into (17) provides
— 1 1
gln] = Z: m 2— f{

m(z)z” (T 4z (18)



The sequencé of coefficients in the series expansionfofs avail-
able by inspection from (13) and (15). Definifd™ such that
) s F™ and applying this definition to (18) we find

o0

gl = 3 —

m=0

Moreover, from the Cauchy product it follow™ = fx fm=1D
form = 1,2,3,.... Equation (16) implies thaf(z) = z G(z),
so the desired coefficients are given by

qln] = gln — 1] (19)
foralln =0,+1,+2,....

The development of this section indicates the primary advan
tage of the sine-log APT with respect to the rational APT con-
sidered in earlier work; i.e., the computations are muchptm
The basic series expansions associated with the SLAPT are mo
straightforward, as is apparent on comparing Eqns. (17wii®)
their counterparts in [7, Appendix C]. With the SLAPT, thes@o
need to derive special expansions for the small angle cdses®
done for the RAPT in [7, Appendix C]. Moreover, during nurmeri
cal optimization of SLAPT parameters there is no need togperf
co-ordinate conversion nor to include a barrier term in thgeo-
tive function; as discussed in [5.3], both of these are required
for numerical optimization of the RAPT.

4. SPEECH RECOGNITION EXPERIMENTS

In this section we summarize the speech recognition exgetisn
experiments undertaken to compare the effectiveness ofTRAP
and SLAPT-based adaptation at reducing the word error Htes
large vocabulary continous speech recognition (LVCSRbesys.
These experiments were conducted using training and test-ma
rial extracted from theSBwitchboard Corpus, a collection of ap-
proximately 2,500 conversations conducted over stand & telé-
phone lines between two people previously unknown to edudr.ot
This corpus abounds in all the phenomena that make the atitoma
recognition of spontaneous speech a difficult task: extreoe
articulation effects, stops and restarts, ungrammaticatiwsage,
and vowel reduction comprise a partial list.

Of the complete Switchboard Corpus, approximately 140$our
of data are set aside for system training. For the purposbaeof t
experiments described below, however, a subset of the eaienpl
training corpus was used. This subset, dubbtsdrai n,is com-
posed of nearly 800 complete conversations spoken by 4@kspe
ers, and totals 50.0 hrs. of speech. The test set used inpat-ex
iments was comprised of both sides of 19 Switchboard coavers
tions, for a total of 18,000 words.

% Word Error Rate
Feature Full-Matrix MLLR

Normalization || No Yes
None 40.6 36.3
RAPT-1 38.8 34.8
RAPT-5 39.4 35.0
SLAPT-1 38.8 34.7
SLAPT-5 39.6 35.3

Table 1. Word error rates for systems trained with original and
APT-normalized features, both with and without two-regies
class MLLR/SAT.

or per-conversation side basis, as required by the paatiexper-
iment.

All HMM training and test was conducted using HTK, the
Hidden Markov Model Toolkit [10] as augmented by the Home-
wood Extensions. The HMMs were trained with cross-word tri-
phones. Each triphone was composed of three states, and each
state was composed of 12 Gaussians. The standard HTK imple-
mentation of the decision tree algorithm was used to gemexat
total of 6,712 state clusters in the final HMM. All word-ermaites
tabulated below were obtained by rescoring a set of trigratm |
tices with a modified version of the HTK decoding tool. The vo-
cabulary used in generating and rescoring the latticesagued
approximately 40,000 words.

Speaker Normalization

The first set of experiments was intended to establish thaasap
ity of speaker-dependent (SD) normalization of cepstratues
based on the APT to reduce the word error rate of a large vocab-
ulary conversational speech recognition (LVCSR) systemall
cases reported below, feature normalization, when uses,apa
plied to both test and training features to provide a matated
dition. The normalization parameters for each speakererteist
and training sets were estimated with a simple GMM using the
procedure delineated in [%6.1]. Single-pass retraining [10] was
used to move the multiple-mixture HMM trained with the onigi
cepstral features to the appropriately normalized setatifes.
Feature normalization was tested in combination with MLLR.
As before, MLLR, when used, was applied to both test and-rain
ing; the basic SAT procedure [%4.4] was used for the latter.
Adaptation of cepstral means was conducted with two fixeteseg
sion classes. In performing unsupervised estmation of MpaR
rameters, an initial set of errorful transcripts obtaingdlecoding
with the unadapted baseline system was used to perform the ne
essary forward-backward passes. This baseline systeravacha

The features used for speech recognition were composed of\ER of 40.6%.

the first 12 perceptual linear prediction (PLP) cepstraffacients [3]
along with first and second order difference coefficientsveer
from these? Parameters corresponding to short-time energy and
its first and second order difference were also estimated fo-

tal feature length of 39. Cepstral mean subtraction wasiegpb

the features of the test and training sets on either a perauite

1The MsTrain set was provided by Dr. Joseph Picone and hiestsid
at Mississippi State University.

2The authors wish to thank Dr. Steve Young of Cambridge Usiter
for providing the implementation of PLP cepstral extractissed in these
experiments.

Table 1 reports results obtained with systems trained on the
50 hr. MsTrain set. From these results it is apparent thatfea
normalization with the one-parameter RAPT (i.e., the BLTQ-p
vides a WER reduction of approximately 1.5% absolute, aatl th
this reduction is additive with that achieved using MLLRTISAs-
ing APT-based feature normalization together with MLLR gtda
tion provided a total WER reduction of 5.8% beginning with an
uncompensated system that achieved 40.6% WER. Also apiparen
is that normalization with the RAPT-5 transform providesnso
error rate reduction with respect to the un-normalized liese
but that this reduction is not so large as that achieved utiag



Enrollment % Word Error Rate

Set RT-1[ RT-9 ] ST-1] ST-9 [ MLLR

Baseline 415
2.5 min. 385 373 ] 384 | 374 37.1
60 sec. 38.3| 374 | 38.2 | 37.5 37.5
30 sec. 385 | 37.6 | 383 | 37.7 37.9
10 sec. 38.7| 378 | 38.6 | 38.0| 40.1
5 sec. 388 | 37.9| 386 | 38.2| 455

Table 2. Results of rapid adaptation experiments with unsuper-
vised enrollment data. RT (resp., ST) denotes the ratiaeap(,
sine-log) all-pass transform.

simpler one-parameter transform. This result is somewbah<¢
terintuitive: It may indicate that a simple GMM is not suféat to
estimate detailed, multi-parameter transforms.

Also reported in Table 1 are the results of a set of exper-
iments undertaken to determine the WER reduction achievabl
with SLAPT-based normalization. These experiments usthaei
a one- or five-parameter transform, once more in combinatitim
MLLR/SAT. From these results we see that the RAPT- and SLAPT-
based normalization schemes provide nearly identical \4eRe-
tions, whether or not MLLR/SAT is used in addition to featooe-
malization. As with the RAPT, one free parameter provideoeem
effective feature normalization than five free parameters.

Rapid Speaker Adaptation

We also tested the capability of the APT to reduce the errer ra
of an LVCSR when used for speaker adaptation. The results of a
set of experiments conducted to compare full-matrix MLLRI an
APT-based adaptation on a task with limited unsupervisedllen
ment data are given in Table 2; in keeping with popular usage,
refer to this scenario aspid adaptation. For these experiments,
one global transformation was used for each speaker and CMS
was applied on a per utterance basis. All systems were ttaine

the MsTrain set [7§6.2]. The errorful transcripts used for unsu-
pervised parameter, be it MLLR or APT, were obtained with the
unadapted baseline system, which achieved a WER of 41.5%. As
is apparent from the table, when 2.5 minutes of data were used
during the unsupervised estimation of transformation ipatars,

the performance of MLLR and the nine-parameter APT systems
were nearly identical. In this instance, the use of more frae
rameters in the all-pass transform resulted in further cédos in
error rate. Also noteworthy is that as the amount of adaptati
data was reduced, the performance of the MLLR system quickly
deteriorated, suffering a catastrophic degradation & 86c. and
less. The APT-based systems, on the other hand, experiented
marginal performance degradations, providing a redugtisqiER

of approximately 3.5% absolute with only 5.0 sec. of enrelfrn
data. This difference in characteristics is surely due eogparse
parameterization of the APT.

5. CONCLUSIONS

In this work we have introduced the sine-log all-pass tramsf
(SLAPT), areplacement for the rational all-pass transf(RAPT)
considered in prior work. In a set of unsupervised speakepen-
sation experiments conducted on speech material from tlielsw

boad Corpus, both transforms were found to give very conigpaya

if not indentical, reductions in word error rate (WER). Inet sf
speaker normalization experiments, the gain from APT-bha®e-
malization was found to be additive with that provided byeam
tional maximum likelihood linear regression (MLLR). Therso
bination of APT normalization with MLLR adaptation provile

a error rate reduction of 5.8% absolute compared to an uncom-
pensated baseline system which achieved 40.6% WER. In a set
of unsupervised speaker adaptation experiments condootéue
Switchboard Corpus, MLLR- and APT-based systems were found
to give nearly identical reductions in WER when an entire-con
versation side was used for speaker enroliment. As the amoun
of adaptation data was reduced, however, the performantteeof
MLLR system quickly deteriorated, suffering a catastreaplegra-
dation at 10.0 sec. and less. The APT-based systems, ontire ot
hand, experienced only marginal performance degradatjmas
viding a reduction in WER of approximately 3.5% absolutehwit
only 5.0 sec. of enrollment data from a baseline of 41.5%.sThi
difference in characteristics is surely due to the sparsarpeteri-
zation of the APT.

The Homewood Extensions (THE) are a set of C++ classes
implementing the speaker adaptation and training algoistidis-
cussed in this work; THE is publicly available for all nonremercial
use atisl.ira.uka.de/"jmcd . THE has been ported to the
Janus Speech Recognition Toolkit (JRTK), although a coraple
set of experimental results obtained with JRTK was not afs!
at the time of publication.
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