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ABSTRACT

In recent work, we proposed therational all-pass transform
(RAPT) as the basis of a speaker adaptation scheme intended for
use with a large vocabulary speech recognition system. It was
shown that RAPT-based adaptation reduces to a linear transfor-
mation of cepstral means, much like the better known maximum
likelihood linear regression (MLLR). In a set of speech recogni-
tion experiments conducted on the Switchboard Corpus, we ob-
tained a word error rate (WER) of 37.9% using RAPT adapta-
tion, a significant improvement over the 39.5% WER achieved
with MLLR. In the present work, we propose thesine-log all-pass
transform (SLAPT) as a replacement for the RAPT. Our findings
indicate the SLAPT is just as effective as the RAPT at reducing
WER when used as the basis for a variety of speaker compensa-
tion schemes, but in addition conduces to far more tractablecom-
putation of transformed cepstral sequences, and the estimation of
optimal transform parameters.

1. INTRODUCTION

In prior work we proposed therational all-pass transform (RAPT)
as the basis for a variety of practical speaker compensationschemes
intended to reduce the word error rate of a large vocabulary speech
recognition system. In [6] we considered the use of the RAPT
to transform a set of cepstral features to better match a speaker-
independent (SI) model, as is typically done in vocal tract length
normalization [2]. In [5] we made use of the RAPT to transform
the cepstral means of a SI model, as is currently done in most
speaker adaptation schemes [4]. We extended this speaker adap-
tation approach in [8] to handle the case of multiple regression
classes; our findings there indicated that RAPT-based adaptation
was at least as effective as the better-known maximum likelihood
linear regression (MLLR) [4] for moderate amounts of unsuper-
vised enrollment data, but far superior when used with 10 sec. or
less of enrollment.

As reported in the aforementioned work, the principal advan-
tages of the RAPT in formulating speaker compensation schemes
are its extremely parsimonious parameterization, and its linearity
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in the cepstral domain; the latter property allows the RAPT to be
used as a direct replacement for MLLR in speaker-adapted training
(SAT) [8]. The principaldisadvantage of the RAPT as presented
heretofore, is the complexity of the expressions that must be evalu-
ated in calculating transformed cepstral sequences and in perform-
ing parameter optimization with respect to a maximum likelihood
(ML) criterion. In the present work, we remedy this deficiency by
proposing a new functional form for the all-pass transform,dubbed
the sine-log all-pass transform (SLAPT). The SLAPT retains the
very desirable cepstral domain linearity of the RAPT, and issim-
ilar in other regards, but in addition is much more tractablewhen
used for the calculation of transformed cepstral sequencesand ML
parameter estimation. Unlike the RAPT, the SLAPT does not have
a rational form. Luckily, however, this is not a drawback forthe
speaker compensation application which comprises our chief in-
terest.

2. RATIONAL ALL-PASS TRANSFORMS: A REVIEW

Let us begin by reviewing earlier work on the application of all-
pass transforms to speaker compensation. Consider a real, even
cepstral sequence
[n℄ and its associatedz-transformC(z), here
expressed as C(z) = 1Xn=�1 
[n℄ zn (1)

With this definition
[n℄ can be recovered fromC(z) through the
contour integral
[n℄ = 12�j I C(z) z�(n+1)dz; (2)

for all n = 0;�1;�2; : : : . In what follows, we shall consider
Equations (1–2) as comprising thetransform pair 
$C.

Consider now a conformal mapQ, which we hope to use as a
mechanism for calculating a normalized cepstral sequence
̂ from
the initial sequence
. The bilinear transform (BLT) [1] is a con-
formal map well-suited to this application; it can be expressed asQ(z) = (z � �)=(1 � �z) where� is real andj�j < 1. It
is also possible to formulate more general conformal maps which



subsume the bilinear transform, as indicated byQ(z) = z � �1� �z| {z } z � �1� ��z z � ��1� �z| {z } 1� 
�zz � 
 1� 
zz � 
�| {z }= A(z) B(z) G(z)
(3)

where� and
 are complex quantities, such thatj�j; j
j < 1. We
shall refer to such functions asrational all-pass transforms due to
the rational form of (3). The most salient characteristics of these
maps are: jQ(ej!)j = 1 (4)Q�1(z) = Q(z�1) (5)

Equality (4) is indeed the reason that conformal maps such as(3)
are generally referred to asall-pass systems in the digital signal
processing literature [9, Section 5.5].

Using an RAPT, we should like to transform a cepstral se-
quence
 in some desireable manner. Hence, let us define the com-
position Ĉ = C Æ Q and associate witĥC a transformed cep-
stral sequencê
, such that̂
$Ĉ. It is straightforward to demon-
strate [7,x2.3] that the coefficients of̂
 are given by
̂[n℄ = 1Xm=�1 
[m℄ 12�j I Qm(z) z�(n+1) dz (6)

The linearity of the cepstral transformation effected by a confor-
mal map is apparent from (6); this linearity is a direct result of the
analyticity ofQ on the contour of integration, in this case, the unit
circle.

We can exploit the aforementioned analyticity further by form-
ing the transform pairq$Q. For example, it is straightforward to
show that the simple BLT admits the series representationQ(z) = ��+ (1� �2)z + �(1� �2)z2 + � � �
from which the coefficientsq of the series expansion are available
by inspection. It is also possible to obtain series expansions forB
andG appearing in (3); see [7, Appendix C]. Upon defining the
transform pairsa$A, b$B, andg$G, the final sequenceq for
the more general RAPT is readily obtained fromq = a � b � g (7)

where� is the convolution operator. The analyticity ofQm can be
exploited to form a transform pairq(m)$Qm for everym � 0.
In general, the sequencesq(m) will have infinite extent for both
positive and negative values ofn. As Qm = Q � Qm�1, the
several sequencesq(m) for all m > 1 can be calculated based
solely on knowledge ofq(1) via the recursionq(m) = q(m�1) � q(1) (8)

Moreover, the desired transformed cepstra can be calculated from
̂[n℄ = 1Xm=�1 
[m℄q(m)[n℄ (9)

As 
 is even, it is uniquely specified by its causal portion. Let
us follow [9, Chapter 12] and definêx as the causal portion of̂
,
which implies that̂x can be obtained fromx̂[n℄ = 1Xm=0 anm x[m℄ (10)

whereanm = 8><>:q(m)[0℄; for n = 0;m � 00; for n > 0;m = 0�q(m)[n℄ + q(m)[�n℄� ; for n;m > 0 (11)

are the components of thetransformation matrix A = fanmg;
see [7,x3.3].

3. SINE-LOG ALL-PASS TRANSFORMS

In this section we consider a different type of all-pass transform
that shares many of the characteristics of the RAPT, but is simpler
in form and thus more amenable to numerical computation. Letus
begin by defining thesine-log all-pass transform (SLAPT) asQ(z) = z exp F (z) (12)

where F (z) = KXk=1�k Fk(z) for �1; : : : ; �K 2 R; (13)Fk(z) = j � sin�kj log z� (14)

andK is the number of free parameters in the transform. The des-
ignation sine-log is due to the functional form ofFk. Observe thatFk(z) is single-valued even thoughlog z is multiple-valued [7,x3.5]. Moreover, applying the well-known relationsin z = (ejz�e�jz)=2j to (14) providesFk(z) = �2 �zk � z�k� (15)

which is a more tractable form for computation. Note thatQ as
defined in (12) satisfies (4–5).

In order to calculate the coefficients of a transformed cepstral
sequence in the manner described in Section 2, it is first necessary
to calculate the coefficientsq in the Laurent series expansion ofQ;
this we do as follows: ForF as in (13) setG(z) = expF (z) (16)

and letg denote the coefficients of the Laurent series expansion ofG valid in an annular region including the unit circle. Theng[n℄ = 12�j I G(z) z�(n+1) dz (17)

where the contour of integration is the unit circle. The natural
exponential admits the series expansionez = P1m=0 zmm! for allz 2 C, so that G(z) = 1Xm=0 Fm(z)m!
for all z 2 Cnf0g. As explained in [7,x3.5] substituting the latter
into (17) providesg[n℄ = 1Xm=0 1m! 12�j I Fm(z) z�(n+1) dz (18)



The sequencef of coefficients in the series expansion ofF is avail-
able by inspection from (13) and (15). Definingf (m) such thatf (m)$Fm and applying this definition to (18) we findg[n℄ = 1Xm=0 1m! f (m)[n℄
Moreover, from the Cauchy product it followsf (m) = f �f (m�1)
for m = 1; 2; 3; : : : . Equation (16) implies thatQ(z) = z G(z),
so the desired coefficients are given byq[n℄ = g[n� 1℄ (19)

for all n = 0;�1;�2; : : : .
The development of this section indicates the primary advan-

tage of the sine-log APT with respect to the rational APT con-
sidered in earlier work; i.e., the computations are much simpler:
The basic series expansions associated with the SLAPT are more
straightforward, as is apparent on comparing Eqns. (17–19)with
their counterparts in [7, Appendix C]. With the SLAPT, thereis no
need to derive special expansions for the small angle case asis also
done for the RAPT in [7, Appendix C]. Moreover, during numeri-
cal optimization of SLAPT parameters there is no need to perform
co-ordinate conversion nor to include a barrier term in the objec-
tive function; as discussed in [7,x5.3], both of these are required
for numerical optimization of the RAPT.

4. SPEECH RECOGNITION EXPERIMENTS

In this section we summarize the speech recognition experiments
experiments undertaken to compare the effectiveness of RAPT-
and SLAPT-based adaptation at reducing the word error ratesof
large vocabulary continous speech recognition (LVCSR) systems.
These experiments were conducted using training and test mate-
rial extracted from theSwitchboard Corpus, a collection of ap-
proximately 2,500 conversations conducted over standard US tele-
phone lines between two people previously unknown to each other.
This corpus abounds in all the phenomena that make the automatic
recognition of spontaneous speech a difficult task: extremeco-
articulation effects, stops and restarts, ungrammatical word usage,
and vowel reduction comprise a partial list.

Of the complete Switchboard Corpus, approximately 140 hours
of data are set aside for system training. For the purpose of the
experiments described below, however, a subset of the complete
training corpus was used. This subset, dubbedMsTrain,1 is com-
posed of nearly 800 complete conversations spoken by 409 speak-
ers, and totals 50.0 hrs. of speech. The test set used in all exper-
iments was comprised of both sides of 19 Switchboard conversa-
tions, for a total of 18,000 words.

The features used for speech recognition were composed of
the first 12 perceptual linear prediction (PLP) cepstral coefficients [3]
along with first and second order difference coefficients derived
from these.2 Parameters corresponding to short-time energy and
its first and second order difference were also estimated, for a to-
tal feature length of 39. Cepstral mean subtraction was applied to
the features of the test and training sets on either a per-utterance

1The MsTrain set was provided by Dr. Joseph Picone and his students
at Mississippi State University.

2The authors wish to thank Dr. Steve Young of Cambridge University
for providing the implementation of PLP cepstral extraction used in these
experiments.

% Word Error Rate
Feature Full-Matrix MLLR

Normalization No Yes
None 40.6 36.3

RAPT-1 38.8 34.8
RAPT-5 39.4 35.0
SLAPT-1 38.8 34.7
SLAPT-5 39.6 35.3

Table 1. Word error rates for systems trained with original and
APT-normalized features, both with and without two-regression
class MLLR/SAT.

or per-conversation side basis, as required by the particular exper-
iment.

All HMM training and test was conducted using HTK, the
Hidden Markov Model Toolkit [10] as augmented by the Home-
wood Extensions. The HMMs were trained with cross-word tri-
phones. Each triphone was composed of three states, and each
state was composed of 12 Gaussians. The standard HTK imple-
mentation of the decision tree algorithm was used to generate a
total of 6,712 state clusters in the final HMM. All word-errorrates
tabulated below were obtained by rescoring a set of trigram lat-
tices with a modified version of the HTK decoding tool. The vo-
cabulary used in generating and rescoring the lattices contained
approximately 40,000 words.

Speaker Normalization

The first set of experiments was intended to establish the capac-
ity of speaker-dependent (SD) normalization of cepstral features
based on the APT to reduce the word error rate of a large vocab-
ulary conversational speech recognition (LVCSR) system. In all
cases reported below, feature normalization, when used, was ap-
plied to both test and training features to provide a matchedcon-
dition. The normalization parameters for each speaker in the test
and training sets were estimated with a simple GMM using the
procedure delineated in [7,x6.1]. Single-pass retraining [10] was
used to move the multiple-mixture HMM trained with the original
cepstral features to the appropriately normalized set of features.

Feature normalization was tested in combination with MLLR.
As before, MLLR, when used, was applied to both test and train-
ing; the basic SAT procedure [7,x4.4] was used for the latter.
Adaptation of cepstral means was conducted with two fixed regres-
sion classes. In performing unsupervised estmation of MLLRpa-
rameters, an initial set of errorful transcripts obtained by decoding
with the unadapted baseline system was used to perform the nec-
essary forward-backward passes. This baseline system achieved a
WER of 40.6%.

Table 1 reports results obtained with systems trained on the
50 hr. MsTrain set. From these results it is apparent that feature
normalization with the one-parameter RAPT (i.e., the BLT) pro-
vides a WER reduction of approximately 1.5% absolute, and that
this reduction is additive with that achieved using MLLR/SAT. Us-
ing APT-based feature normalization together with MLLR adapta-
tion provided a total WER reduction of 5.8% beginning with an
uncompensated system that achieved 40.6% WER. Also apparent
is that normalization with the RAPT-5 transform provides some
error rate reduction with respect to the un-normalized baseline,
but that this reduction is not so large as that achieved usingthe



Enrollment % Word Error Rate
Set RT-1 RT-9 ST-1 ST-9 MLLR

Baseline 41.5
2.5 min. 38.5 37.3 38.4 37.4 37.1
60 sec. 38.3 37.4 38.2 37.5 37.5
30 sec. 38.5 37.6 38.3 37.7 37.9
10 sec. 38.7 37.8 38.6 38.0 40.1
5 sec. 38.8 37.9 38.6 38.2 45.5

Table 2. Results of rapid adaptation experiments with unsuper-
vised enrollment data. RT (resp., ST) denotes the rational (resp.,
sine-log) all-pass transform.

simpler one-parameter transform. This result is somewhat coun-
terintuitive: It may indicate that a simple GMM is not sufficient to
estimate detailed, multi-parameter transforms.

Also reported in Table 1 are the results of a set of exper-
iments undertaken to determine the WER reduction achievable
with SLAPT-based normalization. These experiments used either
a one- or five-parameter transform, once more in combinationwith
MLLR/SAT. From these results we see that the RAPT- and SLAPT-
based normalization schemes provide nearly identical WER reduc-
tions, whether or not MLLR/SAT is used in addition to featurenor-
malization. As with the RAPT, one free parameter provides a more
effective feature normalization than five free parameters.

Rapid Speaker Adaptation

We also tested the capability of the APT to reduce the error rate
of an LVCSR when used for speaker adaptation. The results of a
set of experiments conducted to compare full-matrix MLLR and
APT-based adaptation on a task with limited unsupervised enroll-
ment data are given in Table 2; in keeping with popular usage,we
refer to this scenario asrapid adaptation. For these experiments,
one global transformation was used for each speaker and CMS
was applied on a per utterance basis. All systems were trained on
the MsTrain set [7,x6.2]. The errorful transcripts used for unsu-
pervised parameter, be it MLLR or APT, were obtained with the
unadapted baseline system, which achieved a WER of 41.5%. As
is apparent from the table, when 2.5 minutes of data were used
during the unsupervised estimation of transformation parameters,
the performance of MLLR and the nine-parameter APT systems
were nearly identical. In this instance, the use of more freepa-
rameters in the all-pass transform resulted in further reductions in
error rate. Also noteworthy is that as the amount of adaptation
data was reduced, the performance of the MLLR system quickly
deteriorated, suffering a catastrophic degradation at 10.0 sec. and
less. The APT-based systems, on the other hand, experiencedonly
marginal performance degradations, providing a reductionin WER
of approximately 3.5% absolute with only 5.0 sec. of enrollment
data. This difference in characteristics is surely due to the sparse
parameterization of the APT.

5. CONCLUSIONS

In this work we have introduced the sine-log all-pass transform
(SLAPT), a replacement for the rational all-pass transform(RAPT)
considered in prior work. In a set of unsupervised speaker compen-
sation experiments conducted on speech material from the Switch-

boad Corpus, both transforms were found to give very comparable,
if not indentical, reductions in word error rate (WER). In a set of
speaker normalization experiments, the gain from APT-based nor-
malization was found to be additive with that provided by conven-
tional maximum likelihood linear regression (MLLR). The com-
bination of APT normalization with MLLR adaptation provided
a error rate reduction of 5.8% absolute compared to an uncom-
pensated baseline system which achieved 40.6% WER. In a set
of unsupervised speaker adaptation experiments conductedon the
Switchboard Corpus, MLLR- and APT-based systems were found
to give nearly identical reductions in WER when an entire con-
versation side was used for speaker enrollment. As the amount
of adaptation data was reduced, however, the performance ofthe
MLLR system quickly deteriorated, suffering a catastrophic degra-
dation at 10.0 sec. and less. The APT-based systems, on the other
hand, experienced only marginal performance degradations, pro-
viding a reduction in WER of approximately 3.5% absolute with
only 5.0 sec. of enrollment data from a baseline of 41.5%. This
difference in characteristics is surely due to the sparse parameteri-
zation of the APT.

The Homewood Extensions (THE) are a set of C++ classes
implementing the speaker adaptation and training algorithms dis-
cussed in this work; THE is publicly available for all non-commercial
use atisl.ira.uka.de/˜jmcd . THE has been ported to the
Janus Speech Recognition Toolkit (JRTK), although a complete
set of experimental results obtained with JRTK was not available
at the time of publication.
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