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ABSTRACT

A stochastically-based method for natural language understanding has
been ported from the American ATIS (Air Travel Information Services)
to the French MASK (Multimodal-Multimedia Automated Service Kiosk)
task. The porting was carried out by designing and annotating a corpus
of semantic representations via a semi-automatic iterative labeling. The
study shows that domain and language porting is rather flexible, since it
is sufficient to train the system on data sets specific to the application and
language. A limiting factor of the current implementation is the quality
of the semantic representation and the use of query preprocessing strate-
gies which strongly suffer from human influence. The performances of the
stochastically-based and a rule-based method are compared on both tasks.

1. INTRODUCTION
In this paper, we report on our experience in porting a
stochastically-based natural language understanding compo-
nent across tasks and languages. Stochastically-based methods
have been applied in the BBN-HUM [5], the AT&T-CHRONUS [7]
systems and at LIMSI-CNRS [1] for the American ARPA-ATIS
(Air Travel Information Services) task1. Since the stochastically-
based decoding techniques are rather similar across the sites,
the systems differ primarily in the definition of the knowledge
sources, which are represented in the form of semantic labels. In
a stochastically-based method, correspondencies between these
labels and the corresponding words are automatically learned
from a large annotated training corpus and memorized in the
form of model parameters. These parameters are then used by the
semantic decoder to generate the most likely semantic sequence
given an unknown input query.

Another travel-related application is explored in the context of
the ESPRIT Project 9075 MASK (Multimodal-Multimedia Auto-
mated Service Kiosk). A spoken language system in French has
been developed at LIMSI [3] for this task, which allows users to
obtain train travel information including schedules, services and
fares. We investigate language and domain portability by porting
the stochastically-based semantic analyzer presented in [1] from
the American ATIS task to the French MASK application. For the
American ATIS task, a rule-based version [2, 4] was used to auto-
matically produce a corpus of semantic representations for training
the stochastically-based component in [1], enabling a direct com-
parison between both methods. In MASK, we have focused on
creating the corpus of semantic annotations via an iterative semi-
automatic labeling approach. The similarity of both tasks enables
us to apply equivalent query preprocessing and semantic decoding
strategies. The preprocessing includes a lexical analysis and cat-
egory unification which reduces redundancies in the corpus. We1Systems developed within the framework of ATIS allow the user to
acquire information derived from the Official Airline Guide about fares and
flight schedulesavailable between a restricted set of cities within the United
States and Canada

also model the observations in context in order to improve the re-
liability of the decoding.

2. KNOWLEDGE SOURCES
The parameters of the stochastic model are estimated given se-
quences of preprocessed words (observations) and their corre-
sponding semantic labels (states).

2.1. Semantic representation
For the understanding components we use a semantic case gram-
mar to represent the meaning of the spoken request [4]. This for-
malism is considered to be more suitable for spontaneous speech,
than a grammar based on a purely syntactic analysis, typically per-
formed by context-free grammars.

Applying the case grammar to the specific task consists of defining
the meaningful concepts and the corresponding reference words
used to identify the concepts. The MASK concepts determined by
analysis of queries taken from the training corpora are train-time,
fare, connection, type, book, service, reduction and train-type. As-
sociated to each concept is a set of constraints which are introduced
by semantic markers.

Je souhaiterais réserver une place pour le tarif le moins cher<book>
(c:num-seat) 7! une

(c:fare-comparative) 7! le-moins-cher

Figure 1: Frame-based semantic case grammar representation for MASK
exemplified for “je souhaiterais réserver une place pour le tarif le moins
cher (I would like to book a seat with the least expensive fare)”.

For the example in Figure 1, the concept <book> is identified
by the reference word réserver. The marker place (m:num-seat)
designates une to be a constraint on the number of seats (c:num-
seat). The semantic markers do not appear in the frame in Fig-
ure 1. Most of the concepts and constraints for ATIS are found in
the train travel domain, albeit with slightly different significations.
For example, the constraints related to arrival and departure times
can be mapped directly, whereas the concept type corresponding to
the aircraft type in ATIS corresponds to the type of train in MASK
(TGV2, EuroCity, etc.).

In the probabilistic framework, a sequential representation of se-
mantic labels is obtained by aligning the concepts, markers and
constraints (third column in Figure 2). In the frame-based repre-
sentation of the case grammar in Figure 1, the semantic annotation
is not exhaustive. Only words related to the concepts and its con-
straints are considered. In order to label the training data, the addi-
tional semantic label (null) is associated with those words, that2TGV = Train à Grande Vitesse (High Speed Train)



are judged not to be useful by the case frame analyzer for the spe-
cific application, e.g. je, souhaiterais, pour and le in the example.

je ffillerg (null)
souhaiterais ffillerg (null)
réserver fréservationg <book>
une f1g (c:num-seat)
place fplaceg (m:num-seat)
pour ffillerg (null)
le ffillerg (null)
tarif fprixg (m:fare-comparative)
le-moins-cher fprix-minimumg (c:fare-comparative)

Figure 2: Example query “je souhaiterais réserver une place pour le tarif le
moins cher”, its preprocessed form and the corresponding semantic labels
in a sequential representation.

2.2. Query preprocessing
The case grammar is an economic semantic representation which
ignores a substantial number of words that are not significant for
the semantic decoding. Many inflected forms are also attributed
to the same semantic categories. This redundancy increases the
model size unnecessarily and makes parameter estimation and de-
coding less reliable. A query preprocessing, similar to that used in
the ATIS system [1], removes redundancies and introduces addi-
tional contextual information.

Lexical analysis The first step is lexically-based using a look-
up table. Inflected words are replaced with their corresponding
base forms and semantically-related words are clustered. Non-
relevant or out-of-domain words are assigned to a ffillerg category
(second column in Figure 2). Even though yielding an impor-
tant simplification, this data manipulation has an important draw-
back as the isolated lexical entries are judged without account-
ing for their context. There is thus a risk of incorrectly cluster-
ing words which are ambiguous out of context. In an attempt to
make the lexical analysis less arbitrary, the semantic function of
the word has been introduced as an additional parameter. Only
those words and synonyms covering identical semantic functions
are clustered into identical categories. For example, je réserve
le premier en première classe non-fumeur (I book the first in the
first class no smoking) is preprocessed into ffillerg fréservationgffillerg premier ffillerg première classe fnon-fumeurg, instead offfillerg fréservationg ffillerg f1g ffillerg f1g classe fnon-fumeurg.
Taken in context, premier and première can be respectively under-
stood in the sense of first train and first class without any surround-
ing marker. This example also illustrates the difficulty of obtain-
ing a robust grammar representation containing distinctive marker-
constraint relations: instead of the ffillerg unit, an explicit marker
function could be assigned to the prepositions le, en. However, le
cannot be used as a marker in the context of the example query in
Figure 2.

Category unification In the domain of information retrieval,
a large number of lexical entries correspond to database values,
which can sometimes be clustered. Observed in the training data,
19 task-related categories have been defined for ATIS, including
airport names, flight identifiers, etc., and 8 for the MASK applica-
tion due to a comparatively smaller domain coverage, e.g. station
names, train types, etc..

Contextual observations The lexical analysis and category
unification reduce the redundancies in the input queries and thus
the model size. This in turn allows us to define the more detailed
contextual observations. The example query

réserver une place pour le tarif le-moins-cher

distant relation

adjacent relation

contains both, adjacent relations, e.g. between une and place and
longer distance ones, such as between réserver and tarif. The
adjacent relations can be unambiguously decoded by a bigram
language model, e.g. (c:num-seat) (m:num-seat) in Figure 2.
However, if only context-independent observations are con-
sidered, the system fails on this example, because it identifies
two concepts, réserver 7! <book> and tarif 7! <fare>, even
though the request clearly is for a reservation, and in this case,
tarif 7! (m:fare-comparative). The meaning of any given word
is contextual. In the human understanding process, the semantic
significance of a word is properly determined in context of
the current query or even the following or preceeding queries.
The simplest stochastic implementation aligns semantic labels
providing surface forms rather than deep semantic structures and
considers the observations on an isolated word-by-word basis. In
order to improve the accuracy of the model, we introduce relevant
concept-related semantic information in the form of contextual
observations. A look-up table, established from the training
corpus, first associates to each isolated word in the input query
the corresponding non-contextual local concept, which signifies
for the example:

réserver une place pour le tarif le-moins-cher+ + + + + + +
[book] [empty] [empty] [empty] [empty] [fare] [empty]

réserver, réservation, for instance, are reference words for the
concept<book>, therefore assigned along with all the words that
may trigger this concept to the local concept [book]. tarif, prix
are associated to [fare]. Since une, place, etc. are never used as
reference words, they are assigned to an [empty] concept. The
context-dependent decoding then uses this local information and
defines the word in its left (-) and/or right (+) context of local
concepts, which for the same example query yields:

réserver une place pour le tarif le-moins-cher
[fare]+ [fare]+ [fare]+ [fare]+ [fare]+ [empty]+ [empty]+

[empty]� [book]� [book]� [book]� [book]� [book]� [book]�
tarif in the left context of the local concept [book]� is less likely
to be decoded as a reference word than réserver given the [fare]+
as a right context, thus réserver 7! <book> and tarif 7! (m:fare-
comparative).

3. SEMANTIC DECODER
The semantic decoding consists of maximizing the conditional
probability P (sT1 joT1 ) of some state sequence sT1 given the obser-
vation sequenceoT1 . Using Bayes rule, this probability is reformu-
lated and the following optimality criterion is defined:[sT1 ]opt = argmaxsT1 �P (sT1 )P (oT1 jsT1 )	 (1)

Given the dimensionality of the sequenceoT1 , the estimation of the
likelihood P (oT1 jsT1 ) is replaced by estimating the parameters of a
Hidden Markov Model (HMM). We use an ergodic model topol-
ogy which allows all states to follow each other. The model pa-
rameters consist of bigram state transitions probabilities P (sjjsi)



t(null) <book> (c:num-seat) (m:num-seat) (null) (m:fare-comparative) (c:fare-comparative)
P (sjjsi)ffillerg ffillerg fréservationg f1g fplaceg ffillerg ffillerg fprixg fprix-minimumg

[empty]� [empty]� [empty]� [book]� [book]� [book]� [book]� [book]� [book]�P (omjsj)
Figure 3: Semantic decoding progresses on a path through the model. It generates left-contextual observation sequences of the preprocessed example query
“je souhaite réserver une place pour le tarif le moins cher”.

and the observation symbol probability distribution P (omjsj) in
state j, which are estimated using a back-off technique[6]. In Fig-
ure 3, the particular path through the Markov Model is shown for
the example query. The progression through the state sequence of
semantic labels generates a sequence of observation vectors each
of them containing a preprocessedentry along with left-contextual
local concepts. This temporal progression and sequence genera-
tion is guided by the state transition and observation probabilities,
previously learned from a large number of correspondencies be-
tween states and observation vectors in the training data.

For contextual observations, the corresponding probability distri-
bution is: P (omjsj) = P (lm; cmjsj) (2)

where lm is the preprocessed word and cm the observation con-
text. In practice, better performance results from more reliable es-
timates obtained by interpolation of contextual and non contextual
observation models:P (omjsj) = �P (lm; cmjsj) + (1� �)P (lmjsj) (3)

The parameter � has been experimentally determined. For ATIS,
a left and right context model is applied with �=0:9, for MASK,
a left context model with �=0:3.

4. CORPUS ESTABLISHMENT
The ATIS and MASK data were collected by subjects solving pre-
defined travel scenarios. The speech is spontaneous and uncon-
strained. Using the MASK spoken language system [3, 8], over
25,000 queries have been recorded. The ATIS corpus results from
a multi-site data collection effort and consists of approximately
13,000 speech queries.

4.1. Semi-automatic data annotation
In order to estimate the model parameters, the stochastic method
requires semantically annotated corpora. For ATIS, the annota-
tions were automatically produced by the rule-based component
in [2] and tailored to this system, but were suboptimal for the
stochastic method [1]. In MASK, the semantic representation was
determined independently from the already existing rule-based
case system in [3]. If no previous knowledge other than the gram-
mar formalism is introduced, the semantic corpus can be better
adapted to the stochastic component. The optimum semantic rep-
resentation for a specific application is not previously defined, but
is determined throughout the development process.

A semi-automatic, iterative approach was used to annotate the
MASK data, as illustrated in Figure 4. The MASK training cor-
pus of 10,500 queries was divided into four subsets containing 500,
1,000, 3,000 and 6,000 queries. Parses were manually determined
for the first 500 sentences (initialization). The model parameters
were estimated on this initial subset. Then the iterative procedure
started: using the model, the decoder annotated each query in the
following subset. Even with a small amount of training, the vast

majority of the parses were correct, and thus very little effort was
required to correct them manually. For the data correction, each
semantic label of the sequence had to be verified. Typical errors
at this stage of development issued from an increase in domain
coverage when annotating the new data. The annotated sets were
merged and the model parameters re-calculated for further query
annotation. These steps were iterated until the complete training
set was semantically annotated and corrected. Annotation became
faster as more data were available for improved parameter estima-
tion. This automatic approachsimplified system developmentcon-
siderably and enabled us to accomplish the porting within a period
of 15 working days.

An important issue with such a semi-automatic technique is to as-
sure the consistencyof the semantic representations in the different
data subsets. Even though the rule-based system in [2] was iter-
atively modified as a function of new recorded training data, we
used a snapshot version of this system to produce a homogeneous
semantic corpus for ATIS [1]. Semantic representations for MASK
were subject to constant modifications since they were adapted
and tuned throughout the iterative annotation. The quality of the
corpus was monitored through periodic tests on the training data
which revealed inconsistenciesand weaknessesat each stage of the
development.

4.2. Data characteristics
The data characteristics for the French MASK and American ATIS
training corpora are compared in Table 1. Roughly the same num-
ber of queries have been used for both applications, in order to cre-
ate equivalent training conditions. The main reason for the compa-

MASK ATIS

#queries 10,500 10,718

lexicon size raw data 1,449 1,577
+ lexical analysis 394 955
+ category unification 162 299
+ context 2,284 8,885

#semantic labels 74 112

Table 1: Comparing data characteristics of the MASK and ATIS training
corpora for statistical modeling in natural language understanding.

rable lexicon sizes (1,449 versus 1,577) is that the French language
is highly inflected than English and provides a variety of words
with identical root forms, e.g. réservant, réserverai, réserves,
réservez, réserve, réservé, réservée are various inflections of the
word réserver (to book ). As a result of the query preprocessing,
the initial lexicon size has been considerably reduced for both ap-
plications: a total of 162 preprocessed entries for MASK and 299
for ATIS are used. Applying a left-contextual observation model
for MASK and a left and right context model for ATIS result in the
respectively 2,284 and 8,885 observation vectors, applied along
with the semantic labels to estimate the model parameters. For
MASK 74 semantic labels have been determined throughout the
data annotation, compared to 112 for ATIS.
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Figure 4: Semi-automatic procedure to establish a corpus of semantic labels for MASK and to create and update the preprocessing components.

5. EVALUATION
Performance evaluations have been carried out on the
stochastically-based and rule-based natural language under-
standing components for MASK and ATIS (Table 2) in order to
validate the porting. The MASK understanding components were
tested using 15 travel scenarios containing 726 queries. The ATIS
test data consisted of the 445 type A queries from the official
ARPA-ATIS December 1994 Benchmark test. The performance
was assessed at the semantic sequence level, comparing the
concepts and constraints with previously defined reference labels.
The components were also evaluated on the accuracy of the mere
system responses returned to the user, which are the retrieved
database responses in ATIS and the natural language response
generated in MASK. The evaluation methodology is described in
more detail in [1, 3].

Semantic sequence (%) Response (%)
STOCHASTIC RULE-BASED STOCHASTIC RULE-BASED

MASK 7.2 13.8 8.3 9.4
ATIS 13.7 14.4 18.7 16.9

Table 2: Semantic sequence and response error rate (%) for MASK and
ATIS comparing stochastically- and rule-based components.

At the semantic sequence level, the stochastic clearly outperforms
on the rule-based implementation in MASK [3] obtaining 7.2 %
compared to a 13.8 % error rate. Unlike for ATIS, where the dif-
ference in performance is small for the two methods the indepen-
dent design of the stochastic system in MASK does not limit its
performance by eventual shortcomings of the rule-based method.
The stochastic implementation also profits from the mutual infor-
mation between all the semantic labels. If an explicit marker is in-
correctly decoded or does not exist, the surrounding words yield
the function of implicit markers. This makes a decoding of the
associated constraints more robust, such as in réserver une place,
where the reference word réserver implicitely introduces the con-
straint une. However, the system frequently fails to identify long
distant marker-constraint relations. For the rule-based MASK sys-
tem, 68 % of the errors involve concept identification due to an in-
correct triggering of reference words or the identification of multi-
ple semantic concepts. This is mainly due to the difficulty the rule-
based decoding strategy has in coping with conflicting slots.

A priori we may expect that the response evaluation should yield
the highest performance, as even an incorrect semantic represen-
tation can potentially yield a correct system reaction. However,
this is only true for the rule-based implementation in MASK. The
stochastically-based understanding component was not integrated
in the framework of the spoken languagesystem, where the seman-
tic representation is also oriented so as to be able to respond appro-
priately to the user. The current decoder outputs the meaning of
an isolated query regardless of the ongoing dialog context. The re-
ponse errors made by the stochastic componentare therefore due to
ignoring dialog specificities, which need to be addressed when the
component is fully integrated in an end-to-end system. For ATIS,
the performance loss for both implementations is attributed to the

difficulty of matching the response generation to the min-max ref-
erence answer strategy adopted by the ARPA community.

6. CONCLUSION
In this paper we have described the porting of a stochastically-
based natural language understanding componentusing a semantic
case grammar from the American ATIS task to the French MASK
application. The design of the stochastic component focalized
on the creation of a corpus of semantic labels, obtained through
semi-automatic data annotation. This technique simplified the sys-
tem development considerably and consistency checks assured a
homogeneous semantic corpus. The porting was accomplished
within a rather short time frame. By adapting the semantic la-
bels to the method, the performance of the stochastic component
in MASK is able to outperform the rule-based method.

The study shows, that domain and language porting of a stochas-
tic method is rather flexible, since instead of translating and adapt-
ing the rule-based case grammar, it is sufficient to train the compo-
nents on the application and language specific data sets. Another
advantage of the sequential semantic representation is the progres-
sion of mutual information, increasing the robustness of the de-
coding. The lexical query preprocessing reduces the model size,
but has the disadvantageof requiring human intervention. Another
shortcoming is the rather flat semantic representation which does
not allow the modeling of nested structures, whose necessity was
illustrated by the intrusion of contextual observations. Instead of
simply aligning the semantic labels on a one-level word-by-word
basis, a hierarchical, e.g. tree-structured, representation would be
more appropriate. Experiments using such a more powerful se-
mantic representation are in progress.
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