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ABSTRACT 

This paper describes the 2000 ISL large vocabulary speech 
recognition system for fast decoding of conversational 
speech which was used in the German Verbmobil-I1 project. 
The challenge of this task is to build robust acoustic mod- 
els to handle different dialects, spontaneous effects, and 
crosstalk as occur in conversational speech. We present 
speaker incremental normalizat.ion and adaptation experi- 
ments close to real-time constraints. To reduce the number 
of consequential errors caused by out-of-vocabulary words 
(OOV), we conducted filler-model experiments to handle 
unknown proper names. The overall improvements from 
1998 to 2000 resulted in a word error reduction from 40% 
to 17% on our development test set. 
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1. INTRODUCTION 

Speech Data 11 34h 

Verbmobil is a long-term research project aimed at  auto- 
matic speech-to-speech translation between German, En- 
glish, and Japanese. Several univ-rsities and industry part- 
ners are involved in this project. In the first phase of 
Verbmobil (VM-I), the domain was very limited and the 
speaking style was cooperative with less spontaneous ef- 
fects. In the second phase of Verbmobil (VM-11), the data 
became more realistic with a couple of spontaneous effects 
and crosstalk. As it is shown in table I, the scenario of 
VM-11 was extended by a travel domain resulting in much 
higher perplexity. 
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I VM-I I VM-11 
I SDeakina stvle II cooDerative I conversational 1 

LM Data I I  300k 670k 

Table 1: task description 

In this paper, we describe our work on developing a fast, 
and robust speech recognizer for the Verbmobil-II task. Af- 
ter a brief overview of our system, we will give details about 

our experiments on building robust acoustic models for con- 
versational speech, namely improved noise modeling, robust 
channel normalization, speaker incremental feature space 
adaptation during training and decoding, and OOV detec- 
tion. Additionally, we will report some results of speeding 
up our system using the Bucket Box Intersection Algorithm 
(BBI) [4] and Phoneme Lookaheads. We used two develop- 
ment test sets dev98 and dev99 for the experiments. The 
final Verbmobil evaluation was carried out on the evnluO 
test set (see table 2). The systems of each participant were 
evaluated by a neutral site a t  University of Braunschweig 
PI. 

Table 2: dev/eval test sets 

2. ACOUSTIC MODELING 

Starting from a context independent, system, we built a pho- 
netically tied system and train models for all seen quint- 
phones. We use a likelihood criterion on a cross-validation 
set (round robin) to split the models in a top-down clus- 
tering procedure. Besides context questions, we use word 
boundary questions to cover coarticulatory effects. In the 
final system, we used 3500 speech states, each modeled by a 
mixture of 48 gaussians. To model the acoustic space with 
such a huge number of gaussians (168k gaussians in total) is 
even useful’ for building a fast system, since score computa- 
tions can be better pruned during decoding using gaussian 
space partition methods or phonetic lookaheads instead of 
just training small acoustic models. To illustrate this, we 
built three systems with different model sizes and used a 
BBI tree [4] to speed up the systems to achieve similar real 
time factors (table 3). 

Usually, we use fixed frame/phone alignments (gener- 
ated by a previous system) to accumulate sufficient statis- 
tics instead of performing fT..ll viterbi or Baum-Welch train- 
ing in each iteration. We didn’t seen any performance 

~~~ 

measured on evalOO test set 
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- _  

*given enough training data available 
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23.4% 
22.6% 

degradation caused by this approximation, so that we used 
this faster training procedure for all experiments. 

Preprocessing STC gain 
no LDA 22.3% -+ 19.9% 
LDA 20.8% -+ 19.0% 

2.1. Preprocessing 

The feature extraction in our system is based on mel-filtered 
cepstral coefficients with their delta, and delta-delta's. For 
channel normalization, we apply speaker incremental, cep- 
stral mean subtraction (CMS) with exponential history 
weighting. In table 4, we summarize our experiments with 
cepstral variance normalization (CVN) and linear discrim- 
inant analysis (LDA). For the non-LDA systems, the vari- 
ance normalization gave us a gain of 0.7% absolute. After 
we applied the LDA transformation, CVN is no longer ef- 
fective. Indeed, the LDA performs a kind of static variance 
compensation, e.g. the CO values (which have typically high 
variances) will be scaled down by a factor of 10. Another 
interesting observation is, that the gain of the LDA trans- 
formation is above 2.1% absolute, although we cut the LDA 
feature vectors from 39 coefficients to 32. 

I CVN II LDA rrain 1 " 
22.7% -+ 21.4% 

I nr. of matrices I tvpe II error rate I 
t 

" _  

Baseline 11 22.6% 
I global I block 1 1  22.3% I 

phone dep. 
state deD. 

I full I 21.5% global 
phone dep. I full 1 20.8% 

Table 6: structuring semi tied covariances (results on 
dev98) 

2.3. H u m a n  a n d  N o n h u m a n  Noise Model ing  

We model in our system mainly two kinds of noises. For the 
language model, we use two vocabulary entries to cover hu- 
man and nonhuman effects. Each of these models has sev- 
eral pronunciation variants to cover different acoustic sur- 
faces. Additionally, we build context decision trees for the 
human noises. The question is now, how to train these mod- 
els. Fortunately, the word level transcriptions in Verbmobil 
contain some noises. We used these transcriptions to train 
seed models. After that ,  we retranscribed automatically 
the data by computing forced alignments through flexible 
HMM's as shown in figure 1. This was originally proposed 
by Michael Finke in [3]. 

Table 4: Preprocessing (results on dev99) 

For all these experiments, we apply Vocal Tract Length 
Normalization (VTLN) in a speaker incremental, exponen- 
tial history weighted way as we mentioned it for CMS. To 
avoid several search passes during decoding, we favor a de- 
layed reestimation of the warp factor after decoding of the 
current utterance of the speaker. We got almost the same 
gain compared to a complete speaker based estimation. 

2.2. Semi-tied covariances (STC) 

Since, a linear transformation that maximize the ratio of 
between group to within group variances, as a LDA does, 
is only optimal for problems with same group variances, we 
investigated the use of linear feature transformations which 
directly maximize the likelihood [6, 71. 

After the encouraging results with LDA, we built sys- 
tems using LDA and STC to see if there are additional gains 
available. Even with a LDA frontend, we achieved a.8.7% 
error reduction with STC (see table 5). Additionally, we 
examined how to structure and tie the covariances. These 
experiments were performed during an early development 
stage, where we used the dev98 test set (table 6). 

SIL : silence 
hN : human noise (with pronunication variants) 
nN : nonhuman noise (with pronunciation variants) 

Figure 1: dynamic noise transcription 

The results of different transcription strategies can be 
seen in table 7. We got an improvement of 1.4% absolute 
by this noise model training. Another problem of the Verb- 
mobil data is that some speech is corrupted by crosstalk 
from a different channel. To avoid that the speech models 
are trained on wrong crosstalk samples, we trained a spe- 
cial crosstalk model, that we used as a filler model for the 
flexible transcription alignment approach. 
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training to generate seed models, we train semi-tied covari- 
ances for two iterations. Then we go into the optimal fea- 
ture space and estimate adaptation matrices for each train- 
ing speaker. Two training iterations using the new speaker 
dependent feature spaces follows. 

During decoding, we use some training data from female 
and male speech to enhance the robustness of the adapation 
parameter estimation [a]. We combine the statistics from 
the test speaker with either the female or male training 
accumulators and then estimate the adaptation matrices. 
Through this techniques, we achieved a word error reduc- 
tion of 8.6% (table 8). The baseline system already use 
CMS, LDA, semi-tied covariances, and vocal tract length 
normalization. 

optional words 
silence 
+ human, nonhuman noises 
+ mumble. <eh>, <em>. <hm> 

error rate 
24.0% 
22.6% 
22.7% 

- 
1 I 

Table 7: dynamic noise transcription, error rates on dev98 

System 

feature space adaptation 
no adaptation 

2.4. Feature  Space Adapta t ion  

There are mainly two problems if we apply speaker incre- 
mental MLLR adaptation for a real time system. After each 
adaptation step, we have to transform all gaussians. Fcr a 
large system with 160k gaussians, this need approx. 5 sec- 
onds on SUN2l300 machine. Now, the average duration of 
one utterance is nearby 5 seconds, this means, we need al- 
most one real time factor to apply the transformation, even 
in a transformation on demand approach during decoding. 
Additionally, the BBI algorithm that we use for gaussian 
selection to speedup the score computation, computes par- 
titions of the model space. A transformation of the model 
space causes a mismatch of the underlying BB1 tree, result- 
ing in wrong gaussians selection. Instead of transforming 
the models, we therefore compute a linear transform for 
the feature space to avoid the problems mentioned above. 
The optimization criterion base OR a normalized likelihood 
function to incorporate the Jacobi determinant [ 5 ] .  We ap- 
ply this technique also during training to normalize speaker 
and channel effects across the dialogs. This can be seen as 
a very efficient speaker adaptive training variant [l]. 

error rate 
25.7% 
23.5% 

f compute LDA 1 
System 
Baseline 
filler models 

f-----l initialize models using k-means 
w/o UNK mapping with mapping3 

23.8% 23.8% 
23.6% 23.1% I 

4 iterations of label training 

2 iterations of 
- compute semi-tied covariances i - label training 

1 
Compute feature space adaptation 

t 1 2 iterations of label training on 
soeaker deuendent feature suaces 

Figure 2: training scheme using fixed labels with semi-tied 
covariances and feature space adaptation 

The general training scheme of the context dependent 
models is outlined in figure 2. After four iterations of label 

2.5. OOV Detect ion 

To reduce the number of indirect errors due to OOV words, 
we created special filler models, both in the acoustic and 
language models. For this purpose, we trained a global 
phoneme using the data from all vowels and consonants 
to cover unknown phone sequences. Additionally, we used 
some frequent vowel/consonants combinations to integrate 
phonotactic knowledge. As shown in table 9, we achieved a 
word error reduction of 0.7%. 

In figure 3 we show the overall improvements during the 
last three years. In 1998, we started with error rates around 
40%. By now, we have a system with a error rate of 16% 
on the dev99 test set. 

3. DECODING 

The decoder works in three passes. In the first pass, a tree 
structured vocabulary is used to generate lists of starting 
words for each word using LM unigram lookaheads and de- 
layed approximative trigrams. In the second pass, a flat 
organized vocabulary is used to incorporate exact bigrams. 
The resulting lattice will be rescored using long-span lan- 
guage models in the last pass. To avoid additional acoustic 
score computations, a score cache is used for the different 

'In the official evaluation, unknown words of the reference 
strings were mapped to a special lexical entry < U N K  >. 
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Figure 3: error reductions from 1998 to 2000 

passes. The acoustic score computation is speeded up by 
the BBI algorithm, which select gaussians close to the in- 
coming feature vector. A phonetic lookahead strategy is 
used to reduce the search space. The lookahead models 
base on a small context independent system. Additionally, 
we use a maximum approximation for the mixtures of gaus- 
sians. The effect of speeding up vs. error rate is shown in 
table 10. The final evaluation system runs in 1.3 realtime 
on a PentiumIII-600 machine. 

I System I! error rate ! real time 1 
I -  I 

baseline 11 16.2% I 29.3 
tighter beams 1 1  16.5% I 12.9 

Table 10: Speeding up the system (dev99 on PentiumIII- 
600) 

The computational efforts for each search pass are listed 
in table 11. We need just 0.19 real time factors (rtf) for 
speaker normalization and feature space adaptation, be- 
cause this is performed in a delayed incremental way. 

Search pass real time 

rescoring 
vtln 0.09 
adapt a t  ion 0.10 
total 1.25 

Table 11: cpu-usage for each search pass (PentiumIII-600) 

On the final evaluation test set, we achieved a error rate 
of 25.2% at 1.5 rtf on a PentiumIII-600 (2.1 on SUN). The 
speed up of the system from 20 rtf to 1.5 rtf caused approx. 
10% error increase on the evalOO test set. 

4. SUMMARY 

In this paper, we have described our efforts to build a fast 
and accurate system for decoding conversational speech. 
Substantial error reductions were achieved using speaker 
normalization and adaptation algorithms under real-time 
constrains. We examined methods to train robust acoustic 
and language models to cover human and nonhuman noise 
effects. Acoustic and language models were improved to 
handle unknown proper names. The system achieved best 
word error rates in the Verbmobil evaluations. 
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