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ABSTRACT 

JANUS [17] was designed for the translation of sponta­
neous human-to-human speech . Before the 1994 CSR 
evaluation, JANUS was run with vocab ularies of up to 
2500 words. JANUS was also tested on the Confer­
ence Registration and the Resource Management tasks. 
The best error rate on the '89 Resource Management 
evaluation set was 5.9%. At the June 1994 Verbmobil 
speech component evaluation [l], JANUS scored best 
among eight participants on the German appointment 
scheduling task, a task of spontaneous human to human 
dialogs. In this paper we give a detailed description of 
the recognition engine of JANUS , focusing on the acous­
tic modeling and our first run with the WSJ task. 

1. ACOUSTIC MODELING IN JANUS 

1.1 PREPROCESSING 

For the 1994 CSR evaluation we computed 16 mel 
scale spectral coefficients from an FFT with a window 
size of 256 sample points and a window shift (frame 
rate) of 10 ms. 16 mel spectral coefficients, 16 delta 
coefficients, and 16 delta-delta coefficients were used to 
build a 48 dimensional feature space which is then re­
duced to 16 LDA coefficients by a linear discriminant 
analysis (LDA). The LDA was computed for 150 classes 
(submonophones). No noise or channel compensation or 
speech enhancement techniques were used for the exper­
iments reported here. 

1.2 ARCHITECTURE 

In a general HMM system, the emission probability 
for observing a speech vector X = ( X1, .. , Xn) given that 
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the svstem is in the HMM state 8 can be defined as 
p(xl8) = ~~;; 1 c,,i · N(µ,,;, E,,i , x) where N is a Gaus­
sian densitiy and c,,; is the mixture weight for the i­
th Gaussian in the mixture that is modeling state 8. 

The acoustic engine of JANUS allows any degree of pa­
rameter tying, from simple discrete HMMs, over semi­
continuous HMMs optionally phonetically or subpho­
netically tied, to fully continuous HMM with clustered 
senones. In the architecture configuration of .JANUS 
we can tie different mixtures or different sets of mixture 
weights or complete acoustic models. By tying c, , ,i with 
c,, ,i for any pair of states 81 , 82 whose mixtures are of 
the same size, we can smoothly modify the number of 
mixture weights and thus the number of acoustic mod­
els. By tying µ,, ,i, E,,,i with µ,,,i, E, ,,i for any pair 
of mixtures of the same size, we can smoothly inter­
polate between semicontinuous HMMs and fully con­
tinuous HMMs. So, JANUS allows the emulation of 
senones [2], genones [3], PICs and PELs [4]. For the 
1994 evaluation , our bootstrap system used 50 context 
independent phonemes plus one silence phoneme and 
one general garbage phoneme. The only purpose of the 
garbage phoneme was to act as a 'garbage can' for se­
quences of the training set that were transcribed with 
noises or with incorrectly pronounced words. It was not 
used during testing. This system was later expanded to 
a system with 2885 context dependent subphones . Ev­
ery phoneme is modeled with three simple state models , 
each of which has one transition to the successor state 
and one self loop. 

All transitions have the same transition probability, thus 
they have no effect on the alignment path , neither in the 
forced alignment training nor during decoding. No ex­
plicite duration modeling is done, and HMM emission 
probabilities are the only factor to influence the dura­
tions of phonemes and words. 



1.3 TRAINING 

The defau lt training procedure is as follows: 

• Create labels for a given database, using an exist­
ing recognizer that was bootstrapped on previous 
databases ( sometimes even foreign databases, if 
necessary) . For this evaluation we used the male 
portion of Resource Management database. 

• Create a context independent continuous density 
HMM from the labeled data with the k-means al­
gorithm. Typically, we start with 150 mixtures 
(50 phonemes times 3 states) of 16 G aussians each. 

• 'Ihin this system with Viterbi training until no 
further improvement on a crossvalidation set can 
be achieved. 

• Compute a linear discriminant analysis matrix with 
the best context independent system, and create 
new mixtures based on the LOA-preprocessed fea­
ture space. 

• Train the LDA system with Viterbi training until 
no further improvement on a crossvalidation set 
can be achieved. 

• Introduce separate mixture weights for every con­
text of every model, initializing them with the 
corresponding mixture weights from the context 
independent system. (We have observed a small 
advantage of this approach over merging the mix­
ture weigths that fall into the same cluster.) For 
the CSR evaluation this resulted in about 25000 
different distributions. 

• Viterbi training lets the mixture weights of dif­
ferent contexts diverge (the Gaussians are still 
shared by all contexts of the same context inde­
pendent model). 

• Compute one divisive context clustering tree for 
every context independent model using an entropy 
distance measure between the mixture weight dis­
tributions of different contexts [2],[14]. The eval­
uation system had 2885 senones. 

• Initialize every generated cluster with the corre­
sponding context independent parameters. 

• Viterbi training lets the mixture weights of differ­
ent clusters diverge. 
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• Introduce separate mixtures (Gaussian means and 
variances) for every cluster , initialising them with 
the Gaussians of the corresponding context inde­
pendent model. For our evaluation system, this 
means create 2885 mixtures , each of which is ini­
tialized with the Gaussians from the correspond­
ing context independent mixture . The mixture 
weights remain untouched. 

• Viterbi training lets the Gaussian parameters of 
different clusters di verge . 

Optionally we can add gender-dependence at any stage 
of the training process by splitting a system in two , 
and training each of the two with data from its gender. 
For lack of time , we did not use gender dependent sys­
tems for the 1994 CSR evaluation. Other techniques like 
deleted interpolation smoothing [5], corrective training 
[6], cross-word triphone modeling , dictionary learning 
[7] , connectionist nonlinear discrimiant ananlysis [8], 
learning vector quantization (LVQ-2) [9], and mixture 
size optimization [10] are available and have been sep­
arately explored for our speech translation tasks, but 
have also not been used in the 1994 CSR evaluation. 
We have never trained the HMM-transition probabil­
ities . For the evaluat ion , all transitions were treated 
equally. We also do not use durat ion modeling, which, 
together with the lack of noise modeling , resulted in hy­
potheses that had very long TH phones to cover noise 
seqences or breathing noises. 

3 THE DECODER IN JANUS 

The decoder is a Viterbi style two pass decoder: the first 
pass is a standard Viterbi search implemented roughly 
as described in [11]. The second pass is a word-dependent 
N-best seach [12] using the backtrace information from 
the first pass for efficient pruning [13] . First and sec­
ond pass use a bigram language model. The output of 
the second pass is not a list of hypotheses but a word­
graph from which the hypothesis with the best score is 
extracted using trigrams. 

4 EVALUATION ON THE WSJ/NAB TASK 

4.1 THE DEVELOPMENT 

Our initial context independent system was bootstrapped 
with 50 monophone models that were trained on 2890 
utterances ( the male subset) from the resource man­
agement database. This system's performance was 80% 



word errors on the 1992 si-dev-05 test set. We trained 
a recognizer with all the training steps that were de­
scribed in 1.3 using only the SI-84 training set. All 
architecture decisions were made with this data. We 
ended up with 2885 context dependent models that per­
formed best on the 1992 si-dev-05 development test set 
when compared to systems with other numbers of mod­
els. Fig. 1 shows the error rates on si-dev-05 at different 
stages of the training process. 
We have observed an error reduction by 13% to 17% 
when comparing systems that use an LDA feature space 
with systems that use spectral coefficients only. The 
biggest improvement resulted from going from semicon­
tinuous HMMs to fully continuous HMMs, which gave 
us an error reduction of 30% to 32%. Increasing the 
training data from SI-84 to SI-284 reduced the error 
by 17% to 19%. However, all the decisions about the 
architecture of the recognizer were based on the SI-84 
training set, while a larger training set would also sug­
gest a larger parameter space. 
After that we did not change the architecture or the 
number of parameters any more, and continued Viterbi 
training on the rest of the SI-284 training set , until there 
was no further improvement on si-dev-05. This was the 
final system that was used for the official evaluation. 

We have observed big differences in performance on 
different testsets. The followin table shows the word er­
ror rates of evaluation system ( all tested with the cor­
responding bigram grammar): 

Test set '92 5k '92 20k '93 20k '94 20k 
dev-test dev-test dev-test dev-test 

Errors 9.3% 13.7% 31.2% 25.2% 

These results show that JANUS is not yet robust 
enough for switching test sets. 

4.2 RESULTS WITH THE OFFICIAL 
EVALUATION SYSTEM 

The JANUS speech recognizer had an error rate of22.8% 
on ARPA's official 1994 CSR evaluation set on Hub 1, 
condition Cl. Our system did not benefit from the 1994 
development test data and grammar file as this data 
was only received one week before the evaluation test 
runs. We could only use it to calibrate the weight that 
balances the contributions of the acoustic and language 
model scores. A number of feature of the system remain 
to be optimized on the development corpus. 
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Fig. 1: development tests on the 1992 development 
test set, using the WSJ0 bigram grammar 

4.3 UNOFFICIAL AFTER-EVALUATION 
RESULTS 

About 25% of the SI-84 training set (i.e. about 5% 
of the Sl-284 training set) were corrupted due to NFS 
problems while unpacking and preprocessing. We did 
not notice these errors until after the evaluation. \Ve 



started a new training which included gender dependent 
models. At the training stage where the evaluation sys­
tem had a 16.8% error on the 1992 WSJ development 
set si-dev-05, the improved system had a word error rate 
of 14.7%, which is a reduction by about 13%. 

5. CONCLUSION AND FUTURE PLANS 

T he JANUS speech recognizer has proven to give good 
recognition results as shown on the 1994 Verbmobil eval­
uation. However , one week with the development data 
was not enough to tune JANUS to the NAB task. We 
expect great improvements from successfully app lying 
gender dependent acoustic modeling , opt imizing the ar­
chitecture ( context decision trees , number of models, 
size of mixtures), and channel normalization. The adap­
tation to a new task is always hard and tricky work. A 
large amount of fine-tuning work has to be done to reach 
good performance. Although JANUS scored worst in 
the 1994 CSR evaluation , we feel optimistic that with 
some more t uning and the above mentionned techniqes, 
JANUS will soon compare more favorab ly. 
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