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ABSTRACT 
Multi-State Time Delay Neural Networks (MS-TDNNs), using 
a new connectionist architecture with embedded time aligne­
ment, have been successfully applied to speaker-dependent 
continuous spoken letter recognition[lj . This shows the value 
of extending the classification capabilities of connectionist net­
works up to the word level in recognizing confusable vocabu­
laries. This paper describes the application ofMS-TDNNs to a 
very different task: speaker independent telephone-quality iso­
lated digit recognition. The resulting 1.6% error rate demon­
strates the value of embedded time alignement, since multi­
feature TDNNs, which do not implement time alignement, 
have a 6.5% error rate on the same task . Comparisons with 
HMMs are also provided. 

1 INTRODUCTION 

Since connectionist learning procedures are typically defined 
in tenns of static pattern classification tasks, time alignment 
presents the greatest problem in performing spoken word rec­
ognition for ne~ral network (NN) based systems. To take the 
time distortions that may appear within its boundaries into ac­
count, a word is generally modeled by a sequence of states that 
can have variable time durations . Some recurrent connectionist 
architectures have been designed to learn sequences of states. 
they have only been demonstrated on very simple tasks. Train­
ing proceeds too slowly in these systems to make them practi­
cal in large speech tasks. One effective solution is t<:> combine 
an alignment procedure with the NN. generally Dynamic Pro­
gramming (DP). Traditional DP-based methods attempt to 
minimize a sum of distances (Dynamic Tin1e Warping) or max­
imize a product of probabilities (Viterbi alignment ).In order to 
integrate the DP procedure into a connectionist network, a con­
nectionist representation of the DP accumulation of frame 
scores over time is necessary. ll1e word score is preferably the 
output of a connectionist unit that is supervised using a classi­
fication based back-propagation learning algorithm. 

For speech tasks in which modelling sequential state informa­
tion is not necessary, excellent recognition perfonnance has 
been achieved using IDNNs[2] or frame level classification 
NNs. TDNNs-based architectures which do not perform time 
alignment were experimented on word recognition[}], but the 

system is not robust to time distortions . To extend TDNN per­
formance to multi-state word recognition, it is necessary to 
combine the NN with a procedure performing time alignment, 
usually based on Dynamic Programming[4]. Multi-State Time 
Delay Neural Networks (MS-TDNNs) perfonn classification 
at the word level. Unlike many other hybrid methods[5], these 
networks are not trained using external frame-level supervi­
sion provided by a separate time-alignment section of the sys­
tem. MS-TDNNs incorporate the DP procedure into theiI 
training, such that only external word-level supervision is re­
quired. The architecture of the MS-TDNN system can be char­
acterized as purely connectionist, since the time alignment 
procedure is an integral part of the neural network training. 
Powerful learning techniques enable this very large NN to 
learn within reasonable tune with minimal external supervi­
sion. Recently, MS-TDNNs have been favorably compared to 
the discrete HMM based SPHINX system on continuous 
speaker-dependent alphabet recognition[!]. Experiments on 
the recognition of speaker-independent isolated digits (French, 
telephone quality) described here show a large increase in per­
formance from static multiple feature TDNNs to MS-TDNNs. 

2 TDNNS AS SINGLE FEATURE DETEC­
TORS 

TDNNs act as tune-shift invariant feature extractors. They are 
particularly well suited to the recognition of speech pattern~ 
distinguished by the presence of a single feature in time . The 
first task assigned to them was the detection of a single signif­
icant acoustical feature used to recognize phonemes [2J. this 
acoustical feature could happen anywhere in a speech segment 
made of a succession of parameter frames. To train a frame­
level NN to perform the correct phoneme classification at each 
time frame is not desirable: the output unit corresponding to 
the feature to be recognized would be forced to assume its 
maximal value even at times when this feature is not present in 
the input speech frames. During training, TDNNs are only re­
quired to produce the correct classification, regardless of the 
position in time at which the significant feature has occurred. 
This is achieved by accumulating evidence which is local in 
time (the outputs of a frame-level NN) to produce an output 
which is time independent. It is essential to pass this accumu-
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FIG.I : A single featun TDNN for word recognition 

lated sum through a non-linearity (sigmoid) so that small devi­
ations at the frame level do not reduce overall classification 
performance. 

FIG.I shows a single feature TONN used for the recognition of 
the French digits "zero" (0) and "un" (1 ). Each unit of the first 
hidden layer receives input from a 3-frame window of filter­
bank coefficients. Similarly, each unit in the second hidden 
layer receives input from a 5-frame window of outputs of the 
first hidden layer. At this level of the system (2nd hidden lay­
er), the network produces, at each time frame, the scores for the 
desired phonetic features. However, to base the recognition of 
a word on the detection of only one of its acoustical feature -
even when it is the most characteristic one - implies the loss of 
many other useful features. Single state TDNNs were applied 
to the recognition of the, 10 isolated French digits to check 
whether the learning procedure could find one feature per digit 
which would be sufficient for discrimination among the words 
of this small vocabulary: this system never converged. 

3 TDNNS AS MULTIPLE FEATURE DETEC­
TORS 

The recognition of one word generally depends on the detec­
tion of several consecutive acoustical features. The first at­
tempts to handle multiple feature detection with TDNNs 
assumed that each of those feature occurred within some fixed 
temporal window. The output unit corresponding to a word to 
be recognized combines evidence from a succession of local , 
feature detectors sampled at fixed intervals. FIG.3 shows the 
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FIG3: A multiple feature TONN 

multiple feature TDNN used again for the recognition of the 
French digits "zero" (0) and "un" (1 ). Up to the second hidden 
layer, the TONN is the same as the one described in the previ­
ous section. Word boundaries are detennined by an external 
end point detection procedure. Within these boundaries, the ut­
terance is divided into several segments of equal duration (in 
our example, we have just used 2 segments for simplicity, each 
of those segments being 5 frame long). This method corre­
sponds to a linear renormalization of time. The activations of 
the second hidden layer are averaged separately over these seg­
ments (the resulting averaged activations appear in the third 
hidden layer). The third layer is fully connected to the output 
layer. Our experiments described in section 6 show that this 
system is not very robust to time distortions. 

4 MULTI-STATE TIME-DELAY NEURAL 
NETWORKS 

With MS-TDNNs, we have extended the fonnalism ofTDNNs 
to incorpo'i'ate time alignment. Suppose there ru·e several dis­
tinct states in a word (roughly corresponding to several 
phones). These states can be represented by a series of connec­
tionist "state units" which are subject to certain sequential 
constraints. The word-level temporal accumulating unit accu­
mulates the activation of the first state unit over some period of 
time, then shifts attention to the next state unit an~ accumulates 
its activations, and so on, until it reaches the ending state of the 
word. We see in FIG.4 this word-level temporal accumulating 
unit, which at each time is connected only to the currently ac-
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tive state unit in the optimal alignment path. As in the one-state 
TDNN, it is essential that the accumulation units have a sig­
moid output function. 

This process may be seen as the integration of local phonemic 
decisions over time, where these decisions are constrained to 
follow the sequence of state (phone) units that make up the 
word. The MS-TDNN does not require precise phonemic deci­
sions at each point in time which limits the sensitivity of the 
system to frame-level classification errors. The 2-class MS­
TDNN described here as an example again has to recognize the 
digits 'Zero' and 'Un' (FIG.4.). Each word has a 3-state model 
in this small example. More sophisticated phone models, 
which are described in a previous paper [I], have also been de­
signed to perform spelled alphabet recognition. The main dif­
ferences between word models and phone models are the 
following: 

• In the alphabet task, some sections of the speech signal (for 
instance the stop consonant /p/ in the spelled letter 'p') may 
contain more discriminatory information than others. It is 
therefore justified to weight the importance of each phone 
belonging to the same word differently. In the digit task, 
where we use word models whose states are equally distrib­
uted in tin1e, this differential weighting is not justified. In 
this case, experiments have shown it to worsen generaliza­
tion performance, since the weights add superfluous param­
eters to the system. 

- In phone models, a phonemic role is assigned to every state 
in a word. It is therefore possible to assume that two consec­
utive phone units fire on detecting different features. The 
transition from one phone to an other means most often that 
the score of the first phone is decreasing while the score of 
the second phone is increasing. It is therefore possible to 
add specialized transition units that are trained to detect this 
transition more e~plicitly: the resulting stabilization in seg-

FIG 4: a MS-TONN for word r04'ogoltlon 

mentation yields an increase in performance. This cannot be 
done with word models, as some consecutive states may be 
redundant, since they detect the same feature. 

5 TRAINING MS-TDNNS 

MS-TDNN training uses a fast back-propagation learning pro­
cedure that has was developed for a Japanese phoneme recog­
nition task[6]. The same global gradient back-propagation is 
applied to the whole system, from the output word units down 
to the input units. Generally, each desired word is associated 
with a segment of speech with known boundaries, and this as­
sociation represents a training pair. The DP alignment proce­
dure is applied between the known word boundaries. 

Our optimization procedure explicitly attempts to minimize 
the number.of word substitutions; this approach represents a 
move towards systems in which the training objective is max­
imum word accuracy. 

6 ISOLATED TELEPHONE DIGITS 

The speech material was collected from about 750 speakers, 
each of whom uttered the 10 digits (French) in isolation over 
the long distance telephone network. As input parameters, we 
use 6 Melscale Fourier Cepstral Coefficients (MFCC), com­
puted at a 16msec frame rate, the Energy, and the Energy de­
rivative. Training the network on 3500 digits (375 speakers) 
takes about one day on a IBM RISC/6000 workstation (100 ep­
ochs). Word models with 7 states are used. Results with con­
tinuous single density HMMs[7] are provided for comparison, 
using HMMs which have been developed on the CNET tele­
phone digit database for several years. The best HMM results 
have been obtained with word models (41 states per word). 
Since precise end-point detection is extremely difficult on our 
telephone quality databases, the 6.5% recognition accuracy 
was the best we could obtain using a fixed sized TDNN. 
HMMs used in a forced alignment mode provided high quality 
word boundaries that reduced the error rate to 3.0%. Linear 
renormalization was applied within these word boundaries. 
Without a-priori knowledge about the word boundaries (si­
lence models are used), MS-TDNNs achieve a much better 
performance: 1.6% error rate. This result is still far from the 
0.7% error rate obtained with an HMM which has been opti­
mized with respect to the word model (by allowing alternate 
paths), the number of states and the set of input parameters. 
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SYSTEM Description Error rate 

Multi Feature No precise end 6.5% 
TONN point detection 

4 states/word 

Multi Feature Forced alignment 3.0% 
TDNN word boundaries 

4 states/word 

MS-TONN 7 states/word 1.6% 

HMM 41 states/word 2.8% 
(baseline) Same input para-

meters as MS-TDNNs 

HMM 41 states/word 0.7% 
(optimized) Extended set of 30 input 

parameters (derivatives) 

CONCLUSION 

Multi-State Time Delay Neural Networks were applied to 
speaker-independent isolated digit recognition, resulting in an 
four fold reduction in the error rate when compared to TDNNs 
that do not implement tin1e alignment. No optimization has 
been tried yet on MS-TDNNs, as these baseline experiments 
were intended to show the efficiency of the time alignement 
procedure. It is believed that MFCC input parameters, which 
have been very successful with HMMs, are not the best possi­
ble choice as the input to a connectionist network. Alternate 
models or different classes of speaker and integrated connec­
tionist speaker (or telephone noise) adaptation represent other 
possible directions for improvements. 
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